首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SUMMARY. 1. The exchange of phosphorus between the epilimnetic (shallow zone) sediment and water column in Lough Ennell was investigated in laboratory experiments using five intact cores.
2. Variations in water mixing, sediment suspension and aerobic–anaerobic oxygen status in the water column and its effects on sediment phosphorus release rates were determined.
3. Experimental results indicated that phosphorus release is possible under both aerobic and anaerobic conditions. Aerobic release (0.025 mg P l−1 over 5 days) was possible up to the point when mass resuspension of sediment occurred. Anaerobic release for the same period and mixing conditions was 0.183 mg Pl−1.
4. The release rate under aerobic conditions at 10°C equates to an internal areal loading of 0.134 g P m−2 yr−1, which is approximately 17% and 30% of the average total phosphorus and orthophosphate loadings respectively for the period 1974–79.
5. The results clearly implicate aerobic inorganic phosphorus release from the epilimnetic sediments as a significant source of this nutrient to the overlying water column and is likely a major factor in the continuing eutrophic status in the lake.  相似文献   

2.
1. Bracken ( Pteridium aquilinum ) is an important fern with a global distribution. Little is known of the response of this species to elevated CO2. We investigated the effects of high CO2 (570 compared with 370 μmol mol–1) with and without an increased nutrient supply (a combined N, P, K application) on the growth and physiology of bracken, growing in containers in controlled-environment glasshouses, over two full growing seasons. Results of growth and physiology determinations are reported for the second season.
2. Elevated CO2 had little impact on the growth or allocation of dry mass in bracken. No significant changes were detected in dry mass of the total plant or any of the organs: rhizomes, roots and fronds. In contrast to the small effects of high CO2, the high nutrient treatment caused a three-fold stimulation of total plant dry mass and an increase in the allocation of dry mass to above ground when compared with low nutrient controls.
3. Net photosynthetic rates in saturating light were increased by both high CO2 and nutrient treatments, particularly in spring months (May and June). Growth in elevated CO2 did not cause a down-regulation in light-saturated rates of photosynthesis. The increased carbon gain in the high CO2 treatments was accompanied, in the low-nutrient plants, by higher concentrations of carbohydrates. However, in high-nutrient plants the CO2 treatment did not cause an accumulation of carbohydrates. The absence of a growth response to elevated CO2 in bracken despite significant increases in photosynthesis requires further investigation.  相似文献   

3.
1. A 1-year intensive study of nutrient flows in Airthrey Loch, central Scotland, a small eutrophic [mean total phosphorus (TP) = 61.1 μg P l–1] well-flushed freshwater body (area, 6.9 ha; mean depth, 1.85 m; volume, 1.274 × 105 m3; retention time, 0.44 yr), was undertaken.
2. The nutrient budget was dominated by large allochthonous P inputs, equivalent to an areal load to the loch of 8.56 kg P ha–1 yr–1, which occurred predominantly during winter. In the summer, when TP inputs were low, water column levels of TP still increased, as a result of aerobic P release from sediments.
3. Sorption experiments indicated potential for sediment P release at water P concentrations of up to 200 μg P l–1.
4. Aerobic release rate of P from sediments to the water column of Airthrey Loch was estimated to be of the order of 1 mg P m–2 day–1, and occurred during periods of elevated water column pH.
5. Straw bales placed in the loch to retard algal blooms were found not to have any demonstrable impact on algal concentrations observed during the study.  相似文献   

4.
1. A 1-year intensive study of nutrient flows in Airthrey Loch, central Scotland, a small eutrophic [mean total phosphorus (TP) = 61.1 μg P l–1] well-flushed freshwater body (area, 6.9 ha; mean depth, 1.85 m; volume, 1.274 × 105 m3; retention time, 0.44 yr), was undertaken.
2. The nutrient budget was dominated by large allochthonous P inputs, equivalent to an areal load to the loch of 8.56 kg P ha–1 yr–1, which occurred predominantly during winter. In the summer, when TP inputs were low, water column levels of TP still increased, as a result of aerobic P release from sediments.
3. Sorption experiments indicated potential for sediment P release at water P concentrations of up to 200 μg P l–1.
4. Aerobic release rate of P from sediments to the water column of Airthrey Loch was estimated to be of the order of 1 mg P m–2 day–1, and occurred during periods of elevated water column pH.
5. Straw bales placed in the loch to retard algal blooms were found not to have any demonstrable impact on algal concentrations observed during the study.  相似文献   

