首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Zeng S  Gong Z 《Gene》2002,294(1-2):45-53
In the present study, two gonad cDNA libraries from zebrafish testes and ovaries were constructed and a total of 1025 expressed sequence tag (EST) clones were generated from the two libraries: 501 from the testis library and 524 from the ovary library. A total of 641 of the EST clones were identified to share significant sequence identity with known sequences in GenBank, representing at least 478 different zebrafish genes. In order to understand the molecular compositions of the two gonad organs, the expression profiles of the identified clones in these two gonad cDNA libraries were analyzed. Both gonad libraries have a higher portion of clones for nuclear proteins and a lower portion for proteins in translational machinery, cytoskeleton and mitochondria than our previously characterized whole-adult cDNA library. Most abundant cDNA clones in the two gonad libraries were identified and over 10% of ovary clones were found to encode egg membrane proteins (zona pellucida or ZP proteins). Furthermore, the testis library showed a more even distribution of cDNA clones with relatively fewer abundant clones that tend to contribute redundant clones in EST projects; thus, the testis library can supply more unique and novel cDNA sequences in a zebrafish EST project. Another aim of this study is to identify cDNA clones that can be used as molecular markers for the analysis of the gonad development in zebrafish. Eleven potential clones were selected to analyze their expression patterns by Northern blot hybridization. Most of them showed a specific or predominant expression in the expected testis or ovary tissue. At last, four of the clones were found, by section in situ hybridization, to be expressed specifically in the germ cells of the testis or ovary and thus they are suitable molecular markers for analyses of spermatogenesis and oogenesis.  相似文献   

2.
Kwon HJ  Akimoto H  Ohmiya Y  Honma K  Yasuda K 《Gene》2008,424(1-2):147-152
Although the rabbit is commonly used as an animal model for the in vivo study of cartilage formation or regeneration, genetic approaches to the rabbit cartilage are rare. We constructed an expressed sequence tag (EST) library from rabbit cartilage tissue for the first time to establish the foundations for genetic study on rabbit cartilage. From our results, we identified 2387 unique genes among 4885 clones, corresponding to 1839 matched to characterized genes including 1618 genes with known function and 548 uncharacterized and novel genes. Gene expression profiles based on EST frequency show that type II collagen (COL2A1) and type X collagen (COL10A1) among collagen clones, proteoglycan 4 (PRG4) and decorin (DCN) among proteoglycan clones, and cartilage oligomeric matrix protein (COMP) and matrix Gla protein (MGP) among other extracellular matrix clones, are highly expressed in rabbit cartilage. In addition, gene expression analysis based on real-time PCR of these major extracellular matrix constituents showed that expression of col2a1 and col10a1 remains constant whereas the expression of prg4, dcn, and comp reveals substantial change with rabbit age. This EST library will provide a valuable resource with which to identify genes involved in the biochemical and physiological functions of rabbit cartilage, and will contribute to establishing the rabbit as an animal model for cartilage research.  相似文献   

3.
Ascidians are primitive chordates. Their fertilized egg develops quickly into a tadpole-type larva, which consists of a small number but distinct types of cells, including those of epidermis, central nervous system with two sensory organs, endoderm and mesenchyme in the trunk, and notochord and muscle in the tail. This configuration of the ascidian tadpole is thought to represent the most simplified and primitive chordate body plan. In addition, the free-swimming and non-feeding larvae metamorphose into sessile and filter-feeding adults. The genome size of Ciona intestinalis is estimated to be about 160 Mb, and the number of genes approximately 15,500. The present Ciona cDNA projects focused on gene expression profiles of fertilized eggs, 32-110-cell stage embryos, tailbud embryos, larvae, and young adults. Expressed sequence tags (ESTs) of the 5'-most end and 3'-most end of more than 3000 clones were determined at each developmental stage, and the clones were categorized into independent clusters using the 3'-end sequences. Nearly 1000 clusters of them were then analyzed in detail of their sequences against a BLASTX search. This analysis demonstrates that, on average, half of the clusters showed proteins with sequence similarities to known proteins and the other half did not show sequence similarities to known proteins. Genes with sequence similarities were further categorized into three major subclasses, depending on their functions. Furthermore, the expression profiles of all of the clusters were analyzed by whole-mount in situ hybridization. This analysis highlights gene expression patterns characteristic to each developmental stage. As a result, the present study provides many new molecular markers for each of the tissues and/or organs that constitutes the Ciona tailbud embryo. This sequence information will be used for further comparative genome studies to explore molecular mechanisms involved in the formation of one of the most primitive chordate body plans. All of the data fully characterized may be viewed at the web site http://ghost.zool.kyoto-u.ac.jp.  相似文献   

