首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mutagenic activation of aflatoxin B1 by P-450 HFLa in human fetal livers   总被引:2,自引:0,他引:2  
The genotoxic and mutagenic activation of promutagens by human fetal livers was measured by the induction of umu gene expression in Salmonella typhimurium TA1535/pSk1002. Liver homogenates of human fetuses were the most active for the mutagenic activation of aflatoxin B1 (AFB1), followed by 2-amino-3-methylimidazo(4,5-f)quinoline (IQ), and to a lesser extent by 2-amino-6-methyldipyrido(1,2-a:3',2'-d)imidazole (Glu-P-1). The amounts of P-450 HFLa immunochemically determined in human fetal livers correlated highly with the induction of umu gene expression by AFB1 (r = 0.98, n = 5). P-450 HFLa catalyzed the mutagenic activation of AFB1 in a reconstituted system: cytochrome b5 markedly stimulated the activation. Anti-P-450 HFLa antibodies inhibited the mutagenic activation of AFB1 in a dose-dependent manner. These results strongly support the idea that P-450 HFLa is responsible for the mutagenic activation of AFB1 in human fetal livers.  相似文献   

2.
Three forms of cytochrome P-450 of liver microsomes of 3-methylcholanthrene-treated Golden hamsters were purified and characterized as regards their catalytic activity toward aflatoxin B1-related hepatocarcinogenic mycotoxins. These include two major forms, designated as cytochrome P-450-AFB (P-450-I) and P-450-II, and one minor form, P-450-III. Cytochromes P-450-AFB, P-450-II, and P-450-III have their absorption maximum in the carbon monoxide-complex of the reduced form at 448.5, 447.0, and 448.0 nm, have apparent molecular weights of 56,000, 58,000, and 59,500, and are in the low spin, high spin, and low spin state, respectively. Of these, cytochrome P-450-AFB was shown to be highly active in the mutagenic activation of aflatoxin B1-related hepatocarcinogens such as sterigmatocystin and O-methylsterigmatocystin. Activation of aflatoxin B1 by hepatic microsomes of 3-methylcholanthrene-treated hamsters was inhibited almost completely by the antibody against P-450-AFB but not by the antibody against P-450-II, indicating that P-450-AFB is the major component responsible for the activation of aflatoxin B1 by hamster liver. Western blot analysis demonstrated that no protein cross-reacted with the antibody to P-450-AFB in the liver microsomes from guinea pig, rat, mouse, and house musk shrew (Suncus murinus) treated with 3-methylcholanthrene, while one or two proteins cross-reacted with the antibody to P-450-II in the liver microsomes of these animals.  相似文献   

3.
Rat liver mitoplasts containing less than 1% microsomal contamination contain cytochrome P-450 at 25% of the microsomal level and retain the capacity for monooxygenase activation of structurally different carcinogens such as aflatoxin B1 (AFB1), benzo(a)pyrene (BaP), and dimethylnitrosamine. Both phenobarbital (PB) and 3-methylcholanthrene (3-MC) induce the level of mitochondrial cytochrome P-450 by 2.0- to 2.5-fold above the level of control mitoplasts. The enzyme activities for AFB1 (3-fold) and BaP (16-fold) metabolism were selectively induced by PB and 3-MC, respectively. Furthermore, the metabolism of AFB1 and BaP by intact mitochondria was supported by Krebs cycle substrates but not by NADPH. Both PB and 3-MC administration cause a shift in the CO difference spectrum of mitoplasts (control, 448 nm; PB, 451 nm; and 3-MC, 446 nm) suggesting that they induce two different forms of mitochondrial cytochromes P-450. Mitoplasts solubilized with cholate and fractionated with polyethylene glycol exhibit only marginal monooxygenase activities. The activity, however, was restored to preparations from both PB-induced and 3-MC-induced mitochondrial enzymes (AFB1 activation, ethylmorphine, and benzphetamine deamination and BaP metabolism) by addition of purified rat liver cytochrome P-450 reductase, and beef adrenodoxin and adrenodoxin reductase. The latter proteins failed to reconstitute activity to purified microsomal cytochromes P-450b and P-450c that were fully active with P-450 reductase. Monospecific rabbit antibodies against cytochrome P-450b and P-450c inhibited both P-450 reductase and adrenodoxin-supported activities to similar extents. Anti-P-450b and anti-P-450c provided Ouchterlony precipitin bands against PB- and 3-MC induced mitoplasts, respectively. We conclude that liver mitoplasts contain cytochrome P-450 that is closely similar to the corresponding microsomal cytochrome P-450 but can be distinguished by a capacity to interact with adrenodoxin. These inducible cytochromes P-450 are of mitochondrial origin since their levels in purified mitoplasts are over 10 times greater than can arise from the highest possible microsomal contamination.  相似文献   