5.
Enormous quantities of the free-floating freshwater fern Azolla grew and reproduced in situ in the Arctic Ocean during the middle Eocene, as was demonstrated by microscopic analysis of microlaminated sediments recovered from the Lomonosov Ridge during Integrated Ocean Drilling Program (IODP) Expedition 302. The timing of the Azolla phase (~48.5 Ma) coincides with the earliest signs of onset of the transition from a greenhouse towards the modern icehouse Earth. The sustained growth of Azolla , currently ranking among the fastest growing plants on Earth, in a major anoxic oceanic basin may have contributed to decreasing atmospheric p CO2 levels via burial of Azolla -derived organic matter. The consequences of these enormous Azolla blooms for regional and global nutrient and carbon cycles are still largely unknown. Cultivation experiments have been set up to investigate the influence of elevated p CO2 on Azolla growth, showing a marked increase in Azolla productivity under elevated (760 and 1910 ppm) p CO2 conditions. The combined results of organic carbon, sulphur, nitrogen content and 15N and 13C measurements of sediments from the Azolla interval illustrate the potential contribution of nitrogen fixation in a euxinic stratified Eocene Arctic. Flux calculations were used to quantitatively reconstruct the potential storage of carbon (0.9–3.5 1018 gC) in the Arctic during the Azolla interval. It is estimated that storing 0.9 1018 to 3.5 1018 g carbon would result in a 55 to 470 ppm drawdown of p CO2 under Eocene conditions, indicating that the Arctic Azolla blooms may have had a significant effect on global atmospheric p CO2 levels through enhanced burial of organic matter.  相似文献   

6.
1. Ten herbaceous species were grown over a 4-month period under ambient (360 μmol mol–1) and elevated (610 μmol mol–1) atmospheric CO2 conditions. Plants were inoculated with the arbuscular mycorrhizal (AM) fungus Glomus mosseae and given a phosphorus (P) supply which was not immediately available to the plants.
2. Multiple harvests were taken in order to determine whether the effect of elevated CO2 on mycorrhizal colonization and phosphorus inflow was independent of its effect on plant growth.
3. All species grew faster under elevated CO2 and carbon partitioning was altered, generally in favour of the shoots. All species responded similarly to elevated CO2.
4. Elevated CO2 did not affect the percentage of root length colonized by AM fungi, but the total amount of colonized root length was increased, because the plants were bigger.
5. Elevated CO2 increased total P content, but had little or no effect on P concentration. At a given age, P inflow was stimulated by elevated CO2, but when root length was taken into account the CO2 effect disappeared.
6. In these host species there is no evidence for a direct effect of elevated CO2 on mycorrhizal functioning, because both internal mycorrhizal colonization and P inflow are unaffected.
7. Future research should concentrate on the potential for carbon flow to the soil via the external mycelial network.  相似文献   

7.
SUMMARY. 1. Quantitative observations on suspended bacteria, epiphytic bacteria and submerged vegetation, in a calcareous headstream in North Humberside, were made at regular intervals from January to June 1984.
2. Downstream increase in concentration of suspended bacteria was observed along a 135 m richly-vegetated section but not over a 150 m vegetation-free section, hence there was measurable drift loss of bacteria only from within the vegetated section.
3. The total number of epiphytic bacteria within the vegetated section was estimated from the density of epiphytic bacteria per unit dry weight of submerged vegetation and the total dry weight of submerged vegetation.
4. The total number of epiphytic baeteria within the vegetated section decreased frtim 2.5 × 1015 in January to 0.8 × l015 March before increasing to 4.7 × 1015 by June. This pattern was related to deerease and subsequent increase in density of epiphytic bacteria per unit dry weight of vegetation. The total dry weight of submerged vegetation inereased throughout the study period.
5. The daily drift loss of bacteria from the vegetated section averaged 53% (range 9–132%) of the total epiphytic bacteria, a loss rate which might reasonably be supported by the epiphyte population.
6. The dimensions and volume of suspended bacteria increased, between the source and the downstream limit of the vegetated section, to resemble those of epiphytic bacteria.
7. The results suggested that released epiphytic bacteria might largely be the source of suspended bacteria in this headstream.  相似文献   

