首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Genetic analysis of heading date and spikelet number was carried out in the common wheat (Triticum aestivum L.) multispikelet line Noa, by using the monosomic series of the regular line Mara. Noa's high number of spikelets was found to be controlled by a recessive major gene on chromosome 2D; a slight reduction in spikelet number was induced by another recessive gene on Noa's 7A chromosome. Noa's late heading date was found to be controlled by two recessive genes, located on chromosome 2D (a major effect) and 6B (a minor effect). The nature of the genes located on Noa's 2D chromosome and the relationship between spikelet number and heading date are discussed.  相似文献   

2.
The main goal of the study was to determine the structure of endophytic bacteria inhabiting different parts (endosperm, germ, roots, coleoptiles, and leaves) of two wheat species, Triticum aestivum L. (cv. ‘Hondia’) and Triticum spelta L. (cv. ‘Rokosz’), in order to provide new knowledge about the stability and/or changeability of the core microbiome in different plant organs. The endophytic core microbiome is associated with plants throughout their whole life cycle; however, plant organs can determine the actual endophytic community. Therefore, next generation sequencing with MiSeq Illumina technology was applied to identify the endophytic microbiome of T. aestivum and T. spelta. Bioinformatic analyses were performed with the use of the DADA2(1.8) package and R software (3.5.1).It was demonstrated that wheat, which is an important crop plant, was associated with beneficial endophytic bacteria inside the endosperms, germs, roots, leaves, and coleoptiles. Importantly, for the first time, biodiversity was recognized in the coleoptiles of the investigated wheat species. Flavobacterium, Pseudomonas and Janthinobacterium were shown to be common genera for both tested wheat cultivars. Among them, Pseudomonas was found to be the only endophytic genus accompanying both wheat species from the endosperm stage to the development of the leaf. Paenibacillus was recognized as a core genus for the ‘Hondia’ cv., whereas Pedobacter and Duganella constituted the core microbiome in the ‘Rokosz’ cv. In addition, the first insight into the unique and yet unrecognized endophytic microbiome of T. spelta is presented.  相似文献   

3.
Sue M  Ishihara A  Iwamura H 《Planta》2000,210(3):432-438
A beta-glucosidase (EC 3.2.1.21) with a high affinity for cyclic hydroxamic acid beta-D-glucosides was purified from 48-h-old wheat (Triticum aestivum L.) seedlings. The activity occurred transiently at a high level during the non-autotrophic stage of growth, and the nature of the transient occurrence was correlated with that of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside (DIMBOA-Glc). The glucosidase had maximum activity at an acidic pH (pH 5.5) and the purified enzyme showed a high affinity for DIMBOA-Glc, Vmax and Km being 4100 nkat/mg protein and 0.27 mM, respectively. It also hydrolyzed p-nitrophenol beta-glycosides, as well as flavone and isoflavone glucosides, but to a lesser extent. The results indicated that the primary natural substrate for the glucosidase is DIMBOA-Glc and that the enzyme is involved in defense against pathogens and herbivores in non-autotrophic wheat. The glucosidase was found to be present as oligomeric forms with a molecular mass of 260-300 kDa comprising 60- and 58-kDa monomers. The N-terminal 12-amino-acid sequences of the two monomers were identical (Gly-Thr-Pro-(Ser?)-Lys-Pro-Ala-Glu-Pro-Ile-Gly-Pro), and showed no similarity to those of other plant glucosidases. Polyacrylamide gel electrophoresis under nondenaturing condition indicated the existence of at least eight isozymes. Three cultivars of Triticum aestivum had the same zone of glucosidase activity on zymograms, but the activity zones of the Triticum species, T. aestivum L., T. spelta L. and T. turgidum L., had different mobilities.  相似文献   

