首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Dermatophytes are a group of fungi able to invade keratinized tissues of humans and animals, causing dermatomycosis. Azole antifungal drugs are commonly used in the treatment of dermatomycosis. However, this group of chemicals is known to cause side effects in patients and due to increased use of these medications, azoles are known to cause drug resistance. Having said this, the purpose of the present study was to investigate an alternative anti dermatophyte which is plant based. In this study, allicin, which is a pure bioactive compound isolated from garlic, was tested for its potential as a treatment of dermatomycosis. The study evaluated the in vitro efficacy of pure allicin used alone against ten isolates of Trichophyton rubrum and it was found that the MIC50 and MIC90 ranged from 0.78–25.0 μg/ml, whereas the MIC values for ketoconazole and fluconazole ranged from 0.25–8.0 and 1.0–32.0 μg/ml, respectively, at 28°C for both 7 and 10 days incubation. On the other hand, time–kill studies revealed that the antifungicidal effect of allicin became active within 12–24 h of management in vitro and that it was as good as that of ketoconazole. Finally, most of the tested drug combinations demonstrated synergistic or additive interactions for all isolates for both 7 and 10 days incubation at 28°C. In conclusion, when used alone, allicin showed very good potential as an antifungal compound against mycoses-causing dermatophytes, performing better than the synthetic drug fluconazole and almost as good as ketoconazole. Furthermore, allicin in combination with ketoconazole or with fluconazole frequently showed synergistic or additive interactions against dermatomycosis.  相似文献   

2.
Microbial modification of polyunsaturated fatty acids can often lead to special changes in their structure and in biological potential. Therefore, the aim of this study was to develop potential antifungal agents through the microbial conversion of docosahexaenoic acid (DHA). Bioconverted oil extract of docosahexaenoic acid (bDHA), obtained from the microbial conversion of docosahexaenoic acid (DHA) by Pseudomonas aeruginosa PR3, was assessed for its in vitro and in vivo antifungal potential. Mycelial growth inhibition of test plant pathogens, such as Botrytis cinerea, Colletotrichum capsici, Fusarium oxysporum, Fusarium solani, Phytophthora capsici, Rhizoctonia solani and Sclerotinia sclerotiorum, was measured in vitro. bDHA (5 μl disc−1) inhibited 55.30–65.90% fungal mycelium radial growth of all the tested plant pathogens. Minimum inhibitory concentrations (MICs) of bDHA against the tested plant pathogens were found in the range of 125–500 μg ml−1. Also, bDHA had a strong detrimental effect on spore germination for all the tested plant pathogens. Further, three plant pathogenic fungi, namely C. capsici, F. oxysporum and P. capsici, were subjected to an in vivo antifungal screening. bDHA at higher concentrations revealed a promising antifungal effect in vivo as compared to the positive control oligochitosan. Furthermore, elaborative study of GC-MS analysis was conducted on bioconverted oil extract of DHA to identify the transformation products present in bDHA. The results of this study indicate that the oil extract of bDHA has potential value of industrial significance to control plant pathogenic fungi.  相似文献   

3.
The gene cloning, purification, properties, kinetics, and antifungal activity of chitinase from marine Streptomyces sp. DA11 associated with South China sponge Craniella australiensis were investigated. Alignment analysis of the amino acid sequence deduced from the cloned conserved 451 bp DNA sequence shows the chitinase belongs to ChiC type with 80% similarity to chitinase C precursor from Streptomyces peucetius. Through purification by 80% ammonium sulfate, affinity binding to chitin and diethylaminoethyl-cellulose anion-exchange chromatography, 6.15-fold total purification with a specific activity of 2.95 Umg−1 was achieved. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed a molecular weight of approximately 34 kDa and antifungal activities were observed against Aspergillus niger and Candida albicans. The optimal pH, temperature, and salinity for chitinase activity were 8.0, 50°C, and 45 g‰ psu, respectively, which may contribute to special application of this marine microbe-derived chitinase compared with terrestrial chitinases. The chitinase activity was increased by Mn2+, Cu2+, and Mg2+, while strongly inhibited by Fe2+ and Ba2+. Meanwhile, SDS, ethyleneglycoltetraacetic acid, urea, and ethylenediaminetetraacetic acid were found to have significantly inhibitory effect on chitinase activity. With colloidal chitin as substrates instead of powder chitin, higher V max (0.82 mg product/min·mg protein) and lower K m (0.019 mg/ml) values were achieved. The sponge’s microbial symbiont with chitinase activity may contribute to chitin degradation and antifungal defense. To our knowledge, it was the first time to study sponge-associated microbial chitinase.  相似文献   