4.
5.
6.
Highly purified beef adrenal cytochrome P-450 specific for cholesterol side chain cleavage (P-450-scc) has been reconstituted with sonicated vesicles containing cholesterol and either dimyristoyl phosphatidylcholine (DMPC) or dioleoyl phosphatidylcholine (DOPC). When cholesterol was present in DMPC vesicles at 1:15 molar ratio, cardiolipin and L-alpha-phosphatidylinositol 4-monophosphate (DPI) increased side chain cleavage by at least 5-fold (0.7 min-1-3.5 min-1). In DOPC vesicles, a smaller increase was observed (2.8 min-1-5.0 min-1). Activator phospholipids increased the rate of transference of cholesterol both to and from the cytochrome when, respectively, cholesterol-free P-450scc and cholesterol-P-450scc complex are combined with either DMPC or DOPC vesicles. Transfer of cholesterol to and from cytochrome P-450 occurred with similar first order rate constants and was also independent of the concentrations of cholesterol vesicles and P-450. It is suggested that transfer in both directions is limited by the rate of insertion of P-450scc into the membrane. Phospholipid stimulatory effects for both cholesterol transfer and for activation of side chain cleavage occurred with the same ranking, even though cholesterol transfer, following reconstitution, was 5-10 times slower than the turnover of side chain cleavage. DPI increased Vmax for side chain cleavage in both DMPC and DOPC vesicles to the same rate (12 min-1) without effect on the Km for cholesterol, while cardiolipin both produced a similar increase in Vmax and decreased Km (cholesterol). This activation by DPI is attributed to more favorable incorporation of P-450scc in these membranes and is consistent with previously reported effects of acidic phospholipids on other mitochondrial proteins.  相似文献   

7.
Cytochrome P-450 related to side-chain cleavage of cholesterol (P-450SCC) was isolated from bovine corpus luteum mitochondria in the form of its stable cholesterol complex. The isolation procedure included ammonium sulfate fractionation and chromatography on omega-aminohexyl-Sepharose (AH-Sepharose). Corpus luteum P-450SCC was resolved into one minor (AH-I) and two major (AH-II and AH-III) fractions by the chromatography. Results of re-chromatography suggested the possibility that AH-III Fraction was originally complexed with lipidic material. The two major fractions purified by the re-chromatography (AH-IIR and AH-IIIR Fractions) showed essentially a single band on sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and their absorption spectra were indistinguishable from each other. Both fractions were further resolved into two major and some minor bands of P-450SCC by isoelectric focusing on polyacrylamide gel in the presence of a non-ionic detergent, as detected by protein staining, heme staining and immunoblot analysis with anti-bovine P-450SCC monoclonal antibody. Both AH-IIR and AH-IIIR Fractions were further resolved by high-performance liquid chromatography (HPLC) on SP-TSK gel column into two fractions, SP-I and SP-II. These fractions had the same N-terminal amino acid sequence, showed similar catalytic activity and resolved into one major and a few minor bands on isoelectric focusing on polyacrylamide gel. Much more heterogeneity was observed in purified P-450SCC preparations from bovine adrenal cortex mitochondria. These results indicated the presence of multiple molecular forms of corpus luteum P-450SCC as well as adrenal cortex P-450SCC. Computer simulation studies were carried out in order to analyze the mechanism of formation of multiple bands on isoelectric focusing. The multiple bands of corpus luteum P-450SCC could be explained by postulating the presence of two isozymes (or molecular forms) having a pair of sites each with or without a charged group.  相似文献   

