首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laudert D  Schaller F  Weiler EW 《Planta》2000,211(1):163-165
 Allene oxide synthase (AOS), encoded by a single gene in Arabidopsis thaliana (L.) Heynh., catalyzes the first step specific to the octadecanoid pathway. Enzyme activity is very low in control plants, but is upregulated by wounding, octadecanoids, ethylene, salicylate and coronatine (D. Laudert and E.W. Weiler, 1998, Plant J 15: 675–684). In order to study the consequences of constitutive expression of AOS on the level of jasmonates, a complete cDNA encoding the enzyme from A. thaliana was constitutively expressed in both  A. thaliana and tobacco (Nicotiana tabacum L.). Overexpression of AOS did not alter the basal level of jasmonic acid; thus, output of the jasmonate pathway in the unchallenged plant appears to be strictly limited by substrate availability. In wounded plants overexpressing AOS, peak jasmonate levels were 2- to 3-fold higher compared to untransformed plants. More importantly, the transgenic plants reached the maximum jasmonate levels significantly earlier than wounded untransformed control plants. These findings suggest that overexpression of AOS might be a way of controlling defense dynamics in higher plants. Received: 10 February 2000 / Accepted: 11 March 2000  相似文献   

2.
The induction of a chloroplast-localized 13-lipoxygenase (13-LOX) in passion fruit leaves in response to methyl jasmonate (MeJa) was previously reported. Since allene oxide synthase (AOS) is a key cytochrome P450 enzyme in the oxylipin pathway leading to AOS-derived jasmonates, the results above led in turn to an investigation of AOS in our model plant. Spectrophotometric assays showed that 24 h exposure of MeJa caused a high increase in 13-hydroperoxy linolenic acid (13-HPOT) metabolizing activity in leaf tissue. Western analysis using polyclonal antibodies against tomato AOS strongly indicate that, at least a part of the 13-HPOT metabolizing capacity can be attributed to AOS activity. We cloned the cDNA from a novel AOS encoding gene from passion fruit, named PfAOS. The 1,512 bp open reading frame of the AOS–cDNA codes a putative protein of 504 amino acid residues containing a chloroplast target sequence. Database comparisons of the deduced amino acid sequence showed highest similarity with dicot AOSs. Immunocytochemistry analysis showed the compartmentalization of AOS in chloroplasts of MeJa treated leaves, corroborating the predicted subcellular localization. Northern analysis showed that AOS gene expression is induced in leaf tissue in response to mechanical wounding and exposure to MeJa. In addition, such treatments caused an increase in papain inhibitor(s) in leaf tissue. Taken together, these results indicate that PfAOS may play an important role in systemic wound response against chewing insect attack. Furthermore, it can be useful as a tool for understanding the regulation of jasmonates biosynthesis in passion fruit.  相似文献   

3.
C. Biesgen  E. W. Weiler 《Planta》1999,208(2):155-165
The genes of two closely related 12-oxophytodienoic acid reductases (EC 1.3.1.42), OPR1 and OPR2, were identified on a 7079-bp-long genomic fragment from Arabidopsis thaliana (L.) Heynh. The organization of these two genes was determined and putative cis elements were identified. Promoter-β-glucuronidase (GUS) fusions expressed in transgenic Arabidopsis thaliana and Nicotiana tabacum L. plants revealed differences in OPR-promoter-driven GUS expression in flowers. While the OPR1 promoter directed GUS expression in young seeds, the OPR2 promoter directed pollen-specific expression. Both OPR1 and OPR2, were predominantly expressed in roots. Stress treatments, like local and systemic wounding, UV-C illumination and coldness, resulted in transient changes in steady-state OPR mRNA levels, but no concurrent changes in polypeptide level or enzyme activity were detected. Received: 2 October 1998 / Accepted: 22 December 1998  相似文献   

