首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zinc and carbonic anhydrase in human semen   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

2.
Zinc deficiency states were produced in rabbit erythrocytes by experimentally induced bleeding anemia and hemolytic anemia. Parallel decreases in total zinc levels and the contents for major zinc protein, carbonic anhydrase I and II isozymes were observed in the erythrocytes. During the process of the anemias the zinc status in the erythrocytes varied remarkably and the relative increase of zinc ions other than that derived from carbonic anhydrase was observed, suggesting that the former zinc ions play an important role in forming a zinc pool in the erythrocytes under the anemic conditions.  相似文献   

3.
Zinc environmental differences in carbonic anhydrase isozymes   总被引:2,自引:0,他引:2  
R L Ward 《Biochemistry》1970,9(12):2447-2454
  相似文献   

4.
The present study was designed to clarify the effect of zinc deficiency on sodium chloride preference, the lingual trigeminal and taste nerves transduction, and carbonic anhydrase (CA) activity of the tongue surface and salivary gland. Male SD rats, 4 weeks old, were divided into four groups, and fed zinc-deficient (Zn-Def), low-zinc (Low-Zn), and zinc-sufficient diets with free access (Zn-Suf) and pair-feeding (Pair-fed). After taking part in the preference tests for 42 days, the rats were provided for the chorda tympani and lingual trigeminal nerves recordings, then finally sacrificed and the tongue and submandibular gland excised to measure CA activity. Sodium chloride preference increased only after 4 days of the feeding of zinc-deficient and low-zinc diets, which means that the taste abnormality appears abruptly in zinc deficieny and even though in marginal zinc deficiency. Reduced CA activities of the taste-related tissues in zinc-deficient group paralleled well with the decreased taste and lingual trigeminal nerves sensitivities.  相似文献   

5.
Zinc and carbonic anhydrase III measurement in human and rat muscle extracts indicate that: 1. About one fifth of zinc in human soleus is associated with carbonic anhydrase III isozyme, and even higher levels of zinc and carbonic anhydrase III are found in rat soleus, where about one half of the zinc is in carbonic anhydrase III. Other muscle was also analysed in a similar way, (see text). Heart is notable in containing lower levels of zinc but negligible carbonic anhydrase III. 2. Treatment of muscle with water or phosphate solutions showed that all the carbonic anhydrase III was water extractable, whereas significant zinc remained bound, but was partially extractable by phosphate solutions. 3. Dialysis of muscle extracts showed that whilst some zinc was dialysable, there was no significant contribution from the carbonic anhydrase III in the dialysed extract. EDTA enhanced the release of dialysable zinc from muscle extract. These findings are discussed in relation to muscle disease.  相似文献   

6.
Carbonic anhydrase (CA) is an abundant protein in most photosynthesizing organisms and higher plants. This review paper considers the physiological importance of the more abundant CA isoforms in photosynthesis, through their effects on CO2 diffusion and other processes in photosynthetic organisms. In plants, CA has multiple isoforms in three different families (α, β and γ) and is mainly known to catalyze the CO2 equilibrium. This reversible conversion has a clear role in photosynthesis, primarily through sustaining the CO2 concentration at the site of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco). Despite showing the same major reaction mechanism, the three main CA families are evolutionarily distinct. For different CA isoforms, cellular localization and total gene expression as a function of developmental stage are predicted to determine the role of each family in relation to the net assimilation rate. Reaction–diffusion modeling and observational evidence support a role for CA activity in reducing resistance to CO2 diffusion inside mesophyll cells by facilitating CO2 transfer in both gas and liquid phases. In addition, physical and/or biochemical interactions between CAs and other membrane‐bound compartments, for example aquaporins, are suggested to trigger a CO2‐sensing response by stomatal movement. In response to environmental stresses, changes in the expression level of CAs and/or stimulated deactivation of CAs may correspond with lower photosynthetic capacity. We suggest that further studies should focus on the dynamics of the relationship between the activity of CAs (with different subcellular localization, abundance and gene expression) and limitations due to CO2 diffusivity through the mesophyll and supply of CO2 to photosynthetic reactions.  相似文献   

7.
The plants of mustard (Brassica juncea L.) were treated with 0, 25 and 50 ΜM gibberellic acid (GA3) at three fully developed leaf stage (30 d after sowing). Effect of GA3 on carbonic anhydrase activity, photosynthetic rate, leaf area index and dry mass was studied at 50, 70 and 90 d after sowing. At harvest 1000 seed mass, pod number and seed yield were recorded. GA3 treatment (50 ΜM) enhanced all the characteristics studied.  相似文献   