8.
9.
Three fractions of cytochrome P-450scc (denoted as fractions a, b, and c) were purified by a new procedure from bovine adrenocortical mitochondria. The amino-acid content analyses of these three fractions showed no difference. NH2-terminal amino-acid sequences of cytochrome P-450scc fractions, a and b agreed completely with the sequence deduced by nucleotide sequence of cDNA of cytochrome P-450scc mRNA (Morohashi, K., Fujii-Kuriyama, Y., Okada, Y., Sogawa, K., Hirose, T., Inayama, S. and Omura, T. (1984) Proc. Natl. Acad. Sci. USA 81, 4647-4651), whereas the sequence of fraction c showed a missing of isoleucine at the NH2-terminal. COOH-terminal ámino-acid sequences of fractions a, b and c were -Gln-Ala-COOH, identical with the deduced sequence from the cDNA. Measurements of the enzymatic activities of cholesterol side-chain cleavage reaction revealed no distinct difference among these three fractions. Although each of these fractions appeared as a single protein staining band upon SDS-polyacrylamide gel electrophoresis, these fractions showed heterogeneities upon two-dimensional electrophoresis and chromatofocusing. Fraction a contained the major form of cytochrome P-450scc, and its isoelectric point was estimated to be pH 7.8 by isoelectric focusing under both native and denatured conditions, and this value was confirmed by chromatofocusing. Neither of the carbohydrate-specific stainings (such as periodic acid-Schiff staining and lectin-peroxidase stainings using concanavalin A, wheat-germ agglutinin, and soybean agglutinin) of purified cytochrome P-450scc fractions after the electrophoretic resolution on SDS-polyacrylamide gel could show cytochrome P-450scc fractions as glycoproteins, suggesting that the heterogeneities were not due to the glycosylation state.  相似文献   

10.
R M Shayiq  N G Avadhani 《Biochemistry》1989,28(19):7546-7554
We have previously shown that phenobarbital (PB) increases hepatic mitochondrial cytochrome P-450 (P-450) content and also the ability to metabolize hepatocarcinogen, aflatoxin B1 [Niranjan, B. G., Wilson, N. M., Jefcoate, C. R., & Avadhani, N. G. (1984) J. Biol. Chem. 259, 12495-12501]. In the present study, we have purified a mitochondrial-specific P-450 with an apparent molecular mass of 52 kdaltons (termed P-450mt3) from PB-induced rat liver using a combination of hydrophobic and ion exchange column chromatography procedures. Polyclonal antibody to P-450mt3 failed to cross-react with P-450mt1 and P-450mt2 purified from beta-naphthoflavone- (BNF) induced rat liver mitochondria. Furthermore, P-450mt3 shows an N-terminal amino acid sequence (Ala-Ile-Pro-Ala-Ala-Leu-Arg-Thr-Asp) different from those of both P-450mt1 and P-450mt2, as well as microsomal P-450b. The polyclonal antibody to P-450mt3 cross-reacted with a P-450 of comparable size purified from uninduced mitochondria. These two isoforms, however, showed difference with respect to catalytic properties and amino acid composition. In vitro reconstitution experiments show that P-450mt3 can actively metabolize diverse substrates including (dimethylamino)antipyrine, benzphetamine, and aflatoxin B1 but shows a low vitamin D3 25-hydroxylase activity. The mitochondrial P-450 from uninduced livers, on the other hand, shows relatively high [229 pmol min-1 (nmol of P-450)-1] vitamin D3 25-hydroxylase activity but a considerably lower ability for aflatoxin B1 metabolism and no detectable activity for (dimethylamino)antipyrine and benzphetamine metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
13.
The interactions between purified microsomal cytochrome P-450 and cytochrome b5 has been demonstrated by aqueous two-phase partition technique. Major forms of cytochrome P-450 induced by phenobarbital (P-450LM2) and β-naphthoflavone (P-450LM4) are almost exclusively distributed in the dextran-rich bottom phase (partition coefficient, K = 0.06), whereas NADPH-cytochrome P-450 reductase and cytochrome b5 are mainly distributed in the polyethylene glycol-rich top phase (K = 3.5 and 2.5, respectively), when these enzymes were partitioned separately in the dextran-polyethylene glycol two-phase system. The mixing of P-450LM with cytochrome b5 changes the partition coefficients of both P-450LM and cytochrome b5 indicating that molecular interaction between P-450LM and cytochrome b5 occurred. Complex formation was also confirmed by optical absorbance difference spectral titration, and the stimulation of the P-450LM-dependent 7-ethoxycoumarin and p-nitrophenetole O-deethylase activities by equal molar quantity of detergent-solubilized cytochrome b5, but not trypsin-solubilized enzyme, in the reconstituted system. Cytochrome b5 decreases the Km's of both substrates for P-450LM2-dependent O-deethylations and increases the V's of both reactions by two- to three-fold. This stimulatory effect requires the presence of phospholipid in the reconstituted enzyme system. These results suggest that cytochrome b5 plays a role in some reconstituted drug oxidation enzyme systems and that molecular interactions among cytochrome P-450, reductase, and cytochrome b5 are catalytically competent in the electron transport reactions.  相似文献   

