首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spirochaeta thermophila RI 19.B1 (DSM 6192) fermented glucose to lactate, acetate, CO2, and H2 with concomitant formation of cell material. The cell dry mass yield was 20.0 g/mol of glucose. From the fermentation balance data and knowledge of the fermentation pathway, a YATP of 9.22 g of dry mass per mol of ATP was calculated for pH-uncontrolled batch-culture growth on glucose in a mineral medium. Measurement of enzyme activities in glucose-grown cells revealed that glucose was taken up by a permease and then subjected to ATP-dependent phosphorylation by a hexokinase. Glucose-6-phosphate was further metabolized to pyruvate through the Embden-Meyerhof-Parnas pathway. The phosphoryl donor for phosphofructokinase activity was PPi rather than ATP. This was also found for the type strain of S. thermophila, Z-1203 (DSM 6578). PPi was probably formed by pyrophosphoroclastic cleavage of ATP, with recovery of the resultant AMP by the activity of adenylate kinase. All other measured kinase activities utilized ATP as the phosphoryl donor. Pyruvate was further metabolized to acetyl coenzyme A with concomitant production of H2 and CO2 by pyruvate synthase. Lactate was also produced from pyruvate by a fructose-1,6-diphosphate-insensitive lactate dehydrogenase. Evidence was obtained for the transfer of reducing equivalents from the glycolytic pathway to hydrogenase to produce H2. No formate dehydrogenase or significant ethanol-producing enzyme activities were detected.  相似文献   

2.
In the presence of UDPglucose, rabbit muscle phosphofructokinase appeared to use PPi as a phosphoryl donor, as reported previously (Biochem. Biophys. Res. Commun. 121, 842-847). This apparent activity was due to conversion of UDPglucose and PPi to glucose 1-phosphate and UTP, the latter being metabolized by phosphofructokinase. Auxiliary enzymes used in the assays were contaminated by UDPglucose pyrophosphorylase. This contamination was sufficient to account for, and had similar properties to, the apparent PPi-dependent activity. Without auxiliary enzymes phosphofructokinase could not use PPi. These findings indicate that the apparent interconversion of phosphofructokinase and PPi:fructose 6-phosphate phosphotransferase must be re-assessed.  相似文献   

3.
32P-labeled glucose 6-phosphate and phosphoenolpyruvate were injected into oocytes, fertilized eggs, and early embryos of Xenopus laevis, and the 32P label was followed into glycolytic enzymes and acid-soluble metabolites. The kinetics of labeling of phosphoglucomutase and phosphoglyceromutase and the formation of specific metabolites were used to measure carbon flux through glycolytic intermediates in these cells. In full-grown stage VI oocytes, fertilized eggs, and cells of cleaving embryos, carbon metabolism is in the glycogenic direction. Glycolytic intermediates injected into these cells were metabolized into UDP-glucose and then presumably into glycogen. Carbon flow between phosphoenolpyruvate and glucose 6-phosphate does not utilize fructose 1,6-bisphosphatase; rather, it may depend largely on enzymes of the pentose phosphate pathway. Maturation and fertilization of the oocyte did not result in a change in the qualitative pattern of metabolites formed. Pyruvate kinase, although abundant in oocytes and embryos, is essentially inactive in these cells. Pyruvate kinase also appears to be inactive in small previtellogenic stage II oocytes; however, in these cells injected glycolytic intermediates were not metabolized to UDP-glucose.  相似文献   

4.
Results of experiments with glucose and its analog, methyl alpha-D-glucopyranoside, indicated that when glucose was present at low concentrations, it was transported into Bacillus popilliae NRRL B-2309MC cells as glucose 6-phosphate by a phosphoenolpyruvate:sugar phosphotransferase system. An additional mode(s) of entry may be operative at higher glucose concentrations. Maltose appeared to enter the cells by a nonphosphorylative process and was hydrolyzed intracellularly to glucose. No phosphoryl donor was necessary for this hydrolysis.  相似文献   