8.
The intracellular compartmentation of carbonic anhydrase (CA; EC 4.2.1.1), an enzyme that catalyses the reversible hydration of CO2 to bicarbonate, has been investigated in potato (Solanum tuberosum L.) leaves. Although enzyme activity was mainly located in chloroplasts (87% of total cellular activity), significant activity (13%) was also found in the cytosol. The corresponding CA isoforms were purified either from chloroplasts or crude leaf extracts, respectively. The cytosolic isoenzyme has a molecular mass of 255 000 and is composed of eight identical subunits with an estimated M r of 30000. The chloroplastic isoenzyme (M r 220000) is also an octamer composed of two different subunits with M r estimated at 27 000 and 27 500, respectively. The N-terminal amino acid sequences of both chloroplastic CA subunits demonstrated that they were identical except that the M r-27 000 subunit was three amino acids shorter than that of the M r-27 500 subunit. Cytosolic and chloroplastic CA isoenzymes were found to be similarly inhibited by monovalent anions (Cl, I, N 3 - and NO 3 - ) and by sulfonamides (ethoxyzolamide and acetozolamide). Both CA isoforms were found to be dependent on a reducing agent such as cysteine or dithiothreitol in order to retain the catalytic activity, but 2-mercaptoethanol was found to be a potent inhibitor. A polyclonal antibody directed against a synthetic peptide corresponding to the N-terminal amino acid sequence of the chloroplastic CA monomers also recognized the cytosolic CA isoform. This antibody was used for immunocytolocalization experiments which confirmed the intracellular compartmentation of CA: within chloroplasts, CA is restricted to the stroma and appears randomly distributed in the cytosol.Abbreviations BSA bovine serum albumin - CA carbonic anhydrase - PMSF phenylmethylsulphonyl fluoride - BAM benzamidine - DTT dithiothreitol - 2-ME 2-mercaptoethanol - PVDF polyvinylidene difluoride The authors thanks P. Carrier and Dr. B. Dimon for technical assistance with the mass-spectrometry measurements.  相似文献   

9.
Extraction of maize (Zea mays) leaves by progressive grinding under suitably protective conditions yields total carbonic anhydrase activities (4800 units per milligram chlorophyll) comparable to the activity in spinach (Spinacia oleracea) leaves. The total ribulose diphosphate carboxylase activity was also equal to or greater than the best literature values for maize. Of the total leaf carbonic anhydrase, 72.5% on a chlorophyll basis was present in the mesophyll cells and 14.2% in the bundle-sheath cells. The distribution of the total leaf ribulose diphosphate carboxylase between the mesophyll and bundle-sheath cells was 42.0 and 48.7% respectively. There was three times as much total chlorophyll in extracts of the mesophyll cells compared with the bundle-sheath cells of maize. Similar results for the above distribution of the two enzymes were found using a differential grinding technique. The possible function of carbonic anhydrase in photosynthesis is discussed. The equal distribution of ribulose diphosphate carboxylase activity between the mesophyll and bundle-sheath cells casts doubt upon the hypothesis that a rigid biochemical compartmentation exists between these cell types in maize.  相似文献   

10.
B. Dell  S. A. Wilson 《Plant and Soil》1989,113(2):287-290
The competitive ability of eight strains ofBradyrhizobium on Vigna was examined. It was found that strains S24, M10, and M11 occupied a greater percent of nodules when introduced as mixed inoculum of two strains. Growth rate of strains did not affect competitive ability of the strains. Two hydrogen-uptake positive (Hup+) strains, S24 and M10, were found to be good competitors while another Hup+ strain GR4 was not so. Influence of the host in competition was observed in the case of strain GR4.  相似文献   

