首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular and genetic approaches were used to investigate the requirements for activation during spermatogenesis of the extracellular signal-regulated protein kinases (ERKs), more commonly known as the mitogen-activated protein kinases (MAPKs). The MAPKS and their activating kinases, the MEKs, are expressed in specific developmental patterns. The MAPKs and MEK2 are expressed in all premeiotic germ cells and spermatocytes, while MEK1 is not expressed abundantly in pachytene spermatocytes. Phosphorylated (active) variants of these kinases are diminished in pachytene spermatocytes. Treatment of pachytene spermatocytes with okadaic acid (OA), to induce transition from meiotic prophase to metaphase I (G2/MI), resulted in phosphorylation and enzymatic activation of ERK1/2. However, U0126, an inhibitor of the ERK-activating kinases, MEK1/2, did not inhibit OA-induced MAPK activation or chromosome condensation. Analysis of spermatocytes lacking MOS, a mitogen-activated protein kinase kinase kinase responsible for MEK and MAPK activation, revealed that MOS is not required for OA-induced activation of the MAPKs. OA-induced MAPK activation was inhibited by butyrolactone I, an inhibitor of cyclin-dependent kinases 1 and 2 (CDK1, CDK2); thus, these kinases may regulate MAPK activity. Additionally, spermatocytes lacking CDC25C condensed bivalent chromosomes and activated both MPF and MAPKs in response to OA treatment; therefore, there is a CDC25C-independent pathway for MPF and MAPK activation. These studies reveal that spermatocytes do not require either MOS or CDC25C for onset of the meiotic division phase or for activation of MPF and the MAPKs, thus implicating a novel pathway for activation of the ERK1/2 MAPKs in spermatocytes.  相似文献   

2.
Collagenase-1 (matrix metalloproteinase-1, MMP-1) is expressed by several types of cells, including fibroblasts, and apparently plays an important role in the remodeling of collagenous extracellular matrix in various physiologic and pathologic situations. Here, we have examined the molecular mechanisms of the activation of fibroblast MMP-1 gene expression by a naturally occurring non-phorbol ester type tumor promoter okadaic acid (OA), a potent inhibitor of serine/threonine protein phosphatase 2A. We show that in fibroblasts OA activates three distinct subgroups of mitogen activated protein kinases (MAPKs): extracellular signal-regulated kinase 1,2 (ERK 1,2), c-Jun N-terminal-kinase/stress-activated protein kinase (JNK/SAPK) and p38. Activation of MMP-1 promoter by OA is entirely blocked by overexpression of dual-specificity MAPK phosphatase CL100. In addition, expression of kinase-deficient forms of ERK 1,2, SAPKβ, p38, or JNK/SAPK kinase SEK1 strongly inhibited OA-elicited activation of MMP-1 promoter. OA-elicited enhancement of MMP-1 mRNA abundance was also strongly prevented by two chemical MAPK inhibitors: PD 98059, a specific inhibitor of the activation of ERK1,2 kinases MEK1,2; and SB 203580, a selective inhibitor of p38 activity. Results of this study show that MMP-1 gene expression in fibroblasts is coordinately regulated by ERK1,2, JNK/SAPK, and p38 MAPKs and suggest an important role for the stress-activated MAPKs JNK/SAPK and p38 in the activation of MMP-1 gene expression. Based on these observations, it is conceivable that specific inhibition of stress-activated MAPK pathways may serve as a novel therapeutic target for inhibiting degradation of collagenous extracellular matrix.  相似文献   