4.
Summary Chloroplast and mitochondrial compartments of a parental line of wheat (Triticum aestivum L., cv. Moisson) and its anther-derived doubled haploid lines have been analyzed and compared on the basis of their DNA restriction patterns. The results obtained show that no noticeable difference can be detected between doubled haploid lines and parental line at the level of ctDNA and mtDNA organization. It may be concluded that in vitro culture by itself does not systematically generate a cytoplasmic variation in germ cells.  相似文献   

5.
High light induced photooxidation (HLIP) usually leads to leaf premature senescence and causes great yield loss in winter wheat. In order to explore the genetic control of wheat tolerance to HLIP stress, a quantitative trait loci (QTL) analysis was conducted on a set of doubled haploid population, derived from two winter wheat cultivars. Actual values of chlorophyll content (Chl), minimum fluorescence level (Fo), maximum fluorescence level (Fm), and the maximum quantum efficiency of photosystem Ⅱ (Fv/Fm) under both HLIP and non-stress conditions as well as the ratios of HLIP to non-stress were evaluated. HLIP considerably reduced Chl, Fm, and Fv/Fm, but increased Fo, compared with that under non-stress condition. A total of 27, 16, and 28 QTLs were associated with the investigated traits under HLIP and non-stress and the ratios of HLIP to non-stress, respectively. Most of the QTLs for the ratios of HLIP to non-stress collocated or nearly linked with those detected under HLIP condition. HLIP-induced QTLs were mapped on 15 chromosomes, involving in 1A, 1B, 1D,2A, 2B, 2D, 3A, 3B, 4A, 4D, 5B, 6A, 6B, 7A, and 7D while those expressed under non-stress condition involved in nine chromosomes, including 1B, 1D, 2A, 2B, 3B, 4A, 5A, 5B, and 7A. The expression patterns of QTLs under HLIP condition were different from that under non-stress condition except for six loci on five chromosomes. The phenotypic variance explained by individual QTL ranged from 5.0% to 19.7% under HLIP, 8.3% to 20.8% under non-stress, and 4.9% to 20.2% for the ratios of HLIP to non-stress, respectively. Some markers, for example,Xgwm192 and WMC331 on 4D regulating Chl, Fo, Fm, and Fv/Fm under HLIP condition, might be used in marker assistant selection.  相似文献   

6.
One cultivar (GR876) and two advanced Ohio soft red winter wheat lines (OH413 and OH414), with Kavkaz in their pedigrees, were examined for the presence of the Kavkaz, 1RS/1BL rye/wheat chromosome translocation. Another advanced line (OH416), with Amigo in its pedigree, was examined for the presence of the Amigo, 1RS/1AL translocation. Only two satellited chromosomes were observed in most mitotic root-tip cells from GR876, OH413, and OH414, compared to four in most cells from OH416. Heteromorphic bivalents were observed in most PMCs from hybrids produced by crossing GR876, OH413, and OH414 as females to Chinese Spring. No heteromorphic bivalents were observed in PMCs from OH416 x Chinese Spring hybrids. When GR876 and the Ohio lines were hybridized with Chinese Spring dimonotelosomic-1B, telosomic trivalents, consisting of the short- and longarm telosomes paired with chromosome 1B, were only observed in PMCs from 43-chromosome hybrids involving OH416. The long-arm telosome paired with the translocation chromosome, while the short-arm telosome remained unpaired in all other 43-chromosome hybrids. Separation of gliadin proteins from GR876 and the Ohio lines by PAGE revealed that secalin bands for GR876, OH413, and OH414, migrated similarly to the secalins for Kavkaz. Bands for OH416, identified as possible secalins, migrated similarly to those for Amigo. Cultivar GR876 and advanced Ohio soft red winter wheat lines OH413 and OH414 carry the Kavkaz translocation, while OH416 carries the Amigo translocation.Communicated by K. Tsunewaki  相似文献   