11.
The mechanism of inorganic-carbon (Ci) accumulation in the red seaweed Gracilaria tenuistipitata Zhang et Xia has been investigated. Extracellular and intracellular carbonic-anhydrase (CA) activities have been detected. Photosynthetic O2 evolution in thalli and protoplasts of G. tenuistipitata were higher at pH 6.5 than at pH 8.6, where HCO 3 is the predominant form of Ci. Dextran-bound sulfonamide (DBS), a specific inhibitor of extracellular CA, reduced photosynthetic O2 evolution at pH 8.6 and did not have any effect at pH 6.5. After inhibition with DBS, O2 evolution was similar to the rate that could be supported by CO2 from spontaneous dehydration of HCO 3 . The rate of photosynthetic alkalization of the surrounding medium by the algal thallus was dependent on the concentration of Ci and inhibited by DBS. We suggest that the general form of Ci that enters through the plasma membrane of G. tenuistipitata is CO2. Bicarbonate is utilized mainly by an indirect mechanism after dehydration to CO2, and this mechanism involves extracellular CA.Abbreviations Ci inorganic carbon (CO2 + HCO 3 ) - CA carbonic anhydrase - DIC dissolved inorganic carbon (total) - DBS dextran-bound sulfonamide - EZ ethoxyzolamide - NSW natural seawater - PPFD photosynthetic photon flux density - REA relative enzyme activity - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase This research was supported by the Deutsche Forschungsgemeinschaft (Bonn) as a programme of the Sonderforschungsbereich 251 der Universität Würzburg and by the Fonds der Chemischen Industrie (Frankfurt). Joint work in Würzburg was possible thanks to travel grants from the Chancellor of the University of Würzburg, Professor R. Günther, from the Australian National University under the auspices of its Overseas Studies Programme, and from the New Zealand — Federal Republic of Germany Scientific and Technological Exchange Programme, which are gratefully acknowledged. We thank Dr. A. Meyer and Ms. E. Kilian for untiringly conducting part of the experimental work, Ms. G. Theumer and Ms. D. Faltenbacher-Werner for their valuable assistance, and Mr. H. Walz (Walz Company, Effeltrich, FRG) for his skilled help with the calibration of our gas-exchange system for measurements with helox. The Department of Conservation, New Zealand, is thanked for permission to collect lichens.  相似文献   

12.
13.
Spinach carbonic anhydrase has been purified by modification and extension of a published method (Pocker, Y., and Ng. J. S. U. (1973) Biochemistry 12, 5127-5134), using (NH4)2SO4 precipitation and chromatography on DEAE-cellulose, agarose, and DEAE-Sephadex. The enzyme so obtained was homogeneous by criteria of both standard and sodium dodecyl sulfate polyacrylamide gel electrophoresis and of constant specific activity throughout the elution profile on DEAE-Sephadex chromatography. The enzyme has an apparent Mr of 212,000 by gel filtration on Sephadex G-200, a Mr of 26,000 by sodium dodecyl sulfate electrophoresis, and each of the subunits contains approximately 1 g atom of zinc. These data and the excellent correlation between the number of lysine and arginine residues per subunit, and the number of tryptic peptides obtained by peptide mapping, suggest that spinach carbonic anhydrase is an octamer consisting of identical or very similar subunits. Its amino acid composition is similar to parsley carbonic anhydrase; both contain large numbers of half-cystine residues relative to erythrocyte carbonic anhydrases. The spinach enzyme is devoid of disulfide bonds. The enzyme is stable around neutrality at -14 degrees, as a suspension in saturated (NH4)2SO4 solution.  相似文献   

14.
Symbiotic cnidarians absorb inorganic carbon from seawater to supply intracellular dinoflagellates with CO(2) for their photosynthesis. To determine the mechanism of inorganic carbon transport by animal cells, we used plasma membrane vesicles prepared from ectodermal cells isolated from tentacles of the sea anemone, Anemonia viridis. H(14)CO(-)(3) uptake in the presence of an outward NaCl gradient or inward H(+) gradient, showed no evidence for a Cl(-)- or H(+)- driven HCO(-)(3) transport. H(14)CO(-)(3) and (36)Cl(-) uptakes were stimulated by a positive inside-membrane diffusion potential, suggesting the presence of HCO(-)(3) and Cl(-) conductances. A carbonic anhydrase (CA) activity was measured on plasma membrane (4%) and in the cytoplasm of the ectodermal cells (96%) and was sensitive to acetazolamide (IC(50) = 20 nM) and ethoxyzolamide (IC(50) = 2.5 nM). A strong DIDS-sensitive H(+)-ATPase activity was observed (IC(50) = 14 microM). This activity was also highly sensitive to vanadate and allyl isothiocyanate, two inhibitors of P-type H(+)-ATPases. Present data suggest that HCO(-)(3) absorption by ectodermal cells is carried out by H(+) secretion by H(+)-ATPase, resulting in the formation of carbonic acid in the surrounding seawater, which is quickly dehydrated into CO(2) by a membrane-bound CA. CO(2) then diffuses passively into the cell where it is hydrated in HCO(-)(3) by a cytosolic CA.  相似文献   