4.
5.
6.
7.
Intracellular symbiotic relationships are prevalent between cnidarians, such as corals and sea anemones, and the photosynthetic dinoflagellate symbionts. However, there is little understanding about how the genes express when the symbiotic relationship is set up. To characterize genes involved in this association, the endosymbiosis between sea anemone, Aiptasia pulchella, and dinoflagellate zooxanthellae, Symbiodinium spp., was employed as a model. Two complementary DNA (cDNA) libraries were constructed from RNA isolated from symbiotic and aposymbiotic A. pulchella. Using single-pass sequencing of cDNA clones, a total of 870 expressed sequence tags (ESTs) clones were generated from the two libraries: 474 from symbiotic animal and 396 from aposymbiotic animal. The initial ESTs consisted of 143 clusters and 231 singletons. A BLASTX search revealed that 147 unique genes had similarities with protein sequences available from databases; 120 of these clones were categorized according to their putative function. However, many ESTs could not assign functionally. The putative roles of some of the identified genes relative to endosymbiosis were discussed. This is the first report of the use of EST analysis to examine the gene expression in symbiotic and aposymbiotic states of the cnidarians. The systematic analysis of EST from this study provides a useful database for future investigations of the molecular mechanisms involved in algal-cnidarian symbiosis.  相似文献   

8.
This study investigates genes enriched for expression in the spermatheca, the long-term sperm storage organ (SSO) of female Drosophila. SSO genes are likely to play an important role in processes of sexual selection such as sperm competition and cryptic female choice. Although there is keen interest in the mechanisms of sexual selection at the molecular level, very little is known about the female genes that are involved. In the present study, a high proportion of genes enriched for expression in the spermatheca are evolving rapidly. Most of the rapidly evolving genes are proteases and genes of unknown function that could play a specialized role in the spermatheca. A high percentage of the rapidly evolving genes have secretion signals and thus could encode proteins that directly interact with ejaculate proteins and coevolve with them. In addition to identifying rapidly evolving genes, the present study documents categories of genes that could play a role in spermatheca function such as storing, maintaining, and utilizing sperm. In general, candidate genes discovered in this study could play a key role in sperm competition, cryptic female choice of sperm, and sexually antagonistic coevolution, and ultimately speciation.  相似文献   

9.
AutoSNP is a program to detect single nucleotide polymorphisms (SNPs) and insertion/deletion polymorphisms (indels) in expressed sequence tag (EST) data. The program uses d2cluster and cap3 to cluster and align EST sequences, and uses redundancy to differentiate between candidate SNPs and sequence errors. Candidate polymorphisms are identified as occurring in multiple reads within an alignment. For each candidate SNP, two measures of confidence are calculated, the redundancy of the polymorphism at a SNP locus and the co segregation of the candidate SNP with other SNPs in the alignment. AVAILABILITY: The program was written in PERL and is freely available to non-commercial users by request from the authors.  相似文献   