4.
Kubigsteltig II  Weiler EW 《Planta》2003,217(5):748-757
Allene oxide synthase (AOS) catalyzes the entrance reaction in the biosynthesis of the octadecanoids 12-oxophytodienoic acid (OPDA) and jasmonic acid (JA). The enzyme is feedback-regulated by JA and thus a target of the JA-signalling pathway. A fusion genetic approach was used to isolate mutants in this signalling pathway. Seeds from transgenic Arabidopsis thaliana plants expressing the Escherichia coli uidA gene encoding beta-glucuronidase (GUS) under the control of the AOS promoter were mutagenized with ethylmethane sulfonate and the progeny was screened for individuals exhibiting constitutive expression of uidA in the absence of an added octadecanoid. From 21,000 mutagenized plants, 8 lines showing constitutive AOS expression were obtained. The mutant lines were characterized further and fell into four classes, I to IV. All showed signs of growth inhibition encompassing both shoot and root systems, and accumulated higher than normal levels of OPDA. Mutants belonging to classes I and IV failed to set seeds due to defects in flower development which prevented self-pollination. One mutant, designated cas1, was characterized in more detail and showed, in addition to elevated levels of AOS mRNA, AOS polypeptide, OPDA, and JA, constitutive expression of JA-responsive genes ( VSP2, PDF1.2). The cas1 mutation is recessive and affects a single locus. Using cleaved amplified polymorphic sequences (CAPS) and simple sequence length polymorphisms (SSLP), the mutated gene was mapped to chromosome IV next to the SSLP marker CIW7.  相似文献   

5.
 In addition to OPR1 and OPR2, two isoenzymes of 12-oxophytodienoate reductase, a third isoform (OPR3) has recently been identified in Arabidopsis thaliana (L.) Heynh. The expression of the OPR3 gene is induced not only by a variety of stimuli, such as touch, wind, wounding, UV-light and application of detergent, but also by brassinosteroids. The three enzymes were expressed in a functional form in Escherichia coli, and OPR2 was additionally expressed in insect cell cultures and overexpressed in A. thaliana. Substrate conversion was analyzed using a stereospecific assay. The results show that OPR3 effectively converts the natural (9S,13S)-12-oxophytodienoic acid [K m = 35 μM, V max 53.7 nkat (mg protein)−1] to the corresponding 3-2(2′(Z)-pentenyl) cyclopentane-1-octanoic acid (OPC-8:0) stereoisomer while OPR1 and OPR2 convert (9S,13S)-12-oxophytodienoic acid with greatly reduced efficiency compared to OPR3. Thus, OPR3 is the isoenzyme relevant for jasmonate biosynthesis. Received: 21 October 1999 / Accepted: 10 December 1999  相似文献   

6.
7.
A promoter fusion (Sh35) combining upstream regulatory regions from the maize Sh1 promoter with a truncated 35S promoter, Δ9035 (–90 to +8) has been compared with the original Sh1 promoter for its capacity to promote expression of the β-glucuronidase (GUS) gene in stably transformed tomato plants. For both promoters, very faint GUS expression was detected in the vegetative tissues, and no expression was detected in the fruit pericarp tissues. However, in the seed, Sh1 promoted low GUS expression but Sh35 directed 25-fold higher GUS expression. For both constructs, the profile of GUS expression was similar to that of endogenous sucrose synthase activity, but maximal GUS activity was reached 15 days after the peak of sucrose synthase activity. Received: 20 October 1998 / Revision received: 1 December 1998 / Accepted: 14 December 1998  相似文献   

8.
9.
The Bryonia dioica tendril-coiling assay provides a rapid, sensitive and selective bioassay for jasmonates. Using this assay, a large number of jasmonate and coronatine analogs were analyzed for their biological activities. In a systematic study, C-3 analogs, C-2 analogs, C-1 homologs and -analogs, C-1(1′) analogs of jasmonic acid, as well as analogs of coronatine altered in both the amino acid and the coronafacic acid moiety, were compared. The results demonstrated at least two structurally non-overlapping centers of biological activity, one centered around the structure of jasmonic acid allowing only minor C-1(1′) modifications and a second center around the structure of 12-oxophytodienoic acid and having different structural requirements for activity, thus allowing quite different structural modifications. The C18-group of the jasmonates [12-oxophytodienoic acid and 3-oxo-2(2′ (Z)-pentenyl)-cyclopentane-1-octanoic acid], for which coronatine is a structural mimic, was the much more potent inducer of tendril coiling, when applied externally. The levels of jasmonic acid and 3-oxo-2(2′(Z)-pentenyl)-cyclopentane-1-octanoic acid in mechanically stimulated tendrils remained very low and did not change detectably, while the level of 12-oxophytodienoic acid had earlier been shown to change drastically and transiently during the onset and progression of the coiling reaction. Thus, 12-oxophytodienoic acid, rather than jasmonic acid or 3-oxo-2(2′ (Z)-pentenyl)-cyclopentane-1-octanoic acid, has to be considered as an endogenous signal transducer in B. dioica mechanotransduction. Received: 19 June 1998 / Accepted: 14 September 1998  相似文献   