3.
Kam AY  Tse TT  Kwan DH  Wong YH 《Cellular signalling》2007,19(10):2106-2117
Mitogen-activated protein kinases (MAPKs) are not only pivotal mediators of signal transduction but they also regulate diverse biological processes ranging from survival, proliferation and differentiation to apoptosis. By using human U87 astrocytoma and transfected FPRL1/CHO cells, we have demonstrated that activation of FPRL1 with WKYMVM effectively phosphorylated JNK and ERK. Interestingly, p38 MAPK activation was only seen with FPRL1/CHO cells. The MAPK phosphorylations in response to WKYMVM were blocked by WRW(4) (a selective FPRL1 antagonist), but not cyclosporine H (a well-known FPR antagonist). The key signaling intermediates in the MAPK pathways were also delineated. G(i)/G(o) proteins, Src family tyrosine kinases, but not phosphatidylinositol-3 kinase, protein kinase C and calmodulin-dependent kinase II, were required to transmit signals from FPRL1 toward JNK, ERK and p38 MAPK. Furthermore, phospholipase Cbeta was distinctively involved in the regulation of JNK but not the other MAPKs. Importantly, WKYMVM-stimulated U87 cells triggered noticeable increases in glial fibrillary acidic protein (GFAP) and interleukin-1alpha (IL-1alpha), which are correlated with reactive astrocytosis. In contrast, GFAP expression was not altered following stimulation with N-formyl-methionyl-leucyl-phenylalanine. Moreover, inhibitions of G(i)/G(o) proteins and JNK completely abolished both GFAP and IL-1alpha upregulations by FPRL1, while blockade of the MEK/ERK cascade exclusively suppressed the GFAP production. Consistently, overexpression of MEK1 and constitutively active JNKK in U87 cells led to ERK and JNK activation, respectively, which was accompanied with markedly increased GFAP production. We have thus identified a possible linkage among FPRL1, MAPKs, astrocytic activation and the inflammatory response.  相似文献   

4.
5.
Neuronal nicotinic acetylcholine receptors (nAChR) can modulate many cellular mechanisms, such as cell survival and memory processing, which are also influenced by the serine/threonine protein kinases ERK1/2. In SH-SY5Y cells and hippocampal neurones, nicotine (100 microM) increased the activity of ERK1/2. This effect was Ca2+ dependent, and prevented by the alpha7 nAChR antagonist alpha-bungarotoxin (alpha-Bgt) and an inhibitor (PD98059) of the upstream kinase MEK. To determine the intervening steps linking Ca2+ entry to MEK-ERK1/2 activation, inhibitors of Ca2+-dependent kinases were deployed. In SH-SY5Y cells, selective blockers for PKC (Ro 31-8220), CaM kinase II (KN-62) or PI3 kinase (LY 294002) failed to inhibit the nicotine-evoked increase in ERK1/2 activity. In contrast, two structurally different inhibitors of PKA (KT 5720 and H-89) completely prevented the nicotine-dependent increase in ERK1/2 activity. Inhibition of the nicotine-evoked increase in ERK1/2 activity by H-89 was also observed in hippocampal cultures. Down stream of PKA, the activity of B-Raf was significantly decreased by nicotine in SH-SY5Y cells, as determined by direct measurement of MEK1 phosphorylation or in vitro kinase assays, whereas the modulation of MEK1 phosphorylation by Raf-1 tended to increase. Thus, this study provides evidence for a novel signalling route coupling the stimulation of alpha7 nAChR to the activation of ERK1/2, in a Ca2+ and PKA dependent manner.  相似文献   

6.
The treatment of endothelial cell monolayers with phorbol 12-myristate 13-acetate (PMA), a direct protein kinase C (PKC) activator, leads to disruption of endothelial cell monolayer integrity and intercellular gap formation. Selective inhibition of PKC (with bisindolylmaleimide) and extracellular signal-regulated kinases (ERKs; with PD-98059, olomoucine, or ERK antisense oligonucleotides) significantly attenuated PMA-induced reductions in transmonolayer electrical resistance consistent with PKC- and ERK-mediated endothelial cell barrier regulation. An inhibitor of the dual-specificity ERK kinase (MEK), PD-98059, completely abolished PMA-induced ERK activation. PMA also produced significant time-dependent increases in the activity of Raf-1, a Ser/Thr kinase known to activate MEK ( approximately 6-fold increase over basal level). Similarly, PMA increased the activity of Ras, which binds and activates Raf-1 ( approximately 80% increase over basal level). The Ras inhibitor farnesyltransferase inhibitor III (100 microM for 3 h) completely abolished PMA-induced Raf-1 activation. Taken together, these data suggest that the sequential activation of Ras, Raf-1, and MEK are involved in PKC-dependent endothelial cell barrier regulation.  相似文献   

