首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Synapses of the oculomotor nucleus of Echidna have been examined ultrastructurally with the aim of integrating data obtained from osmicated and nonosmicated PTA stained material. Particular emphasis has been laid on the relationship between the synaptic vesicles of the osmicated material and the presynaptic network and vesicular grid of the PTA material. This relationship has been explored qualitatively by examining osmicated material of varying qualities of fixation. Such material contains dense projections in addition to synaptic vesicles, and various vesicular network appearances. A variety of measurement techniques have shown that the PTA network is characterised by reticular strands, spaces, and regular hexagonal units smaller than vesicles, these observations prompting the formulation of a vesicle-network coincidence model of the presynaptic terminal. This model has been tested by tracing the profiles of vesicles within the PTA network and comparing their size and shape frequency distributions with those of osmicated synaptic vesicles. The distributions have been found to be essentially similar, suggesting that vesicles can be located within the network, and that the hexagonal network units are formed only in the presence of an underlying vesicular matrix.Additionally, the following points have emerged: 1) the dense projections in the two types of material appear to be equivalent; 2) a loose correlation exists between dense projections and vesicles in osmicated terminals, increase in the area of the dense projections being associated with a decrease in the area of the vesicles; 3) network and dense projection units are similar. In view of the similarity between network and dense projection units, the demonstrated vesicular basis of the network raises the question of whether dense projections are entirely independent structures, or whether they depend in part for their existence on the nearby presence of synaptic vesicles.This work was supported by the Arnold Yeldham and Mary Raine Research Foundation of the University of Western Australia and by the Australian Research Grants Committee and the Nuffield Foundation  相似文献   

2.
Cortical synaptosomes fixed in unbuffered OsO4 and glutaraldehyde have been block-stained with phosphotungstic acid (PTA) in order to investigate the relationship between complex vesicles and dense projections. It is concluded that the shell of the complex vesicles contributes to the formation of dense projections and that, in addition, there is a correspondence between this shell and the previously described presynaptic network. The process by which complex vesicles become associated with dense projections appears to be accentuated by electrical stimulation of the synaptosomes.  相似文献   

3.
A procedure for computer simulation is proposed, which allows one to quantitatively characterize the spatial distribution of synaptic vesicles in presynaptic terminals (PST) using ultrathin sections of such terminals. The procedure includes three stages: simulation, topographical analysis, and comparison. At the first stage, the spatial distribution of vesicles within a PST and the process of random sectioning of it are simulated using the corresponding mathematical model. At the second stage, the topographical distribution of vesicle profiles within the plane of PST section is estimated; three respective approaches have been used: (i) nearest neighbor distance distribution; (ii) minimal spanning tree; and (iii) Voronoi paving. At the third stage, the simulated parameters are compared with the parameters of native terminal sections; when the coincidence of these two parameter groups is satisfactory, we believe that the simulated spatial distribution agrees with the real distribution. The software for the procedure is written in C++ programing langage. The results of a pilot study on ultrathin sections of cultured rat hippocampal neurons showed that the method offers broad possibilities for spatial interpretation and quantitative characterization of distributions of synaptic vesicles.  相似文献   

4.
Although brain-derived neurotrophic factor (BDNF) regulates numerous and complex biological processes including memory retention, its extremely low levels in the mature central nervous system have greatly complicated attempts to reliably localize it. Using rigorous specificity controls, we found that antibodies reacting either with BDNF or its pro-peptide both stained large dense core vesicles in excitatory presynaptic terminals of the adult mouse hippocampus. Both moieties were ~10-fold more abundant than pro-BDNF. The lack of postsynaptic localization was confirmed in Bassoon mutants, a seizure-prone mouse line exhibiting markedly elevated levels of BDNF. These findings challenge previous conclusions based on work with cultured neurons, which suggested activity-dependent dendritic synthesis and release of BDNF. They instead provide an ultrastructural basis for an anterograde mode of action of BDNF, contrasting with the long-established retrograde model derived from experiments with nerve growth factor in the peripheral nervous system.  相似文献   

5.
6.
Within the framework of the quantum hypothesis of synaptic transmission, the amount of a neurotransmitter released in a unitary event of calcium-dependent exocytosis corresponds to the content of a synaptic vesicle (SV). The number of these organelles in the presynaptic terminal is an important index characterizing the functional state of the given synapse. The technique of estimation of the dimension of the total SV pool, which is based on mathematical modeling and is realized in a computer experiment, is described. This technique allows one to interpret quantitative estimations obtained in the course of the analysis of images of random ultrathin sections of presynaptic terminals in the terms of 3D space. The capabilities of this technique are illustrated using an example of estimation of the size of the total SV pool in asymmetric synapses between neurons of the radial layer of the murine hippocampal CA1 area. Neirofiziologiya/Neurophysiology, Vol. 38, No. 3, pp. 219–223, May–June, 2006.  相似文献   