5.
Results of experiments with glucose and its analog, methyl alpha-D-glucopyranoside, indicated that when glucose was present at low concentrations, it was transported into Bacillus popilliae NRRL B-2309MC cells as glucose 6-phosphate by a phosphoenolpyruvate:sugar phosphotransferase system. An additional mode(s) of entry may be operative at higher glucose concentrations. Maltose appeared to enter the cells by a nonphosphorylative process and was hydrolyzed intracellularly to glucose. No phosphoryl donor was necessary for this hydrolysis.  相似文献   

6.
The metabolism of trehalose in wild type cells of Escherichia coli and Salmonella typhimurium has been investigated. Intact cells of Escherichia coli (grown on trehalose) accumulated [14C]-trehalose as [14C]-trehalose 6-phosphate. Toluene-treated cells catalyzed the synthesis of the [14C]-sugar phosphate from [14C]-trehalose and phosphoenolpyruvate; ATP did not serve as phosphoryl donor. Trehalose 6-phosphate could subsequently be hydrolyzed by trehalose 6-phosphate hydrolase, an enzyme which catalyzes the hydrolysis of the disaccharide phosphate into glucose and glucose 6-phosphate. Both Escherichia coli and Salmonella typhimurium induced this enzyme when they grew on trehalose.These findings suggest that trehalose is transported in these bacteria by an inducible phosphoenolpyruvate:trehalose phosphotransferase system.The presence of a constitutive trehalase was also detected.Abbreviations HEPES N-2-hydroxyethylpiperazine-N-2-ethanosulfonic acid - PEP phosphoenolpyruvate - PTS phosphoenolpyruvate: glycose phosphotransferase system - O.D. optical density  相似文献   

7.
This work was carried out to investigate the relative roles of phosphofructokinase and pyrophosphate-fructose-6-phosphate 1-phosphotransferase during the increased glycolysis at the climacteric in ripening bananas (Musa cavendishii Lamb ex Paxton). Fruit were ripened in the dark in a continuous stream of air in the absence of ethylene. CO2 production, the contents of glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-bisphosphate, phosphoenolpyruvate and PPi; and the maximum catalytic activities of pyrophosphate-fructose-6-phosphate 1-phosphotransferase, 6-phosphofructokinase, pyruvate kinase and phosphoenolpyruvate carboxylase were measured over a 12-day period that included the climacteric. Cytosolic fructose-1,6- bisphosphatase could not be detected in extracts of climacteric fruit. The peak of CO2 production was preceded by a threefold rise in phosphofructokinase, and accompanied by falls in fructose 6-phosphate and glucose 6-phosphate, and a rise in fructose 1,6-bisphosphate. No change in pyrophosphate-fructose-6-phosphate 1-phosphotransferase or pyrophosphate was found. It is argued that phosphofructokinase is primarily responsible for the increased entry of fructose 6-phosphate into glycolysis at the climacteric.  相似文献   

8.
《Phytochemistry》1986,25(7):1579-1585
Regulation of the sugar content of the developing tubers of three varieties (King Edward, Maris Bard, Pentland Javelin) of Solanum tuberosum was investigated. Sucrose, glucose, fructose, UDP-glucose and fructose-2,6-bispbosphate were measured during tuber development as were the maximum catalytic activities of acid invertase, alkaline invertase, sucrose synthase, α-glucan phosphorylase, hexokinase, phospbofructokinase and pyrophosphate: fructose 6-phosphate 1-phosphotransferase [PFK(PPi)]. Sucrose was the dominant sugar and there was less fructose than glucose; the amounts of all three per gram fresh weight fell during tuber development. The activity of hexokinase per gram fresh weight declined during development but those of the other enzymes listed did not alter significantly. No change in the amounts of fructose-2,6-bisphosphate or UDP-glucose per gram fresh weight were found. The above measurements suggest that much of the sucrose translocated to the developing tuber is metabolized via sucrose syntbase to UDP-glucose that is converted to glucose 1-phosphate by UDP-glucose pyrophosphorylase using pyrophosphate generated by PFK (PPi).  相似文献   

