首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nodulation of Glycine max cv. Lambert and the nodulation-restricting plant introduction (PI) genotype PI 417566 by wild-type Bradyrhizobium japonicum USDA110 is regulated in a population-density-dependent manner. Nodulation on both plant genotypes was suppressed (inhibited) when plants received a high-density inoculum (10(9) cells/ml) of strain USDA110 grown in complex medium, and more nodules were produced on plants receiving a low-cell-density inoculum (10(5) cells/ml). Since cell-free supernatants from strain USDA110 grown to high cell density in complex medium decreased the expression of an nodY-lacZ fusion, this phenomenon was attributed to bradyoxetin-induced repression of nod gene expression. Inoculation of either the permissive soybean genotype (cv. Lambert) or PI 417566 with 10(9) cells/ml of the nodD2, nolA, nodW, and nwsB mutants of USDA110 enhanced nodulation (up to 24%) relative to that seen with inoculations done with 10(5) cells/ml of the mutants or the wild-type strain, indicating that these genes are involved in population-density-dependent nodulation of soybeans. In contrast, the number of nodules produced by an nodD1 mutant on either soybean genotype was less than those seen with the wild-type strain inoculated at a low inoculum density. The nodD2 mutant outcompeted B. japonicum strain USDA123 for nodulation of G. max cv. Lambert at a high or low inoculum density, and the results of root-tip-marking and time-to-nodulate studies indicated that the nolA and nodD2 mutants nodulated this soybean genotype faster than wild-type USDA110. Taken together, the results from these studies indicate that the nodD2 mutant of B. japonicum may be useful to enhance soybean nodulation at high inoculum densities and that NodD2 is a key repressor influencing host-controlled restriction of nodulation, density-dependent suppression of nodulation, perception of bradyoxetin, and competitiveness in the soybean-B. japonicum symbiosis.  相似文献   

2.
Genetic structure in field populations of Bradyrhizobium japonicum isolated in Poland was determined by using several complementary techniques. Of the 10 field sites examined, only 4 contained populations of indigenous B. japonicum strains. The Polish bradyrhizobia were divided into at least two major groups on the basis of protein profiles on polyacrylamide gels, serological reaction with polyclonal antisera, repetitive extragenic palindromic PCR fingerprints of genomic DNA, and Southern hybridization analyses with nif and nod gene probes. Serological analyses indicated that 87.5% of the Polish B. japonicum isolates tested were in serogroups 123 and 129, while seven (12.5%) of the isolates tested belonged to their own unique serogroup. These seven strains also could be grouped together on the basis of repetitive extragenic palindromic PCR fingerprints, protein profiles, and Southern hybridization analyses. Cluster analyses indicated that the seven serologically undefined isolates were genetically dissimilar from the majority of the Polish B. japonicum strains. Moreover, immuno-cross-adsorption studies indicated that although the Polish B. japonicum strains reacted with polyclonal antisera prepared against strain USDA123, the majority failed to react with serogroup 123- and 129-specific antisera, suggesting that Polish bradyrhizobia comprise a unique group of root nodule bacteria which have only a few antigens in common with strains USDA123 and USDA129. Nodulation studies indicated that members of the serologically distinct group were very competitive for nodulation of Glycine max cv. Nawiko. None of the Polish serogroup 123 or 129 isolates were restricted for nodulation by USDA123- and USDA129-restricting soybean plant introduction genotypes. Taken together, our results indicate that while genetically diverse B. japonicum strains were isolated from some Polish soils, the majority of field sites contained no soybean-nodulating bacteria. In addition, despite the lack of long-term soybean production in Poland, field populations of unique B. japonicum strains are present in some Polish soils and these strains are very competitive for nodulation of currently used Polish soybean varieties.  相似文献   