15.
Phosphoglucomutase, carbonic anhydrase and catalase in Indonesians   总被引:4,自引:0,他引:4  
  相似文献   

16.
The photosynthesis response, antioxidant systems and lipid peroxidation were studied in leaves from spinach plants (Spinacia oleracea L.) in response to ozone fumigation, ambient air and charcoal filtered air treatments. The photosynthetic activity was tested through gas exchange and chlorophyll a fluorescence measurements. Ambient air and ozone fumigation caused a decrease in the photosynthetic rate (25% and 63%, respectively) mainly due to a reduced mesophyll activity, as evidenced by the increased intercellular CO2 concentration. These data agree with a large reduction in the non-cyclic electron flow (7% and 16%), a lower capacity to reduce the quinone pool and a higher development of non-photochemical quenching upon high O3 concentration. The results suggest that the oxidative stress produced, together with the stimulation of superoxide dismutase (SOD, EC 1.15.1.1) and ascorbate peroxidase (APX, EC 1.11.1.11) activities and the increase in lipid peroxidation (20% and 36%, respectively), generated an alteration of the membrane properties.  相似文献   

17.
When cells of Chlorococcum littorale that had been grown in air (air-grown cells) were transferred to extremely high CO2 concentrations (>20%), active photosynthesis resumed after a lag period which lasted for 1–4 days. In contrast, C. littorale cells which had been grown in 5% CO2 (5% CO2-grown cells) could grow in 40% CO2 without any lag period. When air-grown cells were transferred to 40% CO2, the quantum efficiency of PS II (ΦII) decreased greatly, while no decrease in ΦII was apparent when the 5% CO2-grown cells were transferred to 40% CO2. In contrast to air-grown cells, 5% CO2-grown cells showed neither extracellular nor intracellular carbonic anhydrase (CA) activity. Upon the acclimation of 5% CO2-grown cells to air, photosynthetic susceptibility to 40% CO2 was induced. This change was associated with the induction of CA. In addition, neither suppression of photosynthesis nor arrest of growth was apparent when ethoxyzolamide (EZA), a membrane-permeable inhibitor of CA, had been added before transferring air-grown cells of C. littorale to 40% CO2. The intracellular pH value (pHi) decreased from 7.0 to 6.4 when air-grown C. littorale cells were exposed to 40% CO2 for 1–2 h, but no such decrease in pHi was apparent in the presence of EZA. Both air- and 5% CO2-grown cells of Chlorella sp. UK001, which was also resistant to extremely high CO2 concentrations, grew in 40% CO2 without any lag period. The activity of CA was much lower in air-grown cells of this alga than those in air-grown C. littorale cells. These results prompt us to conclude that intracellular CA caused intracellular acidification and hence inhibition of photosynthetic carbon fixation when air-grown C. littorale cells were exposed to excess concentrations of CO2. No such harmful effect of intracellular CA was observed in Chlorella sp. UK001 cells. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Salt accumulation in spinach (Spinacia oleracea L.) leaves first inhibits photosynthesis by decreasing stomatal and mesophyll conductances to CO2 diffusion and then impairs ribulose-1,5-bisphosphate carboxylase/oxygenase (S. Delfine, A. Alvino, M. Zacchini, F. Loreto [1998] Aust J Plant Physiol 25: 395–402). We measured gas exchange and fluorescence in spinach recovering from salt accumulation. When a 21-d salt accumulation was reversed by 2 weeks of salt-free irrigation (rewatering), stomatal and mesophyll conductances and photosynthesis partially recovered. For the first time, to our knowledge, it is shown that a reduction of mesophyll conductance can be reversed and that this may influence photosynthesis. Photosynthesis and conductances did not recover when salt drainage was restricted and Na content in the leaves was greater than 3% of the dry matter. Incomplete recovery of photosynthesis in rewatered and control leaves may be attributed to an age-related reduction of conductances. Biochemical properties were not affected by the 21-d salt accumulation. However, ribulose-1,5-bisphosphate carboxylase/oxygenase activity and content were reduced by a 36- to 50-d salt accumulation. Photochemical efficiency was reduced only in 50-d salt-stressed leaves because of a decrease in the fraction of open photosystem II centers. A reduction in chlorophyll content and an increase in the chlorophyll a/b ratio were observed in 43- and 50-d salt-stressed leaves. Low chlorophyll affects light absorptance but is unlikely to change light partitioning between photosystems.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号