7.
《The Journal of cell biology》1989,109(6):3425-3433
Nerve endings of the posterior pituitary are densely populated by dense- core neurosecretory granules which are the storage sites for peptide neurohormones. In addition, they contain numerous clear microvesicles which are the same size as small synaptic vesicles of typical presynaptic nerve terminals. Several of the major proteins of small synaptic vesicles of presynaptic nerve terminals are present at high concentration in the posterior pituitary. We have now investigated the subcellular localization of such proteins. By immunogold electron microscopy carried out on bovine neurohypophysis we have found that three of these proteins, synapsin I, Protein III, and synaptophysin (protein p38) were concentrated on microvesicles but were not detectable in the membranes of neurosecretory granules. In addition, we have studied the distribution of the same proteins and of the synaptic vesicle protein p65 in subcellular fractions of bovine posterior pituitaries obtained by sucrose density centrifugation. We have found that the intrinsic membrane proteins synaptophysin and p65 had an identical distribution and were restricted to low density fractions of the gradient which contained numerous clear microvesicles with a size range the same as that of small synaptic vesicles. The peripheral membrane proteins synapsin I and Protein III exhibited a broader distribution extending into the denser part of the gradient. However, the amount of these proteins clearly declined in the fractions preceding the peak of neurosecretory granules. Our results suggest that microvesicles of the neurohypophysis are biochemically related to small synaptic vesicles of all other nerve terminals and argue against the hypothesis that such vesicles represent an endocytic byproduct of exocytosis of neurosecretory granules.  相似文献   

8.
The presynaptic proteome controls neurotransmitter release and the short and long term structural and functional dynamics of the nerve terminal. Using a monoclonal antibody against synaptic vesicle protein 2 we immunopurified a presynaptic compartment containing the active zone with synaptic vesicles docked to the presynaptic plasma membrane as well as elements of the presynaptic cytomatrix. Individual protein bands separated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis were subjected to nanoscale-liquid chromatography electrospray ionization-tandem mass spectrometry. Combining this method with 2-dimensional benzyldimethyl- n -hexadecylammonium chloride/sodium dodecyl sulfate-polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization time of flight and immunodetection we identified 240 proteins comprising synaptic vesicle proteins, components of the presynaptic fusion and retrieval machinery, proteins involved in intracellular signal transduction, a large variety of adhesion molecules and proteins potentially involved in regulating the functional and structural dynamics of the pre-synapse. Four maxi-channels, three isoforms of voltage-dependent anion channels and the tweety homolog 1 were co-isolated with the docked synaptic vesicles. As revealed by in situ hybridization, tweety homolog 1 reveals a distinct expression pattern in the rodent brain. Our results add novel information to the proteome of the presynaptic active zone and suggest that in particular proteins potentially involved in the short and long term structural modulation of the mature presynaptic compartment deserve further detailed analysis.  相似文献   

9.
10.
Plastic reorganization of the vestibular-thalamic system was studied in adult cats. It was shown, that preliminary (3 months before) injury of the cerebellar contralateral nucleus interpositus or lateral vestibular nucleus of Deiters leads to reorganization of vestibular-thalamic projections. Ipsilateral projections to the ventrolateral nucleus of thalamus arised from vestibular nuclear complex since the pattern of normal representations to mentioned thalamic nucleus were changed. The peculiarities of distribution and morphological structure of vestibular neurons forming new projections to the ventrolateral thalamic nucleus were studied as well.  相似文献   

11.
A serine/threonine kinase SAD-1 in C. elegans regulates synapse development. We report here the isolation and characterization of mammalian orthologs of SAD-1, named SAD-A and SAD-B, which are specifically expressed in the brain. SAD-B is associated with synaptic vesicles and, like the active zone proteins CAST and Bassoon, is tightly associated with the presynaptic cytomatrix in nerve terminals. A short conserved region (SCR) in the COOH-terminus is required for the synaptic localization of SAD-B. Overexpression of SAD-B in cultured rat hippocampal neurons significantly increases the frequency of miniature excitatory postsynaptic current but not its amplitude. Introduction of SCR into presynaptic superior cervical ganglion neurons in culture significantly inhibits evoked synaptic transmission. Moreover, SCR decreases the size of the readily releasable pool measured by applying hypertonic sucrose. Furthermore, SAD-B phosphorylates the active zone protein RIM1 but not Munc13-1. These results suggest that mammalian SAD kinase presynaptically regulates neurotransmitter release.  相似文献   