3.
The nodulation characteristics of wild-type Bradyrhizobium japonicum USDA 110 and mutant strain HS111 were examined. Mutant strain HS111 exhibits a delayed-nodulation phenotype, a result of its inability to initiate successful nodulation promptly following inoculation of the soybean root. Previously, we showed that the defect in initiation of infection leading to subsequent nodulation which is found in HS111 can be phenotypically reversed by pretreatment with soybean root exudate or soybean seed lectin. This effect is not seen after pretreatment with root exudates and lectins obtained from other plant species. Treatment of strain HS111 with as little as 10 soybean seed lectin molecules per bacterium (3.3 X 10 (-12) M) resulted in enhancement of nodule formation. Pretreatment of wild-type B. japonicum USDA 110 with soybean root exudate or seed lectin increased nodule numbers twofold on 6-week-old plants. Wild-type strain USDA 110 cells inoculated at 10(4) cells per seedling exhibited a delay in initiation of infection leading to subsequent nodulation. Wild-type cells pretreated in soybean root exudates or seed lectin did not exhibit a delay in nodulation at this cell concentration. Mutant strain HS111 pretreated in seed lectin for 0 or 1 h, followed by washing with the hapten D-galactose to remove the lectin, exhibited a delay in initiation of nodulation. Phenotypic reversal of the delayed-nodulation phenotype exhibited by strain HS111 was seen if incubation was continued for an additional 71 h in plant nutrient solution following 1 h of lectin pretreatment. Reversal of the delayed-nodulation phenotype of HS111 through lectin pretreatment was prevented by chloramphenicol or rifampin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The nodulation characteristics of wild-type Bradyrhizobium japonicum USDA 110 and mutant strain HS111 were examined. Mutant strain HS111 exhibits a delayed-nodulation phenotype, a result of its inability to initiate successful nodulation promptly following inoculation of the soybean root. Previously, we showed that the defect in initiation of infection leading to subsequent nodulation which is found in HS111 can be phenotypically reversed by pretreatment with soybean root exudate or soybean seed lectin. This effect is not seen after pretreatment with root exudates and lectins obtained from other plant species. Treatment of strain HS111 with as little as 10 soybean seed lectin molecules per bacterium (3.3 X 10 (-12) M) resulted in enhancement of nodule formation. Pretreatment of wild-type B. japonicum USDA 110 with soybean root exudate or seed lectin increased nodule numbers twofold on 6-week-old plants. Wild-type strain USDA 110 cells inoculated at 10(4) cells per seedling exhibited a delay in initiation of infection leading to subsequent nodulation. Wild-type cells pretreated in soybean root exudates or seed lectin did not exhibit a delay in nodulation at this cell concentration. Mutant strain HS111 pretreated in seed lectin for 0 or 1 h, followed by washing with the hapten D-galactose to remove the lectin, exhibited a delay in initiation of nodulation. Phenotypic reversal of the delayed-nodulation phenotype exhibited by strain HS111 was seen if incubation was continued for an additional 71 h in plant nutrient solution following 1 h of lectin pretreatment. Reversal of the delayed-nodulation phenotype of HS111 through lectin pretreatment was prevented by chloramphenicol or rifampin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Zhang  Feng  Smith  Donald L. 《Plant and Soil》1997,192(1):141-151
In the soybean (Glycine max. (L.) Merr)– Bradyrhizobium japonicum symbiosis, suboptimal root zone temperatures (RZTs) slow nodule development by disruption of the interorganismal signal exchange between the host plant and bradyrhizobia. Two field experiments were conducted on two adjacent sites in 1994 to determine whether the incubation of B. japonicum with genistein prior to application as an inoculant, or genistein, without B. japonicum, applied onto seeds in the furrow at the time of planting, increased soybean nodulation, N fixation, and total N yield. The results of these experiments indicated that genistein application increased nodule number and nodule dry matter per plant and hastened the onset of N fixation during the early portion of the soybean growing season, when the soils were still cool. Because these variables were improved, total fixed. N, fixed N as a percentage of total plant N, and N yield increased due to genistein application. The interaction between genistein application and soybean cultivars indicated that genistein application was more effective on N-stressed plants.  相似文献   