10.
In our previous study, we identified a Rosa chinensis heat shock protein (HSP) gene, RcHSP17.8, which was induced by abiotic stresses, such as high temperature and osmotic stress. To analyze the expression of RcHSP17.8 and the function of cis-acting elements in the promoter region, a 1,910 bp fragment of the upstream sequence of the RcHSP17.8 translation initiation codon and five promoter deletion fragments were fused to a β-glucuronidase (GUS) report gene. These plasmids were transferred to Arabidopsis thaliana via Agrobacterium. GUS staining was seen in all the organs, especially in the vascular tissues after heat treatment. In transgenic Arabidopsis, GUS expression driven by the full length promoter was significantly higher under heat shock, but no GUS activity was detected under other abiotic stresses. Deletion analysis indicated that the region from −178 to −771 was essential for the promoter’s response to high temperature.  相似文献   

11.
The chimerical gene, Arabidopsis thaliana sHSP18.2 promoter fused to E. coli gusA gene, was Agrobacterium rhizogenes-mediated transformed into Nicotiana tabacum as a heat-regulatable model, and the thermo-inducible expression of GUS activity in N. tabacum transgenic hairy roots was profiled. An activation of A. rhizogenes with acetosyringone (AS) before cocultured with tobacco's leaf disc strongly promoted transgenic hairy roots formation. Transgenic hairy roots formation efficiency of A. rhizogenes precultured with 200 μM AS supplementation was 3.1-fold and 7.5-fold, respectively, compared to the formation efficiency obtained with and without AS supplementation in coculture. Transgenic hairy roots transformed with different AS concentration exhibited a similar pattern of thermo-inducibility after 10 min to 3 h heat treatments detected by GUS expression. The peak of expressed GUS specific activity, 399,530 pmol MUG per mg total protein per min, of the transgenic hairy roots was observed at 48 h after 3 h of 42°C heat treatment, and the expressed GUS specific activity was 7–26 times more than that reported in A. thaliana, tobacco BY-2 cells and Nicotiana plumbaginifolia. Interference caused by AS supplementation on the growth of transgenic hairy roots, time-course of GUS expression and its expression level were not observed.  相似文献   

12.
A single-copy extensin gene (atExt1) has been isolated from Arabidopsis thaliana (L.) Heynh. The deduced amino acid sequence consists of 374 amino acids which are organised into highly ordered repeating blocks in which Ser(Pro)4 and Ser(Pro)3 motifs alternate. Two copies of the Tyr-X-Tyr-Lys motif and 13 copies of the Val-Tyr-Lys motif are present, showing that this extensin may be highly cross-linked, possessing the capacity for both intra and inter-molecular bond formation. The gene atExt1 is normally expressed in the root and is silent in the leaf; wounding reverses this pattern, turning on the gene in the leaf and repressing it in the root. The promoter contains motifs which have been found to activate plant defence genes in response to salicylic acid, abscisic acid and methyl jasmonate; when these compounds are applied to the roots, the atExt1 gene is activated in the leaf. Received: 11 September 1998 / Accepted: 20 December 1998  相似文献   

13.
The expression of the auxin-inducible Nt103-1 gene of tobacco was studied in Arabidopsis thaliana. For this purpose we introduced a gene fusion between the promoter of the gene and the -glucuronidase reporter gene (GUS) into Arabidopsis thaliana. The expression and location of GUS activity were studied histochemically in time and after incubation of seedlings on medium containing auxins or other compounds. The auxins 2,4-dichlorophenoxyacetic acid (2,4-D), indole-3-acetic acid (IAA), and 1-naphthylacetic acid (1-NAA) were able to induce GUS activity in the root tips of transgenic seedlings. The auxin transport inhibitor 2,3,5-triiodobenzoic acid was able to induce GUS activity not only in the root tip, but also in other parts of the root. Induction by the inactive auxin analog 3,5-dichlorophenoxyacetic acid was much weaker. Compounds like glutathione and the heavy metal CuSO4 were weak inducers. GUS activity observed after induction by glutathione was located in the transition zone. Salicylic acid and compounds increasing the concentration of hydrogen peroxide in the cell were also very well able to induce GUS activity in the roots. The possible involvement of hydrogen peroxide as a second messenger in the pathway leading to the induction of the Nt103-1 promoter is discussed.  相似文献   