4.
Dihydroxyacetone (DHA) is an important ketose sugar, which is extensively used in the cosmetic, chemical, and pharmaceutical industries. DHA has been industrially produced by Gluconobacter oxydans with a high demand of oxygen. To improve the production of DHA, the gene vgb encoding Vitreoscilla hemoglobin (VHb) was successfully introduced into G. oxydans, where it was stably maintained, and expressed at about 76.0 nmol/g dry cell weight. Results indicated that the constitutively expressed VHb improved cell growth and DHA production in G. oxydans under different aeration conditions. Especially at low aeration rates, the VHb-expressing strain (VHb+) displayed 23.13% more biomass and 37.36% more DHA production than those of VHb-free strain (VHb) after 32 h fermentation in bioreactors. In addition, oxygen uptake rate (OUR) was also increased in VHb+ strain relative to the control strain during fermentation processes.  相似文献   

5.
The antifungal action of four essential oils of Foeniculum vulgare (fennel), Thymus vulgaris (thyme), Eugenia caryophyllata (Clove) and Salvia officinalis (sage) was tested in vitro against Penicillium digitatum Sacc. Direct contact and vapour phase were used to test the antifungal activity of these essential oils against P. digitatum that is responsible for green mould rot of citrus fruits. The vapour phase and direct contact of clove and thyme essential oils exhibited the strongest toxicity and totally inhibited the mycelial growth of the test fungus. Thyme and clove essential oils completely inhibited P. digitatum growth either when added into the medium 600 μl l−1 or by their volatiles with 24 μl per 8 cm diameter Petri dish. In in vitro mycelial growth assay showed fungistatic and fungicidal activity by clove and thyme essential oils. Sage and fennel oils did not show any inhibitory activity on this fungus. Scanning electron microscopy (SEM) was done to study the mode of action of clove oil in P. digitatum and it was observed that treatment with the oil leads to large alterations in hyphal morphology.  相似文献   

6.
This work describes the purification in milligram quantities of a lectin from Bauhinia monandra secondary roots (BmoRoL) and its antifungal and termiticidal activities. The BmoRoL (6.2 mg) was isolated through ammonium sulfate fractionation and affinity chromatography on guar gel. Native lectin was resolved as a single band on polyacrylamide gel electrophoresis for basic proteins. Under denaturing and reducing conditions it appeared as a unique glycosylated polypeptide of 26 kDa. The highest agglutination activity of BmoRoL was found with glutaraldehyde-treated rabbit erythrocytes. BmoRoL showed antifungal activity against phytopathogenic species of Fusarium and was more active on Fusarium solani. The lectin also showed termiticidal activity on Nasutitermes corniger workers and soldiers with LC50 of 0.09 and 0.395 mg ml−1 for 12 days. In conclusion, BmoRoL is a new antifungal and termiticidal lectin that can be purified in milligram quantities and has potential biotechnological application for control of agricultural pests.  相似文献   

7.
Korean kimchi is known for its myriad of lactic acid bacteria (LAB) with diverse bioactive compounds. This study was undertaken to isolate an efficient antifungal LAB strain among the isolated kimchi LABs. One thousand and four hundred LABs isolated from different kimchi samples were initially screened against Aspergillus niger. The strain exhibiting the highest antifungal activity was identified as Lactobacillus plantarum YML007 by 16S rRNA sequencing and biochemical assays using API 50 CHL kit. Lact. plantarum YML007 was further screened against Aspergillus oryzae, Aspergillus flavus, Fusarium oxysporum and other pathogenic bacteria. The morphological changes during the inhibition were assessed by scanning electron microscopy. Preliminary studies on the antifungal compound demonstrated its proteinaceous nature with a molecular weight of 1256·617 Da, analysed by matrix‐assisted laser desorption ionization‐time‐of‐flight mass spectrometry (MALDI‐TOF). The biopreservative activity of Lact. plantarum YML007 was evaluated using dried soybeans. Spores of A. niger were observed in the negative control after 15 days of incubation. However, fungal growth was not observed in the soybeans treated with fivefold concentrated cell‐free supernatant of Lact. plantarum YML007. The broad activity of Lact. plantarum YML007 against various food spoilage moulds and bacteria suggests its scope as a food preservative.