7.
8.
Abstract: Nicotine-induced catecholamine secretion in bovine adrenomedullary chromaffin cells is accompanied by rapid tyrosine phosphorylation of multiple cellular proteins, most notably the mitogen-activated protein kinases (MAPKs). The requirement for activation of tyrosine kinases and MAPKs in chromaffin cell exocytosis was investigated using a panel of tyrosine kinase inhibitors. Genistein and tyrphostin 23, two compounds that inhibit tyrosine kinases by distinct mechanisms, were found to inhibit secretion by >90% in cells stimulated by nicotine, 55 m M KCI, or the Ca2+ ionophore A23187. Inhibition of secretion induced by all three secretagogues correlated with a block in both protein tyrosine phosphorylation and activation of the MAPKs and their activators (MEKs) in situ. However, neither genistein nor tyrphostin 23 inhibited the activities of the MAPKs or MEKs in vitro. These results indicate that the target(s) of inhibition lie down-stream of Ca2+ influx and upstream of MEK activation. This Ca2+-activated tyrosine kinase activity could not be accounted for entirely by c-Src or Fyn (two nonreceptor tyrosine kinases that are expressed abundantly in chromaffin cells), because their in vitro kinase activities were not inhibited by tyrphostin 23 and only partially inhibited by genistein. These results demonstrate that an unidentified Ca2+-activated tyrosine kinase(s) is required for MAPK activation and exocytosis in chromaffin cells and suggest that MAPK participates in the regulation of secretion.  相似文献   

9.
MAPK信号转导通路对炎证反应的调控   总被引:24,自引:2,他引:24  
Jiang Y  Gong XW 《生理学报》2000,52(4):267-271
丝裂原活化蛋白激酶(mitohen-actevatcd protein kinasa,MAPK)是生物体内重要的信号转导系统之一,参与介导生长、发育、化裂、分化、死亡以及细胞间的功能同步等多种细胞过程,在哺乳动物细胞中已发现和克隆了ERK、JNK/SAPK、p38/RK、ERK5/BMK1四个MAPK亚族。这些MAPK能被多种炎性刺激所激活,并对炎症的发生、发展起生重要调控作用。研究感染和炎症反应  相似文献   

10.
Summary: The mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs by relaying extracellular signals to intracellular responses. In mammals, there are more than a dozen MAPK enzymes that coordinately regulate cell proliferation, differentiation, motility, and survival. The best known are the conventional MAPKs, which include the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun amino-terminal kinases 1 to 3 (JNK1 to -3), p38 (α, β, γ, and δ), and ERK5 families. There are additional, atypical MAPK enzymes, including ERK3/4, ERK7/8, and Nemo-like kinase (NLK), which have distinct regulation and functions. Together, the MAPKs regulate a large number of substrates, including members of a family of protein Ser/Thr kinases termed MAPK-activated protein kinases (MAPKAPKs). The MAPKAPKs are related enzymes that respond to extracellular stimulation through direct MAPK-dependent activation loop phosphorylation and kinase activation. There are five MAPKAPK subfamilies: the p90 ribosomal S6 kinase (RSK), the mitogen- and stress-activated kinase (MSK), the MAPK-interacting kinase (MNK), the MAPK-activated protein kinase 2/3 (MK2/3), and MK5 (also known as p38-regulated/activated protein kinase [PRAK]). These enzymes have diverse biological functions, including regulation of nucleosome and gene expression, mRNA stability and translation, and cell proliferation and survival. Here we review the mechanisms of MAPKAPK activation by the different MAPKs and discuss their physiological roles based on established substrates and recent discoveries.  相似文献   