14.
2-Acetylaminofluorene (AAF) was highly mutagenic to Salmonella typhimurium strain TA98, when activated by a liver post-mitochondrial supernatant fraction (S9 fraction) from guinea-pigs, in spite of the resistance of this species to AAF carcinogenesis and the low capacity of the liver of this species for N-hydroxylation of AAF. The mutagenicity was comparable to or higher than that resulting from activation by mouse- or rat-liver S9 fraction, and was not enchanced by treatment with cytochrome P-450 inducers, a combination of phenobarbital and 5,6-benzoflavone. In an attempt to understand this unexpected result we examined whether a cytochrome P-450 mixed-function oxidase system participated in the mutagenic activation of AAF by guinea-pig liver, as it does in the case of mouse liver. The mutagenic activation was: (1) completely dependent on the addition of a co-factor, NADPH, to the mutation assay system, (2) completely suppressed by antiserum against NADPH--cytochrome c reductase, and (3) sensitive to a cytochrome P-450 inhibitor, 7,8-benzoflavone. These results indicate that the cytochrome P-450 enzyme system is essentially involved even in the mutagenic activation of AAF by guinea-pig-liver S9 fraction. Based on both the present and other data, the mechanism of the mutagenic activation is discussed to explain the observed high mutagenic potential of AAF in the presence of guinea-pig-liver S9 fraction.  相似文献   

15.
Aldrin epoxidation was studied in monooxygenase systems reconstituted from purified rat liver microsomal cytochrome P-450 or P-448, NADPH-cytochrome c reductase, dilauroylphosphatidylcholine and sodium cholate. Cytochrome P-450, purified from hepatic microsomes of phenobarbital-treated rats, exhibited a high rate of dieldrin formation. The low enzyme activity observed in the absence of the lipid and sodium cholate was increased threefold by addition of dilauroylphosphatidylcholine and was further stimulated twofold by addition of sodium cholate. The apparent Km for aldrin in the complete system was 7 +/- 2 microM. SKF 525-A, at a concentration of 250 microM, inhibited aldrin epoxidation by 65%, whereas 7,8-benzoflavone had no inhibitory effect at concentrations up to 250 microM. Addition of ethanol markedly increased epoxidase activity. The increase was threefold in the presence of 5% ethanol. When cytochrome P-448 purified from hepatic microsomes of 3-methylcholanthrene-treated rats was used, a very low rate of epoxidation was observed which was less than 3% of the activity mediated by cytochrome P-450 under similar assay conditions. Enzyme activity was independent of the lipid factor dilauroylphosphatidylcholine. The apparent Km for aldrin was 27 +/- 7 microM. The modifiers of monooxygenase reactions, 7,8-benzoflavone, SKF 525-A and ethanol, inhibited the activity mediated by cytochrome P-448. The I50 was 0.05, 0.2 and 800 mM, respectively. These results indicate that aldrin is a highly selective substrate for cytochrome P-450 species present in microsomes of phenobarbital-treated animals and is a poor substrate for cytochrome P-448. The two forms of aldrin epoxidase can be characterised by their turnover number, their apparent Km and their sensitivity to modifiers, like 7,8-benzoflavone and ethanol.  相似文献   

16.
A previously unidentified cytochrome P-450AP possessing the highest aminopyrine-N-demethylase activity has been isolated from liver microsomes of 4-isopropylaminoantipyrine-induced rats, using affinity chromatography in combination with ion-exchange chromatography with subsequent separation on hydroxyl apatite. Using radioisotope techniques, it was found that 4-isopropylaminoantipyrine induces cytochrome P-450AP synthesis de novo. The isolated cytochrome P-450AP has the following characteristics: Mr = 49,000 Da. CO-peak maximum at 450.5 mm, rate of aminopyrine demethylation in a reconstituted system-20 nmol HCHO/min/nmol of cytochrome P-450, benzphetamine-15. The hemoprotein synthesis is paralleled with the synthesis of a protein with Mr of 51,000 Da. Immunochemical analysis permitted to identify the latter protein as cytochrome P-450b. It was demonstrated that cytochrome P-450AP does not interact with the antibodies to the major phenobarbital-induced form, i.e., with cytochrome P-450b.  相似文献   