8.
1. The photosynthetic response to elevated CO2 and nutrient stress was investigated in Agrostis capillaris, Lolium perenne and Trifolium repens grown in an open-top chamber facility for 2 years under two nutrient regimes. Acclimation was evaluated by measuring the response of light-saturated photosynthesis to changes in the substomatal CO2 concentration.
2. Growth at elevated CO2 resulted in reductions in apparent Rubisco activity in vivo in all three species, which were associated with reductions of total leaf nitrogen content on a unit area basis for A. capillaris and L. perenne . Despite this acclimation, photosynthesis was significantly higher at elevated CO2 for T. repens and A. capillaris , the latter exhibiting the greatest increase of carbon uptake at the lowest nutrient supply.
3. The photosynthetic nitrogen-use efficiency (the rate of carbon assimilation per unit leaf nitrogen) increased at elevated CO2, not purely owing to higher values of photosynthesis at elevated CO2, but also as a result of lower leaf nitrogen contents.
4. Contrary to most previous studies, this investigation indicates that elevated CO2 can stimulate photosynthesis under a severely limited nutrient supply. Changes in photosynthetic nitrogen-use efficiency may be a critical determinant of competition within low nutrient ecosystems and low input agricultural systems.  相似文献   

9.
Seeds of cherry ( Prunus avium ) were germinated and grown for two growing seasons in ambient (∼350 μmol mol−1) or elevated (ambient+∼350 μmol mol−1) CO2 mole fractions in six open-top chambers. The seedlings were fertilized once a week, following Ingestad principles in order to supply mineral nutrients at free-access rates. In the first growing season gradual drought was imposed on rapidly growing cherry seedlings by withholding water for a 6-wk drying cycle. In the second growing season, the rapid onset of drought was imposed at the height of the growing season on the seedlings which had already experienced drought in the first growing season. Elevated [CO2] significantly increased total dry-mass production in both water regimes, but did not ameliorate the growth response to drought of the cherry seedlings subjected to two sequential drying cycles. Water loss did not differ in either well watered or droughted seedlings between elevated and ambient [CO2]; consequently whole-plant water- use efficiency (the ratio of total dry mass produced to total water consumption) was significantly increased. Similar patterns of carbon allocation between shoot and root were found in elevated and ambient [CO2] when the seedlings were the same size. Thus, elevated [CO2] did not improve drought tolerance, but it accelerated ontogenetic development irrespective of water status.  相似文献   

10.
1. We grew the submersed freshwater macrophyte Vallisneria americana under controlled conditions at low and high [CO2] to produce litter with high and low tissue nitrogen concentration ([N]), respectively. We then followed mass and nitrogen dynamics in situ in this litter to test the indirect effect of [CO2] on its subsequent decomposition and colonisation by macroinvertebrates.
2. Litter from plants grown in high CO2 initially lost mass and N at a significantly lower rate but, by day 30, both litter types had lost about 90% of mass and N. Litter [N] did not appear to govern decay rate.
3. There was no effect of CO2 on the pattern of macroinvertebrate colonisation.
4. The potential exists for high [CO2] to increase rates of C and N cycling and, thereby, to increase internal N loading in macrophyte-dominated shallow water ecosystems.  相似文献   