12.
Abstract: The cerebellar levels of Protein I, a synapse-specific neuronal phosphoprotein, have been investigated in the cerebellar mouse mutants staggerer ( sg ), weaver ( wv ), nervous ( nr ), and Purkinje cell degeneration ( pcd ). The Protein I concentration was reduced by about 66% in sg and wv mutants, representing a 90% loss of Protein I per cerebellum. A heterozygote effect was observed in the wv mutant. These results indicate that a great majority of Protein I in the normal cerebellum may be present in the granule cells. in nr mutants the cerebellar Protein I concentration was reduced by only 12% in 62-day-old mice, suggesting that Purkinje cells contribute little to cerebellar Protein I. However, a greater reduction was observed in pcd mutants, which may reflect on the nature of the pcd mutation.  相似文献   

13.
14.
15.
The effects of Mg-ATP, EGTA, EDTA and dicyclohexylcarbodiimide on the changes in the intensity of light scattering were studied in rat brain synaptic vesicles (SV) suspended in saccharose-buffer medium. Specific interactions between SV and isolated synaptic junctional complex were observed in the presence of Mg-ATP and calmodulin. An in vitro model of exocytosis is discussed.  相似文献   

16.
The receptor mechanism mediating the avoidance behaviour of flying noctuid moths in response to brief ultrasonic pulses may require only a single pair of acoustic sense cells, one A1 cell in each tympanic organ (Roeder, 1966c). Introduction of the fluorescent dye, procion yellow, into the nerve fibres leaving the tympanic organ has allowed the reconstruction of the central morphology of A1, the more sensitive of the two acoustic cells. The A1 axon follows a superficial course for the first ~100 μ auterior to its dorsal root of entry (3N1) into the thoracic ganglia, then plunges ventrally into the posterior mesothoracic neuropil where it branches. The posterior part reaches through two-thirds of the metathoracic ganglion. The anterior branch bifurcates in the anterior mesothoracic ganglion to give rise to a posteriorly directed branch extending through the ventral mesothoracic neuropil and an anterior branch which passes through the connective into the posterior half of the prothoracic ganglion. Here it ramifies along the midline. The cell remains strictly ipsi-lateral with numerous processes extending right up to the midline in the ventral neuropil of all three ganglia. This morphology correlates well with the map of sites from which A1 acoustic responses can be recorded in the central nervous system.  相似文献   

17.
18.
Role of beta-catenin in synaptic vesicle localization and presynaptic assembly   总被引:12,自引:0,他引:12  
Cadherins and catenins are thought to promote adhesion between pre and postsynaptic elements in the brain. Here we show a role for beta-catenin in localizing the reserved pool of vesicles at presynaptic sites. Deletion of beta-catenin in hippocampal pyramidal neurons in vivo resulted in a reduction in the number of reserved pool vesicles per synapse and an impaired response to prolonged repetitive stimulation. This corresponded to a dispersion of vesicles along the axon in cultured neurons. Interestingly, these effects are not due to beta-catenin's involvement in cadherin-mediated adhesion or wnt signaling. Instead, beta-catenin modulates vesicle localization via its PDZ binding domain to recruit PDZ proteins such as Veli to cadherin at synapses. This study defines a specific role for cadherins and catenins in synapse organization beyond their roles in mediating cell adhesion.  相似文献   

19.
The adult mammalian central nervous system has a limited ability to establish new connections and to recover from traumatic or degenerative events. The olivo-cerebellar network represents an excellent model to investigate neuroprotection and repair in the brain during adulthood, due to its high plasticity and ordered synaptic organization. To shed light on the molecular mechanisms involved in these events, we focused on the growth-associated protein GAP-43 (also known as B-50 or neuromodulin). During development, this protein plays a crucial role in growth and in branch formation of neurites, while in the adult it is only expressed in a few brain regions, including the inferior olive (IO) where climbing fibres (CFs) originate. Following axotomy GAP-43 is usually up-regulated in association with regeneration. Here we describe an in vivo lentiviral-mediated gene silencing approach, used for the first time in the olivo-cerebellar system, to efficiently and specifically downregulate GAP-43 in rodents CFs. We show that lack of GAP-43 causes an atrophy of the CF in non-traumatic conditions, consisting in a decrease of its length, branching and number of synaptic boutons. We also investigated CF regenerative ability by inducing a subtotal lesion of the IO. Noteworthy, surviving CFs lacking GAP-43 were largely unable to sprout on surrounding Purkinje cells. Collectively, our results demonstrate that GAP-43 is essential both to maintain CFs structure in non-traumatic condition and to promote sprouting after partial lesion of the IO.  相似文献   

20.
Summary A method for demonstration of electron-dense particles within clear synaptic vesicles from various areas of the CNS as well as from neuromuscular junctions of rat is described. Electron-dense granules of 70–250 Å were visible in the center of the synaptic vesicles, or in some cases excentrically situated and bound to the vesicular membrane. Digestion with proteolytic enzymes lead to a negative reaction, whereas treatment with hyaluronidase and neuraminidase, as well as the lipid extraction had no effect. Based on the obtained data, it may be assumed that this method manifests the proteinaceous structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号