7.
Understanding the radiosensitivity of plants, an important factor in crop mutation breeding programs, requires a thorough investigation of the factors that contribute to this trait. In this study, we used the highly radiosensitive wheat (Triticum aestivum L.) variety HY1 and J411, a γ-irradiation-insensitive control, which were screened from a natural population, to examine the factors affecting radiosensitivity, including free radical content and total antioxidant capacity, as well as the expression of TaKu70 and TaKu80 (DNA repair-related genes) as measured by real-time PCR. We also investigated the alternative splicing of this gene in the wild-type wheat ecotype by sequence analysis. Free radical contents and total antioxidant capacity significantly increased upon exposure of HY1 wheat to γ-irradiation in a dose-dependent manner. By contrast, in J411, the free radical contents exhibited a similar trend, but the total antioxidant capacity exhibited a downward trend upon increasing γ-irradiation. Additionally, we detected dose-dependent increases in TaKu70 and TaKu80 expression levels in γ-irradiated HY1, while in J411, TaKu70 expression levels increased, followed by a decline. We also detected alternative splicing of TaKu70 mRNA, namely, intron retention, in HY1 but not in J411. Our findings indicate that γ-irradiation induces oxidative stress and DNA damage in hexaploid wheat, resulting in growth retardation of seedlings, and they suggest that TaKu70 may play a causal role in radiosensitivity in HY1. Further studies are required to exploit these factors to improve radiosensitivity in other wheat varieties.  相似文献   

8.
9.
Summary The organization of the nuclear ribosomal DNA from a parental line of wheat (Triticum aestivum L., cv. César) and its anther-derived first cycle and second cycle doubled haploid lines has been analyzed by DNA-DNA molecular hybridization. Restricted DNA has been probed by three subclones of wheat nuclear ribosomal DNA covering the entire repeat unit. No significant difference was detected in the extent of methylation of ribosomal DNA of the doubled haploid lines with respect to the parental line. On the other hand, a variation has been found in the organization of the nontranscribed spacer region of ribosomal DNA of the first cycle doubled haploid line. This variation remains stable after a second cycle of in vitro androgenesis. However, one out of five second cycle doubled haploid lines so far tested showed an additional hybridization band present in the parental line but lacking in the first cycle doubled haploid line.  相似文献   

10.
Summary The phenology and build-up of spikelet number under 10 h day-length were studied in five wheat lines: the multispikelet line Noa, the regular line Mara, the F1 hybrid between them and monosomics 2D of Mara and of this hybrid (lacking the 2D chromosome of Mara). Noa had a longer spike development phase, a higher initial number of spikelet primordia and a slower rate of spikelet production than Mara. The F1 hybrid was similar to Noa in its high initial number of spikelets and to Mara in its high rate of spikelet production. This hybrid had a shorter spikelet phase than both parents. Deletion of one dose of the Mara 2D chromosome from either Mara or the F1 hybrid caused a reduction in the rate of spikelet production and an increase in the duration of the spikelet phase. These effects were due to the reduced dosage of the 2D chromosome. However, in the F1 hybrid this deletion also caused an increase in the spike development phase — an indication that Noa carries on its 2D chromosome a recessive gene for late heading date which acts on the spike development phase. This gene of Noa is independent of the day-length sensitive gene ppd, and is different from Noas dominant gene for large initial number of spikelets.  相似文献   

11.
The study aimed to test whether night-time transpiration provides any potential benefit to wheat plants which are subjected to salt stress. Hydroponically grown wheat plants were grown at four levels of salt stress (50, 100, 150, and 200 mM NaCl) for 5–8 days prior to harvest (day 14–18). Salt stress caused large decreases in transpiration and leaf elongation rates during day and night. The quantitative relation between the diurnal use of water for transpiration and leaf growth was comparatively little affected by salt. Night-time transpirational water loss occurred predominantly through stomata in support of respiration. Diurnal gas exchange and leaf growth were functionally linked to each other through the provision of resources (carbon, energy) and an increase in leaf surface area. Diurnal rates of water use associated with leaf cell expansive growth were highly correlated with the water potential of the xylem, which was dominated by the tension component. The tissue-specific expression level of nine candidate aquaporin genes in elongating and mature leaf tissue was little affected by salt stress or day/night changes. Growing plants under conditions of reduced night-time transpirational water loss by increasing the relative humidity (RH) during the night to 95% had little effect on the growth response to salt stress, nor was the accumulation of Na+ and Cl in shoot tissue altered. We conclude that night-time gas exchange supports the growth in leaf area over a 24 h day/night period. Night-time transpirational water loss neither decreases nor increases the tolerance to salt stress in wheat.  相似文献   