14.
The naturally occurring enantiomer of the various octadecanoids and jasmonates is established in a biosynthetic step catalyzed by the allene oxide cyclase (AOC). The AOC converts an allene oxide formed by an allene oxide synthase (AOS). Here, we show cloning and characterization of cDNAs encoding the AOC and a third AOS, respectively, in addition to the two AOSs previously published (Plant J. 21, 199-213, 2000). The ORF of the AOC-cDNA of 717 bp codes for a protein of 238 amino acid residues carrying a putative chloroplast target sequence. Overexpression without chloroplast target sequence revealed AOC activity. The AOC was found to be a single copy gene which mapped on chromosome 6H. AOC mRNA accumulation appeared in leaf segments upon treatment with various jasmonates, octadecanoids and ABA or during stress such as treatment with sorbitol or glucose solutions. Infection with powdery mildew activated AOC expression in susceptible and resistant lines of barley which correlated with PR1b expression. Among different tissues of barley seedlings, the scutellar node and leaf base accumulated AOC mRNA preferentially which correlated with accumulation of mRNAs for other biosynthetic enzymes (lipoxygenases, AOSs). AOC mRNA accumulation appeared also abundantly in parts of the root containing the tip and correlated with elevated levels of jasmonates. The data suggest a link of AOC expression and JA formation and support role of JA in stress responses and development of barley.  相似文献   

15.
16.
The promoter of the nit1 gene, encoding the predominantly expressed isoform of the Arabidopsis thaliana (L.) Heynh. nitrilase isoenzyme family, fused to the β-glucuronidase gene (uidA) drives β-glucuronidase expression in the root system of transgenic A. thaliana and tobacco plants. This expression pattern was shown to be controlled developmentally, suggesting that the early differentiation zone of root tips and the tissue surrounding the zone of lateral root primordia formation may constitute sites of auxin biosynthesis in plants. The root system of A. thaliana was shown to express functional nitrilase enzyme. When sterile roots were fed [2H]5-L-tryptophan, they converted this precusor to [2H]5-indole-3-acetonitrile and [2H]5-indole-3-acetic acid. This latter metabolite was further metabolized into base-labile conjugates which were the predominant form of [2H]5-indole-3-acetic acid extracted from roots. When [1-13C]-indole-3-acetonitrile was fed to sterile roots, it was converted to [1-13C]-indole-3-acetic acid which was further converted to conjugates. The results prove that the A. thaliana root system is an autonomous site of indole-3-acetic acid biosynthesis from L-tryptophan. Received: 3 February 1998 / Accepted: 17 April 1998  相似文献   

17.
18.
19.
Two important marker proteins used in plant gene expression studies are green fluorescent protein (GFP) and β-glucuronidase (GUS). We have compared the utility of each in the analysis of a relatively weakArabidopsis thaliana promoter. The background green fluorescence of arabidopsis tissues and organs has been catalogued. This background fluorescence makes it difficult to detect weak promoter activity driving GFP, a problem compounded by the lack of amplification of the GFP signal. In the case of β-glucuronidase, due to diffusion of the enzymatic product, GUS may over-report promoter activity. However, because of the enzymatic amplification of the signal and the low β-glucuronidase activity of untransformed arabidopsis tissues, weak promoter activity is more easily and more accurately detected using GUS.  相似文献   

20.
为了探明拟南芥内膜反向转运体AtNHX6基因的组织表达模式,从基因组中克隆了AtNHX6基因开放阅读框(ORF)上游侧翼调控区1 922bp序列,并成功构建AtNHX6基因启动子与GUS融合表达载体pCAM-BIA1381-proNHX6-GUS,通过农杆菌花序浸染法转化野生型拟南芥获得T3代纯合转基因拟南芥株系,经PCR检测扩增得到2 187bp目的条带。利用组织染色法鉴定转基因拟南芥的GUS表达模式发现,在子叶、下胚轴和花中GUS活性显著。在这些广泛表达的部位中,微管系统中的表达最为显著,真叶中只有局部检测到GUS表达;在根中GUS在根毛和侧根生长部位表达;在未成熟果荚中只有在果荚顶端和基部存在GUS活性,成熟果荚中只在果柄检测到GUS表达;在花中,雄蕊的花丝和花粉粒及雌蕊的柱头中检测到GUS表达。GUS染色分析结果表明,AtNHX6基因启动子与GUS的融合表达载体成功构建并正常启动GUS基因表达,且AtNHX6基因主要在拟南芥的子叶、下胚轴、根、花、果荚中的微管系统、根毛和侧根生长部位以及花丝、花粉、柱头中表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号