11.
SUMMARY 1. Pelagic and epipelic microalgal production were measured over a year in a pre-defined area (depth 0.5 m) in each of two lakes, one turbid and one with clear water. Further estimates of epiphytic production within reed stands were obtained by measuring production of periphyton developed on artificial substrata.
2. Total annual production of phytoplankton and epipelon was 34% greater in the turbid lake (190 g C m−2 year−1) than in the clearwater lake (141 g C m−2 year−1). However, the ratio of total production to mean water column TP concentration was two fold greater in the clearwater lake.
3. Phytoplankton accounted for the majority of the annual production (96%) in the turbid lake, while epipelic microalgal production dominated (77%) in the clear lake. The relative contribution of epipelic algae varied over the year, however, and in the turbid lake was higher in winter (11–25%), when the water was relatively clear, than during summer (0.7–1.7%), when the water was more turbid. In the clearwater lake, the relative contribution of epipelon was high both in winter, when the water was most clear, and in mid-summer, when phytoplankton production was constrained either by nutrients or grazing.
4. Compared with pelagic and epipelic primary production, epiphytic production within a reed stand was low and did not vary significantly between the lakes.
5. The study supports the theory of a competitive and compensatory trade-off between primary producers in lakes with contrasting nutrient concentrations, resulting in relatively small differences in overall production between clear and turbid lakes when integrating over the season and over different habitats.  相似文献   

12.
1. Echinochloa polystachya forms extensive monotypic stands on the lower levels of the Amazon floodplains. During its annual growth cycle c. 100t (dry mass) ha–1 of biomass is formed as the floodplain is being submerged (December–September) and a phase of death and decomposition occurs when the water has retreated (October–November). This study examines the mineral nutrient dynamics of this plant and its potential significance to the nutrient status of the floodplain.
2. Echinochloa polystachya was sampled monthly from a study site in the central Amazon. N, P and K contents for different plant organs were determined and net uptake calculated from concurrent measurements of dry matter production and turnover.
3. Leaf N, P and K contents were c. 20, 1·7 and 19gkg–1, values typical of nutrient-replete stands of C4 plants. Stem concentrations were c. 12% of those of the leaves. Net N and P uptake followed the rise in the river level, whilst K appeared independent of water level.
4. The vegetation accumulated 377, 51 and 1136kgha–2 of N, P and K, respectively, during the growth phase. Over a possible 5000km2 of these stands in the Várzea, this represents a massive sequestration of nutrients in the flood phase and a high release during the following low-water period. It is suggested that the E. polystachya stands could have a role in maintaining the nutrient status of the Amazon floodplain.  相似文献   

13.
A poplar short rotation coppice (SRC) grown for the production of bioenergy can combine carbon (C) storage with fossil fuel substitution. Here, we summarize the responses of a poplar ( Populus ) plantation to 6 yr of free air CO2 enrichment (POP/EUROFACE consisting of two rotation cycles). We show that a poplar plantation growing in nonlimiting light, nutrient and water conditions will significantly increase its productivity in elevated CO2 concentrations ([CO2]). Increased biomass yield resulted from an early growth enhancement and photosynthesis did not acclimate to elevated [CO2]. Sufficient nutrient availability, increased nitrogen use efficiency (NUE) and the large sink capacity of poplars contributed to the sustained increase in C uptake over 6 yr. Additional C taken up in high [CO2] was mainly invested into woody biomass pools. Coppicing increased yield by 66% and partly shifted the extra C uptake in elevated [CO2] to above-ground pools, as fine root biomass declined and its [CO2] stimulation disappeared. Mineral soil C increased equally in ambient and elevated [CO2] during the 6 yr experiment. However, elevated [CO2] increased the stabilization of C in the mineral soil. Increased productivity of a poplar SRC in elevated [CO2] may allow shorter rotation cycles, enhancing the viability of SRC for biofuel production.  相似文献   