6.
We previously reported the identification of a soybean plant introduction (PI) genotype, PI 417566, which restricts nodulation by Bradyrhizobium japonicum MN1-1c (USDA 430), strains in serogroup 129, and USDA 110 (P. B. Cregan, H. H. Keyser, and M. J. Sadowsky, Appl. Environ. Microbiol. 55:2532-2536, 1989, and Crop Sci. 29:307-312, 1989). In this study, we further characterized nodulation restriction by PI 417566. Twenty-four serogroup 110 isolates were tested for restricted nodulation on PI 417566. Of the 24 strains examined, 62.5% were restricted in nodulation by the PI genotype. The remainder of the serogroup 110 strains tested (37.5%), however, formed significant numbers of nodules on PI 417566, suggesting that host-controlled restriction of nodulation by members of serogroup 110 is strain dependent. Analysis of allelic variation at seven enzyme-encoding loci by multilocus enzyme electrophoresis indicated that the serogroup 110 isolates can be divided into two major groups. The majority of serogroup 110 isolates which nodulated PI 417566 belonged to the same multilocus enzyme electrophoresis group. B. japonicum USDA 110 and USDA 123 were used as coinoculants in competition-for-nodulation studies using PI 417566. Over 98% of the nodules formed on PI 417566 contained USDA 123, whereas less than 2% contained USDA 110. We also report the isolation of a Tn5 mutant of USDA 110 which has overcome nodulation restriction conditioned by PI 417566. This mutant, D4.2-5, contained a single Tn5 insertion and nodulated PI 417566 to an extent equal to that seen with the unrestricted strain USDA 123. The host range of D4.2-5 on soybean plants and other legumes was unchanged relative to that of USDA 110, except that the mutant nodulated Glycine max cv. Hill more efficiently. While strain USDA 110 has the ability to block nodulation by D4.2-5 on PI 417566, the nodulation-blocking phenomenon was not seen unless strain USDA 110 was inoculated at a 100-fold greater concentration than the mutant strain.  相似文献   

7.
The genetic diversity among 20 field isolates of Bradyrhizobium japonicum serogroup 123 was examined by using restriction endonuclease digestions, one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of total cell proteins, Southern hybridization analysis of nif and nod genes, and intrinsic antibiotic resistance profiles. All of the isolates were previously separated into three broad nodulation classes (low, medium, and high) based on their ability to form symbioses with specific soybean genotypes. Results of our studies indicate that there is a relationship between these three genotype-specific nodulation classes and groupings that have been made based on genomic DNA digestion patterns, sodium dodecyl sulfate-protein profiles, and Southern hybridizations to a nifHD gene probe. Intrinsic antibiotic resistance profiles and nodAB gene hybridizations were not useful in determining interrelationships between isolates and nodulation classes. Southern hybridizations revealed that two of the isolates had reiterated nod genes; however, there was no correlation between the presence of extra nodAB genes and the nodulation classes or symbiotic performance on permissive soybean genotypes. Hybridizations with the nif gene probe indicated that there is a relationship among serogroup, nodulation class, and the physical organization of the genome.  相似文献   

8.
Twenty recently obtained field isolates of Bradyrhizobium japonicum serogroup 123 were tested for their nodule mass production on the standard commercial soybean (Glycine max (L.) Merr. cv. Williams) and on two soybean plant introduction (PI) genotypes previously determined to restrict nodulation by strain USDA 123. Four of the field isolates showed similar restricted nodulation on the two genotypes, while all 20 isolates produced a normal amount of nodules on G. max cv. Williams. Serological analyses with adsorbed fluorescent antibodies showed that members of the 123 serotype ranked low in nodulation of the two PIs, in contrast to members of serotypes 127 and 129. Competition studies on the PIs indicated that isolates which were restricted were not competitive for nodule occupancy against strain USDA 110. However, unrestricted isolates of serogroup 123 were very competitive against USDA 110. On G. max cv. Williams, all serogroup 123 isolates tested were very competitive against USDA 110.  相似文献   