Significance and Impact of the Study

After screening 1400 kimchi bacterial isolates, strain Lactobacillus plantarum YML007 was selected with strong antifungal activity against various foodborne pathogens. From the preliminary studies, it was found that the bioactive compound is a low molecular weight novel protein of 1256·617 Da. Biopreservative potential of Lact. plantarum YML007 was demonstrated on soybean grains, and the results point out YML007 as a potent biopreservative having broad antimicrobial activity against various foodborne pathogens.  相似文献   

8.
Biological control agents offer one of the best alternatives to reduce the use of pesticides . Fungi from the genera Alternaria, Colletotrichum and Fusarium are listed among the most important storage pathogens of apple fruits. During storage, transport and marketing, pathogenic fungi can cause significant losses of apple fruits. This investigation studied the potential of Streptomyces hygroscopicus as a biocontrol agent against pathogenic fungi obtained from apple fruit samples expressing rot symptoms. Production of antifungal metabolites by S. hygroscopicus was carried out in 3‐l bench‐scale bioreactor (Biostat® Aplus, Sartorius AG, Germany) during 7 days. Fermentation was carried out at 27°C with aeration rate of 0.5 vvm and agitation rate of 200 rpm. The aim was to analyse bioprocess parameters of batch biofungicide production in medium containing glucose as a carbon source and to examine at which stage of bioprocess production of antifungal metabolite(s) against six phytopathogenic fungi occurs. In vitro antifungal activity of the produced metabolites against six fungi of the genera Colletotrichum, Fusarium and Alternaria grown on potato dextrose agar were determined every 24 h using wells technique. Antifungal activity of cell‐free culture filtrate and filtrate treated with high temperature were tested. The filtrate treated with high temperature did not show any antifungal activity suggesting that active components are thermo unstable. Stationary phase of growth occurred between the third and fourth day of cultivation when production of secondary metabolites begins. Obtained results showed that maximal antifungal activity is achieved on fifth and sixth day of S. hygroscopicus cultivation under defined conditions (inhibition zone diameter higher than 30 mm for all test fungi).  相似文献   

9.
Volatile compounds with antifungal activity produced by edible mushrooms have potential as biological control agents to combat fungal diseases and reduce fungicide use in agriculture. Here we investigated the antifungal activity of volatile compounds produced by the edible mushroom Hypsizygus marmoreus (TUFC 11906) against eight phytopathogenic fungi. The results showed that volatile compounds from the mycelia and culture filtrates (CFs) of H. marmoreus had antifungal activity against some phytopathogenic fungi. Among them, the mycelial growth and conidial germination of Alternaria brassicicola were significantly inhibited by 60 and 100%, respectively. Moreover, the volatile compounds from CFs inhibited the lesion formation of A. brassicicola on detached cabbage leaves by 94%. The volatile compounds had higher antifungal activity against A. brassicicola than other fungi. With the removal of the volatile compounds from conidia of A. brassicicola, the conidia began to germinate, which indicates fungistatic activity of the compounds. The volatile compounds were isolated from the CFs of H. marmoreus, and the major volatile compound with antifungal activity was estimated to be 2‐methylpropanoic acid 2,2‐dimethyl‐1‐(2‐hydroxy‐1‐methylethyl)propyl ester. As the volatile compound produced by H. marmoreus is a product of an edible mushroom and has fungistatic activity against some phytopathogenic fungi, especially A. brassicicola, it may be possible to use the compounds as a novel safe agent for protecting crops in the field and during storage.  相似文献   

10.

Aims

This study aimed to examine heat curing effect (30–100°C) on antifungal activities of lime oil and its components (limonene, p‐cymene, β‐pinene and α‐pinene) at concentrations ranging from 100 to 300 μl ml?1 against Aspergillus niger in microbiological medium and to optimize heat curing of lime oil for efficient mould control on sedge (Lepironia articulata).