11.
The extracellular signal-regulated protein kinase 2 (ERK2) is the founding member of a family of mitogen-activated protein kinases (MAPKs) that are central components of signal transduction pathways for cell proliferation, stress responses, and differentiation. The MAPKs are unique among the Ser/Thr protein kinases in that they require both Thr and Tyr phosphorylation for full activation. The dual phosphorylation of Thr-183 and Tyr-185 in ERK2 is catalyzed by MAPK/ERK kinase 1 (MEK1). However, the identity and relative activity of protein phosphatases that inactivate ERK2 are less well established. In this study, we performed a kinetic analysis of ERK2 dephosphorylation by protein phosphatases using a continuous spectrophotometric enzyme-coupled assay that measures the inorganic phosphate produced in the reaction. Eleven different protein phosphatases, many previously suggested to be involved in ERK2 regulation, were compared, including tyrosine-specific phosphatases (PTP1B, CD45, and HePTP), dual specificity MAPK phosphatases (VHR, MKP3, and MKP5), and Ser/Thr protein phosphatases (PP1, PP2A, PP2B, PP2C alpha, and lambda PP). The results provide biochemical evidence that protein phosphatases display exquisite specificity in their substrate recognition and implicate HePTP, MKP3, and PP2A as ERK2 phosphatases. The fact that ERK2 inactivation could be carried out by multiple specific phosphatases shows that signals can be integrated into the pathway at the phosphatase level to determine the cellular response to external stimuli. Important insights into the roles of various protein phosphatases in ERK2 kinase signaling are obtained, and further analysis of the mechanism by which different protein phosphatases recognize and inactivate MAPKs will increase our understanding of how this kinase family is regulated.  相似文献   

12.
We investigated the activation of mitogen-activated protein kinases (MAPKs) pathways by purinergic stimulation in cardiac myocytes from adult rat hearts. ATPS increased the phosphorylation (activation) of the extracellular signal regulated kinase 1 and 2 (ERK1/2) and p38 MAPK. ERK1/2 and p38 MAPK activation was differential, ERK1/2 being rapid and transient while that of p38 MAPK slow and sustained. Using selective inhibitors, activation of ERK1/2 was shown to involve protein kinase C and MEK1/2 while that of p38 MAPK was regulated by both protein kinase C and protein kinase A. Furthermore, we show that purinergic stimulation induces the phosphorylation of the MAPK downstream target, mitogen- and stress-activated protein kinase 1 (MSK1), in cardiac myocytes. The time course of MSK1 phosphorylation closely follows that of ERK activation. Inhibitors of the ERK and p38 MAPK pathways were tested on the phosphorylation of MSK1 at two different time points. The results suggest that ERKs initiate the response but both ERKs and p38 MAPK are required for the maintenance of the complete phosphorylation of MSK1. The temporal relationship of MSK1 phosphorylation and cPLA2 translocation induced by purinergic stimulation, taken together with previous findings, is an indication that cPLA2 may be a downstream target of MSK1.  相似文献   

13.
The recognition of mitogen-activated protein kinases (MAPKs) by their upstream activators, MAPK/ERK kinases (MEKs), is crucial for the effective and accurate transmission of many signals. We demonstrated previously that the yeast MAPKs Kss1 and Fus3 bind with high affinity to the N terminus of the MEK Ste7, and proposed that a conserved motif in Ste7, the MAPK-docking site, mediates this interaction. Here we show that the corresponding sequences in human MEK1 and MEK2 are necessary and sufficient for the direct binding of the MAPKs ERK1 and ERK2. Mutations in MEK1, MEK2, or Ste7 that altered conserved residues in the docking site diminished binding of the cognate MAPKs. Furthermore, short peptides corresponding to the docking sites in these MEKs inhibited MEK1-mediated phosphorylation of ERK2 in vitro. In yeast cells, docking-defective alleles of Ste7 were modestly compromised in their ability to transmit the mating pheromone signal. This deficiency was dramatically enhanced when the ability of the Ste5 scaffold protein to associate with components of the MAPK cascade was also compromised. Thus, both the MEK-MAPK docking interaction and binding to the Ste5 scaffold make mutually reinforcing contributions to the efficiency of signaling by this MAPK cascade in vivo.  相似文献   