12.
Abstract

This paper presents an interdisciplinary approach to crop improvement that links physiology with plant breeding and simulation modelling to enhance the selection of high‐yielding, drought‐tolerant varieties. In a series of field experiments in Queensland, Australia, we found that the yield of CIMMYT wheat line SeriM82 ranged from 6% to 28% greater than the current cultivar Hartog. Physiological studies on the adaptive traits revealed that SeriM82 had a narrower root architecture and extracted more soil moisture, particularly deep in the profile. Results of a simulation analysis of these adaptive root traits with the cropping system model APSIM for a range of rain‐fed environments in southern Queensland indicated a mean relative yield benefit of 14.5% in water‐deficit seasons. Furthermore, each additional millimetre of water extracted during grain filling generated an extra 55 kg ha?1 of grain yield. Further root studies of a large number of wheat genotypes revealed that wheat root architecture is closely linked to the angle of seminal roots at the seedling stage – a trait which is suitable for large‐scale and cost‐effective screening programmes. Overall, our results suggest that an interdisciplinary approach to crop improvement is likely to enhance the rate of yield improvement in rain‐fed crops.  相似文献   

13.
A bacterial artificial chromosome (BAC) library was constructed from the bread wheat (Triticum aestivum L.) genotype ‘Chinese Spring’ (‘CS’). The library consists of 395,136 clones with an estimated average insert size of 157 kb. This library provides an estimated 3.4-fold genome coverage for this hexaploid species. The genome coverage was confirmed by RFLP analysis of single-copy RFLP clones. The CS BAC library was used to develop simple sequence repeat (SSR) markers for targeted genome regions using five sequence-tagged-site (STS) markers designed from the chromosome arm of 3BS. The SSR markers for the targeted genome region were successfully obtained. However, similar numbers of new SSR markers were also generated for the other two homoeologous group 3 chromosomes. This data suggests that BAC clones belonging to all three chromosomes of homoeologous group 3 were isolated using the five STS primers. The potential impacts of these results on marker isolation in wheat and on library screening in general are discussed.  相似文献   

14.
Isolates of Pyricularia grisea from wheat (Triticum aestivum Lam.) and triticale (x Triticosecale Wittmack) spikes with blast symptoms were analyzed by classical (VCG) and molecular (RAPD) techniques. P. grisea mutants, unable to use sodium nitrate (nit) as nitrogen source, were obtained with potassium chlorate. For vegetative compatibility (VCG) tests, genetically complementary nit mutant pairs were inoculated in a medium with sodium nitrate as a single nitrogen source. P. grisea isolates were divided into two vegetative compatibility groups and two RAPD groups. Since vegetative compatible strains may mutually exchange genetic and cytoplasmatic material, the contribution of the parasexual cycle in the genetic variability of Brazilian P. grisea isolates is discussed.  相似文献   