10.
Many computational methods have been used to predict novel non-coding RNAs (ncRNAs), but none, to our knowledge, have explicitly investigated the impact of integrating existing cDNA-based Expressed Sequence Tag (EST) data that flank structural RNA predictions. To determine whether flanking EST data can assist in microRNA (miRNA) prediction, we identified genomic sites encoding putative miRNAs by combining functional RNA predictions with flanking ESTs data in a model consistent with miRNAs undergoing cleavage during maturation. In both human and mouse genomes, we observed that the inclusion of flanking ESTs adjacent to and not overlapping predicted miRNAs significantly improved the performance of various methods of miRNA prediction, including direct high-throughput sequencing of small RNA libraries. We analyzed the expression of hundreds of miRNAs predicted to be expressed during myogenic differentiation using a customized microarray and identified several known and predicted myogenic miRNA hairpins. Our results indicate that integrating ESTs flanking structural RNA predictions improves the quality of cleaved miRNA predictions and suggest that this strategy can be used to predict other non-coding RNAs undergoing cleavage during maturation.  相似文献   

11.
We have developed a computer based method to identify candidate single nucleotide polymorphisms (SNPs) and small insertions/deletions from expressed sequence tag data. Using a redundancy-based approach, valid SNPs are distinguished from erroneous sequence by their representation multiple times in an alignment of sequence reads. A second measure of validity was also calculated based on the cosegregation of the SNP pattern between multiple SNP loci in an alignment. The utility of this method was demonstrated by applying it to 102,551 maize (Zea mays) expressed sequence tag sequences. A total of 14,832 candidate polymorphisms were identified with an SNP redundancy score of two or greater. Segregation of these SNPs with haplotype indicates that candidate SNPs with high redundancy and cosegregation confidence scores are likely to represent true SNPs. This was confirmed by validation of 264 candidate SNPs from 27 loci, with a range of redundancy and cosegregation scores, in four inbred maize lines. The SNP transition/transversion ratio and insertion/deletion size frequencies correspond to those observed by direct sequencing methods of SNP discovery and suggest that the majority of predicted SNPs and insertion/deletions identified using this approach represent true genetic variation in maize.  相似文献   

12.
MicroRNAs (miRNAs) are small non-coding RNA molecules that play a vital role in the regulation of gene expression. Despite their identification in hundreds of plant species, few miRNAs have been identified in the Asteraceae, a large family that comprises approximately one tenth of all flowering plants. In this study, we used the expressed sequence tag (EST) analysis to identify potential conserved miRNAs and their putative target genes in the Asteraceae. We applied quantitative Real-Time PCR (qRT-PCR) to confirm the expression of eight potential miRNAs in Carthamus tinctorius and Helianthus annuus. We also performed qRT-PCR analysis to investigate the differential expression pattern of five newly identified miRNAs during five different cotyledon growth stages in safflower. Using these methods, we successfully identified and characterized 151 potentially conserved miRNAs, belonging to 26 miRNA families, in 11 genus of Asteraceae. EST analysis predicted that the newly identified conserved Asteraceae miRNAs target 130 total protein-coding ESTs in sunflower and safflower, as well as 433 additional target genes in other plant species. We experimentally confirmed the existence of seven predicted miRNAs, (miR156, miR159, miR160, miR162, miR166, miR396, and miR398) in safflower and sunflower seedlings. We also observed that five out of eight miRNAs are differentially expressed during cotyledon development. Our results indicate that miRNAs may be involved in the regulation of gene expression during seed germination and the formation of the cotyledons in the Asteraceae. The findings of this study might ultimately help in the understanding of miRNA-mediated gene regulation in important crop species.  相似文献   

13.
Human bone marrow stromal cells (HBMSC) are pluripotent cells with the potential to differentiate into osteoblasts, chondrocytes, myelosupportive stroma, and marrow adipocytes. We used high-throughput DNA sequencing analysis to generate 4258 single-pass sequencing reactions (known as expressed sequence tags, or ESTs) obtained from the 5' (97) and 3' (4161) ends of human cDNA clones from a HBMSC cDNA library. Our goal was to obtain tag sequences from the maximum number of possible genes and to deposit them in the publicly accessible database for ESTs (dbEST of the National Center for Biotechnology Information). Comparisons of our EST sequencing data with nonredundant human mRNA and protein databases showed that the ESTs represent 1860 gene clusters. The EST sequencing data analysis showed 60 novel genes found only in this cDNA library after BLAST analysis against 3.0 million ESTs in NCBI's dbEST database. The BLAST search also showed the identified ESTs that have close homology to known genes, which suggests that these may be newly recognized members of known gene families. The gene expression profile of this cell type is revealed by analyzing both the frequency with which a message is encountered and the functional categorization of expressed sequences. Comparing an EST sequence with the human genomic sequence database enables assignment of an EST to a specific chromosomal region (a process called digital gene localization) and often enables immediate partial determination of intron/exon boundaries within the genomic structure. It is expected that high-throughput EST sequencing and data mining analysis will greatly promote our understanding of gene expression in these cells and of growth and development of the skeleton.  相似文献   