14.
Mitogen-activated protein kinase (MAPK) signal transduction pathways are ubiquitous ineukaryotic cells,which transfer signals from the cell surface to the nucleus,controlling multiple cellularprograms.MAPKs are activated by MAPK kinases [MAP2Ks or MAP/extracellular signal-regulated kinase(ERK) kinases (MEK)],which in turn are activated by MAPK kinase kinases (MAP3Ks).TAO2 is a MAP3Klevel kinase that activates the MAP2Ks MEK3 and MEK6 to activate p38 MAPKs.Because p38 MAPKs arekey regulators of expression of inflammatory cytokines,they appear to be involved in human diseases suchas asthma and autoimmunity.As an upstream activator of p38s,TAO2 represents a potential drug target.Here we report the crystal structure of active TAO2 kinase domain in complex with staurosporine,a broad-range protein kinase inhibitor that inhibits TAO2 with an IC_(50) of 3 μM.The structure reveals that staurosporineoccupies the position where the adenosine of ATP binds in TAO2,and the binding of the inhibitor mimicsmany features of ATP binding.Both polar and nonpolar interactions contribute to the enzyme-inhibitorrecognition.Staurosporine induces conformational changes in TAO2 residues that surround the inhibitormolecule,but causes very limited global changes in the kinase.The structure provides atomic details forTAO2-staurosporine interactions,and explains the relatively low potency of staurosporine against TAO2.The structure presented here should aid in the design of inhibitors specific to TAO2 and related kinases.  相似文献   

15.
The role of sphingosine kinase (SPHK) in the dibutyryl cyclic AMP (dbcAMP)-induced granulocytic differentiation of HL60 cells was investigated. During differentiation, SPHK activity was increased, as were mRNA and protein levels of SPHK1, but not of SPHK2. Pretreatment of HL60 cells with N,N-dimethylsphingosine (DMS), a potent SPHK inhibitor, completely blocked dbcAMP-induced differentiation. The phosphorylation of mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase 1/2 (ERK1/2), and p38 MAPK was also increased during dbcAMP-induced differentiation. Pretreatment of HL60 cells with the MEK inhibitor, U0126, but not the p38 MAPK inhibitor, SB203580, completely suppressed dbcAMP-induced ERK1/2 activation and granulocytic differentiation, but did not affect the increase in SPHK activity. DMS inhibited dbcAMP-induced ERK1/2 activation, but had little effect on p38 MAPK activation. DMS had no effect on the dbcAMP-induced membrane translocation of protein kinase C (PKC) isozymes, and PKC inhibitors had no significant effect on ERK activation. The overexpression of wild-type SPHK1, but not dominant negative SPHK1, resulted in high basal levels of ERK1/2 phosphorylation and stimulated granulocytic differentiation in HL60 cells. These data show that SPHK1 participates in the dbcAMP-induced differentiation of HL60 cells by activating the MEK/ERK pathway.  相似文献   

16.
MAPKs engage substrates, MAP2Ks, and phosphatases via a docking groove in the C-terminal domain of the kinase. Prior crystallographic studies on the unphosphorylated MAPKs p38α and ERK2 defined the docking groove and revealed long-range conformational changes affecting the activation loop and active site of the kinase induced by peptide. Solution NMR data presented here for unphosphorylated p38α with a MEK3b-derived peptide (p38α/pepMEK3b) validate these findings. Crystallograhic data from doubly phosphorylated active p38α (p38α/T?GY?/pepMEK3b) reveal a structure similar to unphosphorylated p38α/MEK3b, and distinct from phosphorylated p38γ (p38γ/T?GY?) and ERK2 (ERK2/T?EY?). The structure supports the idea that MAP kinases adopt three distinct conformations: unphosphorylated, phosphorylated, and a docking peptide-induced form.  相似文献   