15.
In 2000, remains of an unknown Triticum species—later named ‘new glume wheat’ (NGW)—were identified in the archaeobotanical material of Neolithic and Bronze Age Greek sites. The presence of NGW was later reported from several other locations across Europe, from the seventh to the first millennium cal. b.c. During the systematic archaeobotanical survey of the multiperiod site of Hódmez?vásárhely–Kopáncs I., Olasz-tanya (5310–2936 cal. b.c.) more than 2,000 cereal remains were recovered. During the morphological analyses, ten spikelet forks showed the distinctive traits of NGW, therefore morphometric analyses were conducted on the remains to reinforce the morphological identification. The results suggest that both approaches—morphological and morphometric—should be applied in parallel to securely separate the NGW remains from Triticum turgidum L. ssp. dicoccum (Schrank) Thell. (emmer) and T. monococcum L. ssp. monococcum (einkorn). All NGW glume bases were recovered from Late Copper Age features (3338–3264 cal. b.c.) of the settlement, which represent the Baden culture of the Great Hungarian Plain. Similarly to other Baden culture sites of the Carpathian Basin einkorn and emmer dominated the crop production of the settlement. The ratio of the NGW remains within the cereal assemblage was measured to be 0.48 %, which suggests that NGW did not have the status of a regular crop; still it may have been part of the accompanying weed flora of the cereal fields during the fourth millennium in the south-eastern Great Hungarian Plain landscape.  相似文献   

16.
The two-spotted spider mite (Tetranychus urticae Koch) is an important pest of tomato (Lycopersicon esculentum Mill.) crops in temperate regions as this spider mite has a very large capacity for population increase and causes severe tomato yield losses. There is no described tomato cultivar fully resistant to this pest, although resistant accessions have been reported within the green-fruited tomato wild species L. pennellii (Corr.) D’Arcy and L. hirsutum Humb. & Bonpl. We observed a L. pimpinellifolium (Jusl.) Mill. accession, ‘TO-937’, which seemed to be completely resistant to mite attacks and we crossed it with the susceptible L. esculentum cultivar. ‘Moneymaker’ to obtain a family of generations consisting of the two parents, the F1, the F2, the BC1 to L. esculentum, and the BC1 to L. pimpinellifolium. This family was evaluated for mite resistance in a polyethylene greenhouse using an experimental design in 60 small complete blocks distributed along 12 double rows. Each block consisted of five F2 plants in one row and one plant of each of the two parents, the F1, the BC1 to L. esculentum, and the BC1 to L. pimpinellifolium in the adjacent row. Plants at the 10–15 leaf stage were artificially infested by putting on them two pieces of French bean leaf heavily infested with T. urticae. After two months, evaluations of infestation were made by visual observation of mite nets and leaf damage. Plants that were free of signs of mite reproduction on the top half were considered as resistant, plants with silky nets only on their basal leaves, intermediate, and plants with mite reproduction on both basal and top canopies were scored as susceptible. Dominance for resistance appeared because all the ‘To-937’, BC1 to L. pimpinellifolium, and F1 plants were resistant. Not all ‘Moneymaker’ plants behaved as susceptible because 35% of plants were intermediate. In the BC1 to L. pimpinellifolium and the F2, most plants were scored as resistant, only 7 % BC1 and 3 % F2 plants were intermediate, and a single F2 plant (0.3 %) was susceptible. With these figures, resistance seemed to be controlled by either four or two genes according to whether segregation in the BC1 or in the F2, respectively, were considered. These results could in part be explained because of appearance of negative interplot interference due to the high frequency of resistant genotypes within most of the generations. Therefore, the family was evaluated again but using a different experimental design. In the new experiment, 16 ‘TO-937’, 17 ‘Moneymaker’, 17 F1, 37 BC1 to L. pimpinellifolium, 38 BC1 to L. esculentum, and 125 F2 plants were included. Each of these test plants was grown besides a susceptible ‘Moneymaker’ auxilliary plant that served to keep mite population high and homogeneous in the greenhouse. Negative interplot interference was avoided with this design and all the ‘TO-937’, F1, and BC1 to L. pimpinellifolium plants were resistant, all ‘Moneymaker’ test plants were susceptible, and 52 % BC1 to L. esculentum and 25 % F2 plants were susceptible, which fitted very well with the expected for resistance governed by a single dominant gene. The simple inheritance mode found will favour sucessful introgression of mite resistance into commercial tomatoes from the very close relative L. pimpinellifolium.  相似文献   