9.
Legume iso/flavonoids have been implicated in the nodulation process, but questions remain as to their specific role(s), and no unequivocal evidence exists showing that these compounds are essential for nodulation. Two hypotheses suggest that the primary role of iso/flavonoids is their ability to induce rhizobial nod gene expression and/or their ability to modulate internal root auxin concentrations. The present work provides direct, genetic evidence that isoflavones are essential for nodulation of soybean roots because of their ability to induce the nodulation genes of Bradyrhizobium japonicum. Expression of isoflavone synthase (IFS), a key enzyme in the biosynthesis of isoflavones, is specifically induced by B. japonicum. When IFS was silenced using RNA interference in soybean hairy root composite plants, these plants had severely reduced nodulation. Surprisingly, pre-treatment of B. japonicum or exogenous application to the root system of either of the major soybean isoflavones, daidzein or genistein, failed to restore normal nodulation. Silencing of chalcone reductase led to very low levels of daidzein and increased levels of genistein, but did not affect nodulation, suggesting that the endogenous production of genistein was sufficient to support nodulation. Consistent with a role for isoflavones as endogenous regulators of auxin transport in soybean roots, silencing of IFS resulted in altered auxin-inducible gene expression and auxin transport. However, use of a genistein-hypersensitive B. japonicum strain or purified B. japonicum Nod signals rescued normal nodulation in IFS-silenced roots, indicating that the ability of isoflavones to modulate auxin transport is not essential to nodulation.  相似文献   

10.
Dashti  N.  Zhang  F.  Hynes  R.  Smith  D.L. 《Plant and Soil》1997,188(1):33-41
We previously reported that application of plant growth-promoting rhizobacteria (PGPR) increased soybean growth and development and, specifically, increased nodulation and nitrogen fixation over a range of root zone temperatures (RZTs) in controlled environment studies. In order to expand on the previous studies, field experiments were conducted on two adjacent sites, one fumigated with methyl bromide and one nonfumigated, in 1994. Two experiments were conducted at each site, one involving combinations of two soybean cultivars and two PGPR strains, the other involving the same factors, but also in combination with two strains Bradyrhizobium japonicum. Soybean grain yield and protein yield were measured. The results of these experiments indicated that co-inoculation of soybean with B. japonicum and Serratia liquefaciens 2-68 or Serratia proteamaculans 1-102 increased soybean grain yield, protein yield, and total plant protein production, compared to the nontreated controls, in an area with low spring soil temperatures. Interactions existed between PGPR application and soybean cultivar, suggesting that PGPRs applied to cultivars with higher yield potentials were more effective. PGPRs applied to the rhizosphere without addition of B. japonicum also increased only leaf area and seed number at the fumigated site. Overall, inoculation of soybean plants with PGPRs in the presence of B. japonicum increased soybean grain yield, grain protein yield, and total plant protein production under short season conditions.  相似文献   

11.
Three loci important for soybean nodulation by Bradyrhizobium japonicum were delimited by Tn5 mutagenesis on a 5.3-kilobase EcoRI fragment adjacent to the nodABC genes. Results of hybridization studies suggested that this region is conserved in Bradyrhizobium species but absent in all Rhizobium species. lacZ translational fusions of two of the loci contained in this region were found to be inducible by host-produced flavonoid chemicals via a mechanism requiring a functional nodD gene product. A mutation in one of the loci was found to result in an alteration of the host range of B. japonicum. This mutation appears to block nodulation at the step at which plant root cortical cell division is induced.  相似文献   

12.
13.
14.
pH对土壤中土著快、慢生大豆根瘤菌结瘤的影响   总被引:17,自引:2,他引:17  
1 引  言土壤 pH对根瘤菌结瘤的影响一直是微生物学和微生物生态学研究的内容之一[4] .在对大豆根瘤菌的研究中 ,早期的研究主要集中于生长慢、产碱的大豆慢生根瘤菌 (Bradyrhizobiumjaponicum) [1,2 ] .1982年 ,Keyser等[3] 报道了一类生长快、产酸的大豆根瘤菌 ,并命名为费氏中华根瘤菌 (Sinorhzobium fredi i) .由于它们在生理特性方面存在着明显的差异 ,其结瘤能力以及环境的生物、物理和化学等因素对结瘤的影响一直受到广泛的重视 .本文研究了偏酸、偏碱的 pH对费氏中华根瘤菌…  相似文献   