14.
1. Four Lotus corniculatus genotypes differing in cyanoglycoside and condensed tannin concentrations were grown in either low (350 ppm) or high (700 ppm) atmospheric CO2 environments. Larval performance, consumption and conversion efficiency of Polyommatus icarus feeding on this plant material were measured.
2. Plants grown under elevated CO2 contained less cyanoglycosides, more condensed tannins and more starch than control plants. However, water concentration, nitrogen and protein as well as nitrogen concentration in relation to carbon concentration did not differ between CO2 treatments.
3. The four genotypes differed significantly in condensed tannins, cyanoglucoside, leaf water and leaf nitrogen but no genotype–CO2 interaction was detected, except for total phenolics and condensed tannins in which two plant genotypes showed stronger increases under elevated CO2 than the other two.
4. Larvae of P . icarus consumed more plant material and used and converted it more efficiently from plants grown at high atmospheric CO2.
5. Larvae developed significantly faster and were significantly heavier when fed plant material grown under elevated CO2. The observed difference in mass disappeared in the pupal and adult stages. However, lipid concentration of adults from the elevated CO2 treatment was marginally significantly higher than of controls.
6. It is concluded that the higher carbohydrate concentration of L . corniculatus plants grown at elevated CO2 renders leaves more suitable and better digestible to P . icarus . Furthermore, differences in allelochemicals might influence the palatability of L . corniculatus leaves for this specialist on Fabaceae.  相似文献   

15.
1. The palatability of aquatic macrophytes to the snail Lymnaea stagnalis was investigated in the laboratory. Eight species of macrophyte were selected from habitats that differed in either flood disturbance regime or nutrient status.
2. In a non-choice test, single macrophyte species were offered to individual snails. The average amount of plant dry mass consumed per Lymnaea dry mass ranged from 3.6 ± 1.4 (±SE) to 63.6 ± 13.9 mg g–1 day–1 across plant species. In a choice test, all eight plant species were presented simultaneously to sets of five snails. The average total consumption was 66.1 ± 3.8 mg g–1 day–1 and the maximum average consumption for a single plant was 26.2 ± 3.6 mg g–1 day–1.
3. In both tests, the amount consumed by snails differed significantly between the plant species. The species growing in undisturbed habitats were the least consumed. Habitat nutrient status was unrelated to plant palatability.
4. These results suggest that macrophyte species growing in habitats that are rarely disturbed by floods allocate a greater proportion of their resources to resisting herbivory.  相似文献   

16.
Aims:  To identify if culture conditions affect the chemical composition of exopolysaccharide (EPS) produced by Aureobasidium pullulans .
Methods and Results:  In batch airlift and continuously stirred tank (CSTR) reactors the EPS produced with low (0·13 g l−1 N) initial NaNO3 or (NH4)2SO4 levels contained pullulan, with maltotriose as its major component, similar to that synthesized in the airlift reactor with high (0·78 g l−1 N) initial NaNO3 levels. EPS produced by CSTR grown cultures with high (NH4)2SO4 levels contained little pullulan, possibly because of a population shift from unicells to mycelium. This chemical difference may explain why total EPS yields did not fall as they did with cultures grown under identical conditions with high NaNO3 levels, where the pullulan component of the EPS disappeared. EPS synthesized in N-limiting chemostat cultures of A. pullulans changed little with growth rate or N source, being predominantly pullulan consisting of maltotriose units.
Conclusions:  While the EPS chemical composition changed little under N-limiting conditions, high initial medium N levels determined maltotriose content and/or pullulan content possibly by dictating culture morphology.
Significance and Impact of the Study:  These results emphasize the requirement of all studies to determine EPS chemical composition when examining the influence of culture conditions on EPS yields.  相似文献   