9.
Potato tuber UDP-glucose pyrophosphorylase (EC 2.7.7.9) catalyzes the reversible uridylyl transfer from UDP-glucose to MgPPi forming glucose 1-phosphate and MgUTP, according to an ordered bi-bi mechanism in which UDP-glucose and MgPPi bind in this order. To probe the active site of this enzyme, we have applied pyridoxal 5'-diphosphate, a reactive PPi analogue. The enzyme was rapidly inactivated when incubated with the reagent in the presence of Mg2+ followed by sodium borohydride reduction. The degree of the inactivation was decreased by MgUTP, MgPPi, and glucose 1-phosphate, but enhanced by UDP-glucose. The enhancement was prevented by co-addition of Pi, the competitive inhibitor with respect to PPi. The complete inactivation corresponded to the incorporation of 0.9-1.1 mol of reagent/mol of enzyme monomer. In the presence of UDP-glucose, labels were almost exclusively incorporated into Lys-329. Thus, this residue may be located near the bound MgPPi and its modification is promoted, probably through conformational changes, by the binding of UDP-glucose to the enzyme. The results of the modification by the same reagent of the mutant enzymes in which Lys-329 and Lys-263 are individually replaced by Gln suggest the roles of these lysyl residues in the binding of MgPPi and in the UDP-glucose-induced conformational changes, respectively.  相似文献   

10.
The activities of polyphosphate glucokinase which synthesizes glucose-6-phosphate from glucose and metaphosphate were found in some microorganisms. This enzyme occurred most abundantly in Micrococcus and Achromobacter species and less in Brevibacterium, Aerobacter and Alcaligenes species. The distribution pattern of this enzyme was closely similar to that of polyphosphate NAD kinase. Polyphosphate glucokinase in A. butyri was different from ATP-dependent glucokinase in some enzymatic properties. The potent phosphoryl donor for this enzyme was metaphosphate, and other chain or ring phosphate polymers were not utilized by this enzyme.  相似文献   

11.
K Abe  K Uchida 《Journal of bacteriology》1989,171(4):1793-1800
Pediococcus halophilus X-160 which lacks catabolite control by glucose was isolated from nature (soy moromi mash). Wild-type strains, in xylose-glucose medium, utilized glucose preferentially over xylose and showed diauxic growth. With wild-type strain I-13, xylose isomerase activity was not induced until glucose was consumed from the medium. Strain X-160, however, utilized xylose concurrently with glucose and did not show diauxic growth. In this strain, xylose isomerase was induced even in the presence of glucose. Glucose transport activity in intact cells of strain X-160 was less than 10% of that assayed in strain I-13. Determinations of glycolytic enzymes did not show any difference responsible for the unique behavior of strain X-160, but the rate of glucose-6-phosphate formation with phosphoenolpyruvate (PEP) as a phosphoryl donor in permeabilized cells was less than 10% of that observed in the wild type. Starved P. halophilus I-13 cells contained the glycolytic intermediates 3-phosphoglycerate, 2-phosphoglycerate, and PEP (PEP pool). These were consumed concomitantly with glucose or 2-deoxyglucose uptake but were not consumed with xylose uptake. The glucose transport system in P. halophilus was identified as a PEP:mannose phosphotransferase system on the basis of the substrate specificity of PEP pool-starved cells. It is concluded that, in P. halophilus, this system is functional as a main glucose transport system and that defects in this system may be responsible for the depression of glucose-mediated catabolite control.  相似文献   