Methods and Results

Broth dilution method was employed to determine lime oil minimum inhibitory concentration, which was at 90 μl ml?1 with heat curing at 70°C. Limonene, a main component of lime oil, was an agent responsible for temperature dependencies of lime oil activities observed. Response surface methodology was used to construct the mathematical model describing a time period of zero mould growth on sedge as functions of heat curing temperature and lime oil concentration. Heat curing of 90 μl ml?1 lime oil at 70°C extended a period of zero mould growth on sedge to 18 weeks under moist conditions.

Conclusions

Heat curing at 70°C best enhanced antifungal activity of lime oil against A. niger both in medium and on sedge.

Significance and Impact of the Study

Heat curing of lime oil has potential to be used to enhance the antifungal safety of sedge products.  相似文献   

11.
Candida-associated denture stomatitis has a high rate of recurrence. Candida biofilms formed on denture acrylic are more resistant to antifungals than planktonic yeasts. Histatins, a family of basic peptides secreted by the major salivary glands in humans, especially histatin 5, possess significant antifungal properties. We examined antifungal activities of histatin 5 against planktonic or biofilm Candida albicans and Candida glabrata. Candida biofilms were developed on poly(methyl methacrylate) discs and treated with histatin 5 (0.01–100 μM) or fluconazole (1–200 μM). The metabolic activity of the biofilms was measured by the XTT reduction assay. The fungicidal activity of histatin 5 against planktonic Candida was tested by microdilution plate assay. Biofilm and planktonic C. albicans GDH18, UTR-14 and 6122/06 were highly susceptible to histatin 5, with 50% RMA (concentration of the agent causing 50% reduction in the metabolic activity; biofilm) of 4.6 ± 2.2, 6.9 ± 3.7 and 1.7 ± 1.5 μM, and IC50 (planktonic cells) of 3.0 ± 0.5, 2.6 ± 0.1 and 4.8 ± 0.5, respectively. Biofilms of C. glabrata GDH1407 and 6115/06 were less susceptible to histatin 5, with 50% RMA of 31.2 ± 4.8 and 62.5 ± 0.7 μM, respectively. Planktonic C. glabrata was insensitive to histatin 5 (IC50 > 100 μM). Biofilm-associated Candida was highly resistant to fluconazole in the range 1–200 μM; e.g. at 100 μM only ~20% inhibition was observed for C. albicans, and ~30% inhibition for C. glabrata. These results indicate that histatin 5 exhibits antifungal activity against biofilms of C. albicans and C. glabrata developed on denture acrylic. C. glabrata is significantly less sensitive to histatin 5 than C. albicans.  相似文献   

12.
Cyanobacterial cultures tolerating 200 mmol l−1 sodium chloride isolated from terrestrial and freshwater habitats of North Maharashtra region of India were evaluated for antifungal activity. Aqueous, methanol, n-propanol, and petroleum ether extracts of 40 cyanobacterial isolates belonging to nine genera were examined for inhibitory activity against five fungal pathogens. Eighteen isolates belonging to genus Oscillatoria dominated the population of halotolerant cyanobacterial cultures. Four antifungal bioassays viz. double layer agar method, disc diffusion assay, silica gel method, and minimum inhibitory concentration (MIC) were used to screen the cultures for antifungal activity. Among the solvents used, methanol extracts showed 34.9% inhibition followed by n-propanol, petroleum ether, and water exhibiting 30.2%, 18.6% and 16.2% inhibition, respectively. The double agar layer method was found to be a suitable method in preliminary screening for handling large number of cultures without extraction of compounds. However, in later screening experiments, silica gel method was seen to be advantageous over MIC and agar disc diffusion methods.  相似文献   

13.
Plants are known to produce a plethora of secondary metabolites which are recognized as a useful source of new drugs or drug leads. Extracts and fractions of Schinus terebinthifolius Raddi (Anacardiaceae), Piper regnellii C.D.C. (Piperaceae), Rumex acetosa L. (Polygonaceae), and Punica granatum L. (Punicaceae) were assessed for their antifungal activity against eight clinical isolates of C. albicans. They were also evaluated for their effect on the adhesion of these C. albicans isolates to buccal epithelial cells (BECs). The ethyl acetate fraction from the leaves of S. terebinthifolius showed promising activity, inhibiting the growth of three C. albicans isolates at 7.8 μg ml−1 and significantly inhibiting their adhesion to BEC at 15 μg ml−1 . In addition, this fraction did not show cytotoxic activity against murine macrophages. The results show the potential of the plant extracts studied as a source of new antifungal compounds. Further studies are necessary for isolation and characterization of the active compounds of these plants.  相似文献   