15.
Root hairs and phosphorus acquisition of wheat and barley cultivars   总被引:2,自引:0,他引:2  
Several genes that restrict nodulation with specific Bradyrhizobiumstrains are known in Glycine max (soybean), and a similar system of nodulation restriction has recently been discovered in the related North American legume Amphicarpaea bracteata. We analyzed how nodulation-restrictive genotypes of each plant interacted with Bradyrhizobium strains sampled from the other host species. Ten bacterial isolates from A. bracteata that nodulated differentially with genotypes of their homologous host legume showed uniform responses to two soybean isogenic lines that differed at the Rj4 locus controlling nodulation restriction: all isolates formed nodules of normal size and morphology on both isolines. However, little or no nitrogen fixation occurred in any of these symbioses. A. bracteata genotypes that displayed broad vs. restricted symbiotic phenotypes toward naturally-associated bradyrhizobia were also tested with two bacterial isolates from soybean (USDA 76 and USDA 123). Both isolates formed nodules and fixed nitrogen in association with both A. bracteata genotypes. However, symbiotic effectiveness (as measured by acetylene reduction assays) was normal only for the combination of USDA 76 with the restrictive A. bracteata genotype. Overall, these results indicate that plant genes that restrict nodulation by certain naturally-associated bradyrhizobia do not confer comparable specificity when plants interact with bacteria from another related legume species.  相似文献   

16.
Internally seedborne microorganisms are those surviving common surface sterilization procedures. Such microbes often colonize the radicle surface of a germinating soybean (Glycine max) seed, introducing an undefined parameter into studies on attachment and infection by Bradyrhizobium japonicum. Bacterial isolates from surface-sterilized soybean seed, cv. Williams 82 and cv. Maverick, used in our studies, were identified as Agrobacterium radiobacter, Aeromonas sp., Bacillus spp., Chryseomonas luteola, Flavimonas oryzihabitans, and Sphingomonas paucimobilis. Growth of these microbes during seed germination was reduced by treating germinating seeds with 500 micrograms/mL penicillin G. The effects of this antibiotic on seedling development and on B. japonicum 2143 attachment, nodulation, and nitrogen fixation are reported here. Penicillin G treatment of seeds did not reduce seed germination or root tip growth, or affect seedling development. No differences in nodulation kinetics, nitrogen fixation onset or rates were observed. However, the number of B. japonicum attached to treated intact seedlings was enhanced 200-325%, demonstrating that other root-colonizing bacteria can interfere with rhizobial attachment. Penicillin G treatment of soybean seedlings can be used to reduce the root colonizing microbes, which introduce an undefined parameter into studies of attachment of B. japonicum to the soybean root, without affecting plant development.  相似文献   

17.
Several soybean plant introduction (PI) genotypes have recently been described which restrict nodulation of Bradyrhizobium japonicum serocluster 123 in an apparently serogroup-specific manner. While PI 371607 restricts nodulation of strains in serogroup 123 and some in serogroup 127, those in serogroup 129 are not restricted. When DNA regions within and around the B. japonicum I-110 common nodulation genes were used as probes to genomic DNA from the serogroup strains USDA 123, USDA 127, and USDA 129, several of the probes differentially hybridized to the nodulation-restricted and -unrestricted strains. One of the gene regions, cloned in plasmid pMJS12, was subsequently shown to hybridize to 4.6-kilobase EcoRI fragments from DNAs from nodulation-restricted strains and to larger fragments in nodulation-unrestricted strains. To determine if the different hybridization patterns could be used to predict nodulation restriction, we hybridized pMJS12 to EcoRI-digested genomic DNAs from uncharacterized serocluster 123 field isolates. Of the 36 strains examined, 15 were found to have single, major, 4.6-kilobase hybridizing EcoRI fragments. When tested for nodulation, 80% (12 of 15) of the strains were correctly predicted to be restricted for nodulation of the PI genotypes. In addition, hybridization patterns obtained with pMJS12 and nodulation phenotypes on PI 371607 indicated that there are at least three types of serogroup 127 strains. Our results suggest that the pMJS12 gene probe may be useful in selecting compatible host-strain combinations and in determining the suitability of field sites for the placement of soybean genotypes containing restrictive nodulation alleles.  相似文献   