12.
The reaction catalyzed by calf liver uridine diphosphate glucose synthase (pyrophosphorylase) (EC 2.7.7.9; UTP + glucose 1-phosphate = UDP-glucose + PPi) is an example of an enzymic reaction in which a nucleoside triphosphate other than ATP is the immediate source of metabolic energy. Kinetic properties of the enzyme, acting in the direction of UCP-glucose formation were investigated in vitro. The reaction was inhibited by UDP-glucose (0.072), Pi (11), UDP (1.6), UDP-xylose (0.87), UDP-glucuronate (1.3), and UDP-galacturonate (0.95). The numbers in parentheses indicate the concentration (mM) required for half-maximal inhibition under the conditions used. Other compounds tested, including ATP, ADP, and AMP, had no effect. Over a range of concentrations of UTP (0.04-0.8 MM) and UDP-glucose (0.05-0.03 mM), the reaction rate was more dependent on the concentration ratio [UDP-glucose]/[UTP] than on the absolute concentration of either compound. Comparison of the kinetic properties in vitro with estimates of metabolite levels in vivo suggests that (1) the enzyme operates in a range far from its maximal rate, and (2) the concentrations of glucose 1-phosphate and Pi and the ratio [UDP-glucose]/[UTP] may be the most important determinants of UDP-glucose synthase activity.  相似文献   

13.
K Tauchert  A Jahn    J Oelze 《Journal of bacteriology》1990,172(11):6447-6451
Batch cultures of Azotobacter vinelandii were inoculated with cells pregrown on either acetate or glucose. When they were subsequently grown on a mixture of acetate and glucose, typical diauxic growth was observed, with preferential uptake of acetate in the first and glucose in the second phase of growth. Extracts from acetate-pregrown cells exhibited high acetate kinase activity in the first phase of growth. This activity decreased and activities of the two glucose enzymes glucose 6-phosphate dehydrogenase and glyceraldehyde 3-phosphate dehydrogenase increased in the second phase. Extracts from glucose-pregrown cells exhibited high initial activities of the two glucose enzymes, which decreased while acetate kinase activity increased in the first phase of growth. Again, in the second phase, activities of the two glucose enzymes increased and acetate kinase activity decreased. In any case, isocitrate dehydrogenase activity varied only slightly and unspecifically. The differences in enzyme activity and the constancy of isocitrate dehydrogenase were confirmed by experiments with either acetate- or glucose-limited chemostats. In chemostats in which both of the substrates were limiting, all of the enzymes displayed significant activities. Glucose 6-phosphate dehydrogenase activity was inhibited by acetyl coenzyme A and acetyl phosphate but not by acetate. It is proposed that diauxic growth is based on the control of enzymes involved in acetate or glucose dissimilation by which acetate or its metabolites control the expression and activity of glucose enzymes.  相似文献   

14.
A PPi-dependent phosphofructotransferase (PPi-fructose 6-phosphate 1-phosphotransferase, EC 2.7.1.90) which catalyzes the conversion of fructose 6 phosphate (F-6-P) to fructose 1,6-bisphosphate (F-1, 6-P2) was isolated from a cytoplasmic fraction of Acholeplasma laidlawii B-PG9 and partially purified (430-fold). PPi was required as the phosphate donor. ATP, dATP, CTP, dCTP, GTP, dGTP, UTP, dUTP, ITP, TTP, ADP, or Pi could not substitute for PPi. The PPi-dependent reaction (2.0 mM PPi) was not altered in the presence of any of these nucleotides (2.0 mM) or in the presence of smaller (less than or equal to 300 microM) amounts of fructose 2,6-bisphosphate, (NH4)2SO4, AMP, citrate, GDP, or phosphoenolpyruvate. Mg2+ and a pH of 7.4 were required for maximum activity. The partially purified enzyme in sucrose density gradient experiments had an approximate molecular weight of 74,000 and a sedimentation coefficient of 6.7. A second form of the enzyme (molecular weight, 37,000) was detected, although in relatively smaller amounts, by using Blue Sepharose matrix when performing electrophoresis experiments. The back reaction, F-1, 6-P2 to F-6-P, required Pi; arsenate could substitute for Pi, but not PPi or any other nucleotide tested. The computer-derived kinetic constants (+/- standard deviation) for the reaction in the PPi-driven direction of F-1, 6-P2 were as follows: v, 38.9 +/- 0.48 mM min-1; Ka(PPi), 0.11 +/- 0.04 mM; Kb(F-6-P), 0.65 +/- 0.15 mM; and Kia(PPi), 0.39 +/- 0.11 mM. A. laidlawii B-PG9 required PPi not only for the PPi-phosphofructotransferase reaction which we describe but also for purine nucleoside kinase activity. a dependency unknown in any other organism. In A. laidlawii B-PG9, the PPi requirement may be met by reactions in this organism already known to synthesize PPi (e.g., dUTPase and purine nucleobase phosphoribosyltransferases). In almost all other cells, the conversion of F-6-P to F-1,6-P2 is ATP dependent, and the reaction is generally considered to be the rate-limiting step of glycolysis. The ability of A. laidlawii B-PG9 and one other acholeplasma to use PPi instead of ATP as an energy source may offer these cytochrome-deficient organisms some metabolic advantage and may represent a conserved metabolic remnant of an earlier evolutionary process.  相似文献   