17.
1. The relative contribution of roots and leaves to nutrient uptake by submerged stream macrophytes was tested in experiments where plants were grown in an outdoor flow-channel system. Water was supplied from a nutrient-rich stream with inorganic nitrogen and phosphorus concentrations typical of Danish streams.
2. Four submerged macrophyte species were tested, Elodea canadensis , Callitriche cophocarpa , Ranunculus aquatilis and Potamogeton crispus, and all species were able to satisfy their demand for mineral nutrients by leaf nutrient uptake alone. This was evident from manipulative experiments showing that removal of the roots had no negative impact on the relative growth rate of the plants. Further, the organic N and P concentrations of the plant tissue was constant with time for the de-rooted plants.
3. Enrichment of water and/or sediment had no effect on the relative growth rate of two species, E. canadensis and C. cophocarpa , indicating that in situ nutrient availability was sufficient to cover the needs for growth. Despite the lack of a response in growth rate, a reduced root/shoot biomass ratio was observed with nutrient enrichment of water and/or sediment, and an increased tissue-P concentration in response to open-water enrichment.
4. The open-water nutrient concentrations of the stream in which the experiments were performed are in the upper part of the range found for Danish farmland streams (the majority of Danish streams). Still, however, the negligible effect of nutrient enrichment on the growth of submerged macrophytes observed suggests that mineral nutrient availability might play a minor role in controlling macrophyte growth in most Danish streams.  相似文献   

18.
In laboratory experiments, the growth characteristics of the submerged species Elodea nuttallii (Planch.) St. John and Potamogeton crispus L. were assessed in the presence and absence of floating mats of Azolla filiculoides Lam. and Lemna minuta Kunth. Light penetration and the development of pH and dissolved oxygen differences were monitored. The growth of P. crispus was suppressed much more than that of E. nuttallii and the effects of A. filiculoides were more severe than those of L. minuta. Findings are related to possible field responses of submerged plants under floating mats, especially their abilities to compensate for the potential suppressive effects of floating mats under natural conditions.  相似文献   

19.
1. We tested the hypothesis that the net partitioning of dry mass and dry mass:area relationships is unaltered when plants are grown at elevated atmospheric CO2 concentrations.
2. The total dry mass of Dactylis glomerata, Bellis perennis and Trifolium repens was higher for plants in 700 compared to 350 μmol CO2 mol–1 when grown hydroponically in controlled-environment cabinets.
3. Shoot:root ratios were higher and leaf area ratios and specific leaf areas lower in all species grown at elevated CO2. Leaf mass ratio was higher in plants of B. perennis and D. glomerata grown at elevated CO2.
4. Whilst these data suggest that CO2 alters the net partitioning of dry mass and dry mass:leaf area relationships, allometric comparisons of the components of dry mass and leaf area suggest at most a small effect of CO2. CO2 changed only two of a total of 12 allometric coefficients we calculated for the three species: ν relating shoot to root dry mass was higher in D. glomerata , whilst ν relating leaf area to total dry mass was lower in T. repens .
5. CO2 alone has very little effect on partitioning when the size of the plant is taken into account.  相似文献   

20.
The effect of long-term exposure to different inorganic carbon, nutrient and light regimes on CAM activity and photosynthetic performance in the submerged aquatic plant, Littorella uniflora (L.) Aschers was investigated. The potential CAM activity of Littorella was highly plastic and was reduced upon exposure to low light intensities (43 μmol m−2 s−1), high CO2 concentrations (5.5 mM, pH 6.0) or low levels of inorganic nutrients, which caused a 25–80% decline in the potential maximum CAM activity relative to the activity in the control experiments (light: 450 μmol m−2 s−1; free CO2: 1.5 mM). The CAM activity was regulated more by light than by CO2, while nutrient levels only affected the activity to a minor extent. The minor effect of low nutrient regimes may be due to a general adaptation of isoetid species to low nutrient levels.
The photosynthetic capacity and CO2 affinity was unaffected or increased by exposure to low CO2, irrespective of nutrient levels. High CO2, low nutrient and low light, however, reduced the capacity by 22–40% and the CO2 affinity by 35-45%, relative to control.
The parallel effect of growth conditions on CAM activity and photosynthetic performance of Littorella suggest that light and dark carbon assimilation are interrelated and constitute an integrated part of the carbon assimilation physiology of the plant. The results are consistent with the hypothesis that CAM is a carbon-conserving mechanism in certain aquatic plants. The investment in the CAM enzyme system is beneficial to the plants during growth at high light and low CO2 conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号