14.
Serratia marcescens, strain SR1 was isolated from the local soil of a cultivated farm and it was screened as potent strain for chitinase production. Maximum chitinase production (77.3 u Mh−1 100−1) was observed after 96 h of incubation period with pH 5.5 at 30°C under shake conditions (120 rpm). Compare to still flasks, shake culture with prawn fish colloidal chitin of 0.5% (w/v) concentration, showed a better enzyme yield. Crude enzyme showed antifungal activity against plant pathogens.  相似文献   

15.
A broad spectrum of medicinal plants was used as traditional remedies for various infectious diseases. Fungal infectious diseases have a significant impact on public health. Fungi cause more prevalent infections in immunocompromised individuals mainly patients undergoing transplantation related therapies, and malignant cancer treatments. The present study aimed to investigate the in vitro antifungal effects of the traditional medicinal plants used in India against the fungal pathogens associated with dermal infections. Indian medicinal plants (Acalypha indica, Lawsonia inermis Allium sativum and Citrus limon) extract (acetone/crude) were tested for their antifungal effects against five fungal species isolated from skin scrapings of fungal infected patients were identified as including Alternaria spp., Curvularia spp., Fusarium spp., Trichophyton spp. and Geotrichum spp. using well diffusion test and the broth micro dilution method. All plant extracts have shown to have antifungal efficacy against dermal pathogens. Particularly, Allium sativum extract revealed a strong antifungal effect against all fungal isolates with the minimum fungicidal concentration (MFC) of 50–100 μg/mL. Strong antifungal activity against Curvularia spp., Trichophyton spp., and Geotrichum spp. was also observed for the extracts of Acalypha indica, and Lawsonia inermis with MFCs of 50–800 μg/mL respectively. The extracts of Citrus limon showed an effective antifungal activity against most of the fungal strains tested with the MFCs of 50–800 μg/mL. Our research demonstrated the strong evidence of conventional plants extracts against clinical fungal pathogens with the most promising option of employing natural-drugs for the treatment of skin infections. Furthermore, in-depth analysis of identifying the compounds responsible for the antifungal activity that could offer alternatives way to develop new natural antifungal therapeutics for combating resistant recurrent infections.  相似文献   

16.
Thirty new and thirty-four known analogues were designed and synthesized to improve the potential use of the α-methylene-γ-butyrolactone ring, a natural pharmacophore. All structures were confirmed by 1H and 13C NMR, MS, and single-crystal X-ray diffraction analyses. The results of antifungal and cytotoxic activity indicated that the synthesized analogues showed significant inhibitory activity and limited selectivity. Compound 45 exhibited the highest antifungal activity with IC50 = 22.8 μM but moderate cytotoxic activity with IC50 = 28.5 μM (against BGC823 cell line) and 7.7 μM (against HeLa cell line). Analysis of structure–activity relationships revealed that the incorporation of an aromatic ring into the β, γ positions of the lactone ring improved antifungal activity, and that the introduction of electron-withdrawing groups into the aromatic rings increased the activity compared with electron-donating groups. The above results identified 4-phenyl-3-phenyl-2-methylenebutyrolactone (33) as a lead scaffold for discovering and developing novel and improved crop-protection agents.  相似文献   