15.
M M Hosey  M Tao 《Biochemistry》1976,15(7):1561-1568
The autophosphorylation of rabbit and human erythrocyte membranes has been studied under various experimental conditions. The phosphopeptides of the erythocyte membranes were identified using sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis followed by ratioautography. The pattern of phosphorylatiion of membrane components differs with respect to the phosphoryl donor used (ATP or GTP) and to the pH at which the reaction is carried out. Both species appear to contain at least two distinct membrane-bound protein kinases. The human erythrocyte membrane contains a cyclic adenosine 3'5'-monophosphate (cyclic AMP)-dependent protein kinase and several substrates for this kinase. Only ATP can be used as a phosphoryl donor for this kinase. In contrast, the rabbit erythrocyte membrane does not contain a cyclic AMP dependent protein kinase but does contain a kinase which utilizes only ATP as the phosphoryl donor and is specific for certain endogenous substrates at low pH. Both the human and rabbit erythrocyte membranes contain a kinase which utilizes GTP, perhaps also ATP, as the phosphoryl donor. The substrates of these kinases are similar in both species.  相似文献   

16.
The intracellular levels of orthophosphate (Pi), pyrophosphate (PPi) and short- and long-chain polyphosphate (Poly P) were measured in Leishmania major promastigotes incubated in a phosphate-free medium. In the absence of exogenous substrate, the levels of both Pi and PPi increased during a 1 h incubation. The increase in both Pi and PPi was prevented when glucose was present, but glycerol prevented the rise in Pi only. A rise in Pi and PPi was also seen in cells incubated in the absence of exogenous substrate under anaerobic conditions. This was reversed upon addition of glucose plus oxygen. Polyphosphate, here shown to be present in L. major, was measured by means of a polyphosphate glucokinase assay. Short-chain Poly P content did not differ between cells incubated for 1 h in the absence of exogenous substrate or in the presence of glucose or glycerol. Long-chain Poly P content, however, was lower in cells incubated without glucose than in cells incubated with glucose and was also lower in cells incubated for 1 h with glycerol as compared with freshly washed cells. Up to 61% of the increase in Pi and PPi that occurred in promastigotes incubated in the absence of exogenous substrate could have arisen from the concomitant decrease in long-chain Poly P.  相似文献   

17.
The inorganic pyrophosphate-requiring 6-phosphofructokinase of Entamoeba histolytica has been further investigated. The molecular weight of the enzyme is approximately 83,000 and its isoelectric point occurs at pH 5.8 to 6.0. The divalent cation requirement for reaction was explored. In the direction of fructose 6-phosphate formation half-maximal rate required 500 muM magnesium ion; in the direction of fructose bisphosphate formation 8 muM magnesium ion sufficed. ATP, PPi, polyphosphate, acetyl phosphate, or carbamyl phosphate cannot replace PPi as phosphate donor for the conversion of fructose 6-phosphate to fructose bisphosphate. In the direction of fructose 6-phosphate formation arsenate can replace orthophosphate. Isotope exchange studies indicate that little or no exchange occurs between Pi and PPi or between fructose 6-phosphate and fructose bisphosphate in the absence of a third substrate. These findings appear to rule out phosphoenzyme formation and a ping-pong reaction mechanism. PPi, Pi, and fructose bisphosphate are competitive inhibitors of fructose bisphosphate, PPi, and fructose 6-phosphate, respectively. This argues against an ordered mechanism and suggests a random mechanism. Fructose 6-phosphate and Pi were noncompetitive with respect to each other indicating the formation of a dead end complex. These product inhibition relationships are in accord with a Random Bi Bi mechanism.  相似文献   