17.
In experiments on male Wistar rats it has been found that nifedipine applied in a dose of 10 mg/kg body weight i.p. daily for 20 days did not significantly increase the total amount of cytochrome P-450 but markedly increased the 7 alpha-, 16 beta- and 6 beta-hydroxylation of androstenedione in liver microsomes, suggesting the induction of cytochromes P-450a, P-450b and P-450p respectively. The induction of cytochrome P-450b was also confirmed immunochemically with polyclonal antibodies against cytochrome P-450b/e.  相似文献   

18.
Leukotriene B4 metabolism by hepatic cytochrome P-450   总被引:2,自引:0,他引:2  
Leukotriene B4 (LTB) was found to be metabolized by suspensions of rat liver microsomes in the presence of NADPH and oxygen. The rate of LTB metabolism was also measured in reconstituted systems of both micelles and phospholipid vesicles containing cytochrome P-450-LM2, NADPH cytochrome P-450 reductase, and cytochrome b5. A 1 microM concentration of LTB was metabolized by rat hepatic microsomes at a rate of 4 pmol LTB/min/nmole P-450, and by vesicle and micelle reconstituted systems at 3 pmole/min/nmole P-450-LM2. At this rate a 10 g rat liver exposed to 1 microM LTB can metabolize 30 micrograms per hour. In that the leukotrienes are pharmacologically active at nanomolar concentrations, hepatic metabolism may be an important pathway of leukotriene inactivation.  相似文献   

19.
Incubation of [3H]-sidechain-labeled and [14C]-C(4)-ring-labeled cyclophosphamide (CPA) with purified cytochrome P-450 from liver microsomes of rats treated with phenobarbital resulted in the production of a major metabolite that contained both labels, was unaffected by diazomethane, possessed high polarity, was identical in TLC and HPLC behavior to a synthetic standard, didechlorodihydroxy-CPA, and was converted to CPA and bis(2-chloroethyl)amine by thionyl choloride. These results indicate that phenobarbital-inducible cytochrome P-450 is able to dechlorinate CPA and may account, in part, for the inability of phenobarbital to enhance the therapeutic activity and toxicity of this important anticancer and immunosuppressive agent.  相似文献   

20.
Hepatic mixed-function oxidase metabolism of the ubiquitous pollutant polychlorinated biphenyls (PCBs) is implicated in their toxification and detoxification. We used dichlorobiphenyls (DCBs) as models to investigate the effect of the chloro substituent sites on this metabolism experimentally and by molecular orbital calculations. Reconstituted, purified cytochrome P-450 PB-B and BNF-B, the major terminal oxidase isozymes of this system, from phenobarbital (PB)- and beta-naphthoflavone (BNF)-induced rats were used to investigate this metabolism. Both isozymes are also induced by PCBs. High-performance liquid chromatography (HPLC) was used to detect, quantify, and isolate metabolites. Metabolite structures were identified by mass spectrometry, dechlorination to identifiable hydroxybiphenyls, and HPLC retention times. All DCBs yielded 3- and 4- but no 2-monohydroxylated metabolites (3,3'-DCB also yielded a dihydroxy metabolite). Di-o-chloro-substituted DCBs were metabolized primarily by cytochrome P-450 PB-B, mono-o-chloro substituted DCBs by both isozymes approximately equivalently, and DCBs without o-chloro substituents by BNF-B primarily. Thus PB-B preferentially metabolizes noncoplanar DCBs and BNF-B coplanar DCBs. The cytochrome isozymes exhibited differing regioselectivities for DCB metabolism - PB-B hydroxylated unchlorinated phenyl rings and BNF-B chlorinated rings. Incorporation of epoxide hydrolase yielded DCB dihydrodiols, and hydroxy metabolite patterns were consistent with those calculated from ring-opened arene oxide intermediates. Thus the rates and regioselectivities of metabolism and thus possibly the toxicity and carcinogenicity of DCBs are dependent on the cytochrome P-450 isozymes induced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号