14.
15.
A comparative genetic and QTL mapping was performed between Quercus robur L. and Castanea sativa Mill., two major forest tree species belonging to the Fagaceae family. Oak EST-derived markers (STSs) were used to align the 12 linkage groups of the two species. Fifty-one and 45 STSs were mapped in oak and chestnut, respectively. These STSs, added to SSR markers previously mapped in both species, provided a total number of 55 orthologous molecular markers for comparative mapping within the Fagaceae family. Homeologous genomic regions identified between oak and chestnut allowed us to compare QTL positions for three important adaptive traits. Colocation of the QTL controlling the timing of bud burst was significant between the two species. However, conservation of QTL for height growth was not supported by statistical tests. No QTL for carbon isotope discrimination was conserved between the two species. Putative candidate genes for bud burst can be identified on the basis of colocations between EST-derived markers and QTL.  相似文献   

16.
The "5' end mRNA artifact" issue refers to the incorrect assignment of the first AUG codon in an mRNA, due to the incomplete determination of its 5' end sequence. We performed a systematic identification of coding regions at the 5' end of all human known mRNAs, using an automated expressed sequence tag (EST)-based approach. Following parsing of more than 7 million BLAT alignments, we found 477 human loci, out of 18,665 analyzed, in which an extension of the mRNA 5' coding region was identified. Proof-of-concept confirmation was obtained by in vitro cloning and sequencing for GNB2L1, QARS and TDP2 cDNAs, and the consequences for the functional studies of these loci are discussed. We also generated a list of 20,775 human mRNAs where the presence of an in-frame stop codon upstream of the known start codon indicates completeness of the coding sequence at 5' in the current form.  相似文献   

17.
18.
19.
Expressed sequence tag (EST) analysis of the diploid and triploid Paragonimus westermani genes was done to have a rapid and informative outlook of the gene-expression profiles of the parasites. Totals of 506 and 505 ESTs were generated from the diploid and triploid P. westermani cDNA libraries. Based on the BLASTx search results of the diploid P. westermani ESTs, 308 (60.9%) matched significantly with formerly identified genes and 198 (39.1%) showed no significant homology in the GenBank database. A similar homology pattern was shown from the triploid EST BLASTx search results with 346 (68.5%) sharing homology with previously identified genes and 159 (31.5%) showing no significant homology. The EST data from both libraries were analyzed and grouped into 9 categories. Comparison of the 2 EST pools revealed high similarities among the categories of the significantly matched genes. Single genes matched repeatedly were also observed in the 2 EST data. Some genes were found that are not yet characterized in P. westermani; these genes were matched by both the diploid and triploid ESTs. Further study of these genes may provide us with more understanding on the parasite's biology and their specific functions in the 2 strains.  相似文献   

20.
Glutathione reductase (GR) is a chemotherapeutic target. Murine GRcDNA, which contains 85% GC in the 38 codons following the start codon, was assembled from the PCR-amplified exon 1 and a downstream cDNA prior to expression in Escherichia coli as a His(6)-tagged protein. Recombinant GR, an FAD-containing homodimer, corresponds in its enzymic and spectral properties to GR isolated from murine Ehrlich ascites tumor cells. Another cDNA, representing GR with a mitochondrial targeting sequence, yielded two distinct enzymically active expression products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号