18.
The metabolism of mannose was examined in resting cells in vivo using 13C-NMR and 31P-NMR spectroscopy, in cell-free extracts in vitro using 31P-NMR spectroscopy, and by enzyme assays. Plesiomonas shigelloides was shown to transport mannose by a phosphoenolpyruvate-dependent phosphotransferase system producing mannose 6-phosphate. However, a toxic effect was observed when P. shigelloides was grown in the presence of mannose. Investigation of mannose metabolism using in vivo 13C NMR showed mannose 6-phosphate accumulation without further metabolism. In contrast, glucose was quickly metabolized under the same conditions to lactate, ethanol, acetate and succinate. Extracts of P. shigelloides exhibited no mannose-6-phosphate isomerase activity whereas the key enzyme of the Embden-Meyerhof pathway (6-phosphofructokinase) was found. This result explains the mannose 6-phosphate accumulation observed in cells grown on mannose. The levels of phosphoenolpyruvate and Pi were estimated by in vivo 31P-NMR spectroscopy. The intracellular concentrations of phosphoenolpyruvate and Pi were relatively constant in both starved cells and mannose-metabolizing cells. In glucose-metabolizing cells, the phosphoenolpyruvate concentration was lower, and about 80% of the Pi was used during the first 10 min. It thus appears that the toxic effect of mannose on growth is not due to energy depletion but probably to a toxic effect of mannose 6-phosphate.  相似文献   

19.
Physiological properties of mutants of Escherichia coli defective in glyceraldehyde 3-phosphate dehydrogenase, glycerate 3-phosphate kinase, or enolase are described. Introduction of a lesion in any one of the reversible steps catalyzed by these enzymes impaired both the glycolytic and gluconeogenic capabilities of the cell and generated an obligatory requirement for a source of carbon above the block (gluconeogenic) and one below (oxidative). A mixture of glycerol and succinate supported the growth of these mutants. Mutants lacking glyceraldehyde 3-phosphate dehydrogenase and glycerate 3-phosphate kinase could grow also on glycerol and glyceric acid, and enolase mutants could grow on glycerate and succinate, whereas double mutants lacking the kinase and enolase required l-serine in addition to glycerol and succinate. Titration of cell yield with limiting amounts of glycerol with Casamino Acids in excess, or vice versa, showed the gluconeogenic requirement of a growing culture of E. coli to be one-twentieth of its total catabolic and anabolic needs. Sugars and their derivatives inhibited growth of these mutants on otherwise permissive media. The mutants accumulated glycolytic intermediates above the blocked enzyme on addition of glucose or glycerol to resting cultures. Glucose inhibited growth and induced lysis. These effects could be substantially overcome by increasing the osmotic strength of the growth medium and, in addition, including 5 mM cyclic adenosine 3',5'-monophosphate therein. This substance countered to a large extent the severe repression of beta-galactosidase synthesis that glucose caused in these mutants.  相似文献   

20.
Glycerol metabolism in higher plants: glycerol kinase   总被引:3,自引:0,他引:3  
Glycerol kinase activity was identified in extracts of higher plant seeds and seedlings, and was partially purified and characterized from cucumber radicle tissue. The enzyme was localized in the post-mitochondrial supernatant of the cell, and catalyzed the formation of glycerol-3-phosphate. The pH optiumum was 9.0. ATP, CTP, GTP or UTP could be used as the phosphoryl group donor. The Km for glycerol was 55 microM and Km values for the nucleoside triphosphates were 145-620 microM. The Vmax for the reaction was 40-78 pmol product per min. Kinetic data indicate that the enzyme has a sequential mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号