18.
S C Ho  W Z Ye  M Schindler    J L Wang 《Journal of bacteriology》1988,170(9):3882-3890
Incubation of Bradyrhizobium japonicum with the cultured soybean cell line SB-1 resulted in the adhesion of the bacteria to the plant cells. An antiserum was raised against B. japonicum, and the 125I-labeled immunoglobulin fraction was used to quantitate the number of bacteria bound to the soybean cells. The measurement of 125I-labeled antibody binding correlated well with parallel assays by microscopic observation. Using this quantitation, we have optimized the parameters of the assay in terms of time course, ratio of B. japonicum to SB-1 cells, and pH. We then explored the effects of saccharides, NaCl, EDTA, and culture age of the bacteria and SB-1 cells on B. japonicum binding under these optimal assay conditions. The results showed good correlation between conditions that govern B. japonicum binding to SB-1 cells in culture and those that regulate B. japonicum-induced nodulation in legume roots. Together, they suggest that this binding event may be important in controlling host specificity.  相似文献   

19.
van Rhijn P  RB Goldberg    AM Hirsch 《The Plant cell》1998,10(8):1233-1250
Plant lectins have been implicated as playing an important role in mediating recognition and specificity in the Rhizobium-legume nitrogen-fixing symbiosis. To test this hypothesis, we introduced the soybean lectin gene Le1 either behind its own promoter or behind the cauliflower mosaic virus 35S promoter into Lotus corniculatus, which is nodulated by R. loti. We found that nodulelike outgrowths developed on transgenic L. corniculatus plant roots in response to Bradyrhizobium japonicum, which nodulates soybean and not Lotus spp. Soybean lectin was properly targeted to L. corniculatus root hairs, and although infection threads formed, they aborted in epidermal or hypodermal cells. Mutation of the lectin sugar binding site abolished infection thread formation and nodulation. Incubation of bradyrhizobia in the nodulation (nod) gene-inducing flavonoid genistein increased the number of nodulelike outgrowths on transgenic L. corniculatus roots. Studies of bacterial mutants, however, suggest that a component of the exopolysaccharide surface of B. japonicum, rather than Nod factor, is required for extension of host range to the transgenic L. corniculatus plants.  相似文献   

20.
Zhang F  Smith DL 《Plant physiology》1995,108(3):961-968
In the soybean (Glycine max [L.] Merr.) N2-fixing symbiosis, suboptimal root zone temperatures (RZTs) slow nodule development, especially at temperatures below 17[deg]C. A step in the infection process that occurs within the first 24 h is particularly sensitive to suboptimal RZT. The first phase in the establishment of the soybean-Bradyrhizobium japonicum symbiosis is the exchange of recognition molecules. The most effective plant-to-bacterium signal is genistein. Binding of genistein to B. japonicum activates many of the B. japonicum nod genes. To our knowledge, the potential of sub-optimal RZT to disrupt this interorganismal signaling has not previously been investigated. Controlled environment experiments were conducted to determine whether the preincubation of B. japonicum with genistein increases soybean nodulation and N2 fixation at suboptimal RZT and whether the time between inoculation and root-hair curling is shortened by genistein application. The results of these experiments indicated that (a) genistein application increased soybean nodulation at suboptimal RZTs (17.5 and 15[deg]C) but not at the optimal RZT (25[deg]C); (b) the period between inoculation and root-hair curling was shortened by inoculation with bradyrhizobia preincubated with genistein; (c) at 17.5 and 15[deg]C RZT, the onset of N2 fixation occurred earlier in plants that received genistein-treated bradyrhizobia than in plants inoculated with untreated bradyrhizobia; (d) over the tested concentration range, genistein application at 15 to 20 [mu]M was the most effective in stimulating nodulation; and (e) between 25 and 15[deg]C, as RZT decreased, there was an increase in the nodulation-stimulating potential of genistein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号