17.
Antifungal peptides have gained interest as therapeutic agents in recent years because of increased multidrug resistance against present antifungal drugs. This study designed, synthesized and characterized antifungal activity of a small peptide analogue, DS6. This peptide was designed using the template from the N‐terminal part of the antifungal protein, Aspergillus giganteous. DS6 inhibited Candida tropicalis (ATCC 13803), as well as its clinical isolates. DS6 was found to be a fungicidal, killing the fungus very rapidly. DS6 is also non‐toxic to human cells. Synergistic interactions of DS6 with amphotericin B and fluconazole were also evident. DS6 is membrane lytic and exhibits antibiofilm activity against C. tropicalis. In conclusion, DS6 may have utility as an alternative antifungal therapy for C. tropicalis. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
Using nematophagous fungi for the biological control of animal parasitic nematodes will become one of the most promising strategies in the search for alternative chemical drugs. The purpose of this study was to check the in vitro activity of four anthelmintics, four chemical fungicides and two antifungal drugs on the spore germination of nematophagous fungi: Duddingtonia flagrans (SF170), Arthrobotrys oligospora (447), Arthrobotrys superba (435) and Arthrobotrys sp. (PS011). A modified 24-well cell culture plate assay was conducted to evaluate the susceptibility of nematophagous fungi against drugs tested by calculating the effective middle concentrations (EC50) of each tested drug to inhibit the germination of fungal spores. EC50 ranged between 0·7 and 47·2 μg ml−1 for fenbendazole, thiabendazole and ivermectin, except levamisole (546·5–4057·8 μg ml−1). EC50 of tested fungicides was 0·6–2·3 μg ml−1 for carbendazim, 55·9–247·4 μg ml−1 for metalaxyl, 24·4–45·2 μg ml−1 for difenoconazole, and 555·9–1438·3 μg ml−1 for pentachloronitrobenzene (PCNB). EC50 of two antifungal drugs was 0·03–3·4 μg ml−1 for amphotericin B and 0·3–10·9 μg ml−1 for ketoconazole. The results showed that 10 tested drugs, except for levamisole and PCNB, had in vitro inhibitory effects on nematophagous fungi. The chlamydospores of Dflagrans had the highest sensitivity to nine tested drugs, except for ketoconazole.  相似文献   

19.
《Fungal biology》2020,124(8):735-741
A series of linear hydrophilic cationic polymers with different charge density and molecular weights were synthesized by one-step polymerization process. The effect of the hydrophobicity and molecular weights on the antifungal activity against Rhizoctonia solani (R. solani) and Fusarium oxysporum f. sp. cubense race 4 (Foc4) was assessed. The biotoxicity of the cationic polymers were evaluated based on their median lethal concentration (LC50) for zebrafish and silkworm and median lethal dose (LD50) for Kunming mice. The results indicated that the balance between antifungal activity and biotoxicity could be well tuned by controlling the hydrophobic-hydrophilic balance. The minimum inhibitory concentration (MIC) of PEPB10 and PEPB25 against R. solani were 160 μg/mL and 80 μg/mL, respectively. And the LD50 for Kunming mice of PEPB10 and PEPB25 were more than 5000 mg/kg, which mean that PEPB10 and PEPB25 with high hydrophilicity show low toxicity and better selectivity for R. solani. The cationic polymers can kill the R. solani by damaging their membranes and exchanging the Ca2+ or/and Mg2+ cations of their membranes or cell wall. These results help to understand the antifungal mechanism of low-toxic polymeric quaternary ammonium salts and highlight their potential application as highly selective fungicidal agents for controlling plant diseases.  相似文献   

20.
The budding yeast Saccharomyces cerevisiae is able to utilize glycerol as the sole carbon source via two pathways (glycerol 3-phosphate pathway and dihydroxyacetone [DHA] pathway). In contrast, the fission yeast Schizosaccharomyces pombe does not grow on media containing glycerol as the sole carbon source. However, in the presence of other carbon sources such as galactose and ethanol, S. pombe could assimilate glycerol and glycerol was preferentially utilized over ethanol and galactose. No equivalent of S. cerevisiae Gcy1/glycerol dehydrogenase has been identified in S. pombe. However, we identified a gene in S. pombe, SPAC13F5.03c (gld1 +), that is homologous to bacterial glycerol dehydrogenase. Deletion of gld1 caused a reduction in glycerol dehydrogenase activity and prevented glycerol assimilation. The gld1Δ cells grew on 50 mM DHA as the sole carbon source, indicating that the glycerol dehydrogenase encoded by gld1 + is essential for glycerol assimilation in S. pombe. Strains of S. pombe deleted for dak1 + and dak2 + encoding DHA kinases could not grow on glycerol and showed sensitivity to a higher concentration of DHA. The dak1Δ strain showed a more severe reduction of growth on glycerol and DHA than the dak2Δ strain because the expression of dak1 + mRNA was higher than that of dak2 +. In wild-type S. pombe, expression of the gld1 +, dak1 +, and dak2 + genes was repressed at a high concentration of glucose and was derepressed during glucose starvation. We found that gld1 + was regulated by glucose repression and that it was derepressed in scr1Δ and tup12Δ strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号