17.
Summary C-banding patterns and nucleolar activity were analyzed in Dasypyrum villosum, its added chromosomes to hexaploid wheat and the hexaploid amphiploid Triticum dicoccum-D. villosum. Two different populations of the allogamous species D. villosum (2n= 14, VV) from Greece and Italy were analyzed showing a similar polymorphism for C-banding pattern. Six of the seven addition lines were identified by their characteristic C-banding pattern. No polymorphism between both members of each added alien chromosome was found. Furthermore, nucleolar activity and competition were studied by using silver staining procedure. In D. villosum only one chromosome pair, A, was found to be responsible for organizing nucleoli. The results obtained in the amphiploid and in the addition lines demonstrate that nucleolar activity is restricted to SAT-chromosomes 1B and 6B of wheat, while those of D. villosum remain inactive.  相似文献   

18.
The sequences of the 3′ untranslated region (UTR) of the manganese superoxide dismutase (MnSOD) genes in wheat (Triticum aestivum) were found to be quite variable with different predicted thermostabilities. The degradation rates of the 3′ UTR variants and the coding region were measured following exposure to endogenous nucleases. The degradation rates of the 3′ UTR variants for 15 min were not significantly different, meaning the degradation rates of the 3′ UTR variants were not directly related to the thermostabilities. However, the degradation rate of the coding region was significantly faster than those of the 3’ UTR variants. Further investigation revealed the coding region seemed to have specific sites for degradation, indicating a possibility of increasing MnSOD expression by the degradation site alteration.  相似文献   

19.
Using C-banding and FISH methods, the karyotype of MC1611 induced mutant of bread wheat, which develop additional spikelets at a rachis node (trait “supernumerary spikelets”) was characterized. It was determined that the mutant phenotype is not associated with aneuploidy and major chromosomal rearrangements. The results of genetic analysis showed that supernumerary spikelets of the line are caused by a mutation of the single Bh-D.1 gene, influenced by the genetic background. The mutation causes abnormalities of inflorescence morphogenesis associated with the development of ectopic spikelet meristems in place of floral meristems in the basal part of the spikelets, causing the appearance of additional spikes at a rachis node. The mutant phenotype suggests that the Bh-D gene determines the fate of the lateral meristems in ear, which develops as floral meristem and gives rise to floral organs in wild-type inflorescences. In the bh-D.1 mutant, the floral meristem identity is impaired. The characterized mutant can be used in further studies on molecular genetic basis of development of wheat inflorescence.  相似文献   

20.
Improved gene transfer techniques are necessary to obtain adequatenumbers of stable transgenic wheat plants needed for practical purposes.Considering that wheat transformation is genotype-dependent, we used cv. Combiin all experiments, which had been selected from agronomically important Germanspring wheat cultivars because of its high transformation ability. In mostwheatgene transfer attempts, immature embryos or embryogenic scutellar calli weremicrobombarded. We compared both methods under optimised conditions, usingbar, uidA, andgfp as markers in co-transformation attempts. Integrationof the genes mentioned above was proven by Southern blotting, expression levelswere measured by assays on phosphinothricin acetyltransferase and-glucuronidase activities, and by monitoring for green fluorescentproteinin most developmental stages. Following bombardment of scutellar calli, anaverage transformation frequency of 0.13% was attained. Using immature embryos,mean transformation frequency (1.06%) was 8-fold higher. In addition, embryotechniques were over 2 weeks faster than scutellar callus procedures.Introducing gfp as a vital marker led to an improvement ofembryo-based techniques. In a first screening, transientgfp-expressing embryos were transferred tophosphinothricincontaining callus medium. Only gfp-expressing calli whichdeveloped on it were cultured further on phosphinothricin containingregeneration medium. Shoots obtained from gfp-expressingcalli were rooted on phosphinothricin-free medium, and cultured exvitro. Average transformation frequency (4.93%) was 38-fold higherthan with scutellar callus techniques. Differences between the transformationstrategies used were of high statistical significance. Combining greenfluorescent protein screening with phosphinothricin selection in embryo-basedtechniques offers a promising system to obtain high wheat transformationfrequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号