17.
Human alveolar macrophages respond to endotoxin (LPS) by activation of a number of mitogen-activated protein kinase pathways, including the p42/44 (extracellular signal-related kinase (ERK)) kinase pathway. In this study, we evaluated the role of the atypical protein kinase C (PKC) isoform, PKC zeta, in LPS-induced activation of the ERK kinase pathway. Kinase activity assays showed that LPS activates PKC zeta, mitogen-activated protein/ERK kinase (MEK, the upstream activator of ERK), and ERK. LPS did not activate Raf-1, the classic activator of MEK. Pseudosubstrate-specific peptides with attached myristic acid are cell permeable and can be used to block the activity of specific PKC isoforms in vivo. We found that a peptide specific for PKC zeta partially blocked activation of both MEK and ERK by LPS. We also found that this peptide blocked in vivo phosphorylation of MEK after LPS treatment. In addition, we found that LPS caused PKC zeta to bind to MEK in vivo. These observations suggest that MEK is an LPS-directed target of PKC zeta. PKC zeta has been shown in other systems to be phosphorylated by phosphatidylinositol (PI) 3-kinase-dependent kinase. We found that LPS activates PI 3-kinase and causes the formation of a PKC zeta/PI 3-kinase-dependent kinase complex. These data implicate the PI 3-kinase pathway as an integral part of the LPS-induced PKC zeta activation. Taken as a whole, these studies suggest that LPS activates ERK kinase, in part, through activation of an atypical PKC isoform, PKC zeta.  相似文献   

18.
19.
Extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2) are essential components of pathways through which signals received at membrane receptors are converted into specific changes in protein function and gene expression. As with other members of the mitogen-activated protein (MAP) kinase family, ERK1 and ERK2 are activated by phosphorylations catalyzed by dual-specificity protein kinases known as MAP/ERK kinases (MEKs). MEKs exhibit stringent specificity for individual MAP kinases. Indeed, MEK1 and MEK2 are the only known activators of ERK1 and ERK2. ERK2 small middle dotMEK1/2 complexes can be detected in vitro and in vivo. The biochemical nature of such complexes and their role in MAP kinase signaling are under investigation. This report describes the use of a yeast two-hybrid screen to identify point mutations in ERK2 that impair its interaction with MEK1/2, yet do not alter its interactions with other proteins. ERK2 residues identified in this screen are on the surface of the C-terminal domain of the kinase, either within or immediately preceding alpha-helix G, or within the MAP kinase insert. Some mutations identified in this manner impaired the two-hybrid interaction of ERK2 with both MEK1 and MEK2, whereas others had a predominant effect on the interaction with either MEK1 or MEK2. Mutant ERK2 proteins displayed reduced activation in HEK293 cells following epidermal growth factor treatment, consistent with their impaired interaction with MEK1/2. However, ERK2 proteins containing MEK-specific mutations retained kinase activity, and were similar to wild type ERK2 in their activation following overexpression of constitutively active MEK1. Unlike wild type ERK2, proteins containing MEK-specific point mutations were constitutively localized in the nucleus, even in the presence of overexpressed MEK1. These data suggest an essential role for the MAP kinase insert and residues within or just preceding alpha-helix G in the interaction of ERK2 with MEK1/2.  相似文献   

20.
Mitogen‐activated protein kinases (MAPKs) are highly conserved protein kinase modules, and they control fundamental cellular processes. While the activation of MAPKs has been well studied, little is known on the mechanisms driving their inactivation. Here we uncover a role for ubiquitination in the inactivation of a MAPK module. Extracellular‐signal‐regulated kinase 5 (ERK5) is a unique, conserved member of the MAPK family and is activated in response to various stimuli through a three‐tier cascade constituting MEK5 and MEKK2/3. We reveal an unexpected role for Inhibitors of Apoptosis Proteins (IAPs) in the inactivation of ERK5 pathway in a bimodal manner involving direct interaction and ubiquitination. XIAP directly interacts with MEKK2/3 and competes with PB1 domain‐mediated binding to MEK5. XIAP and cIAP1 conjugate predominantly K63‐linked ubiquitin chains to MEKK2 and MEKK3 which directly impede MEK5–ERK5 interaction in a trimeric complex leading to ERK5 inactivation. Consistently, loss of XIAP or cIAP1 by various strategies leads to hyperactivation of ERK5 in normal and tumorigenic cells. Loss of XIAP promotes differentiation of human primary skeletal myoblasts to myocytes in a MEKK2/3‐ERK5‐dependent manner. Our results reveal a novel, obligatory role for IAPs and ubiquitination in the physical and functional disassembly of ERK5‐MAPK module and human muscle cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号