首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
DeCook R  Lall S  Nettleton D  Howell SH 《Genetics》2006,172(2):1155-1164
The genetic control of gene expression during shoot development in Arabidopsis thaliana was analyzed by combining quantitative trait loci (QTL) and microarray analysis. Using oligonucleotide array data from 30 recombinant inbred lines derived from a cross of Columbia and Landsberg erecta ecotypes, the Arabidopsis genome was scanned for marker-by-gene linkages or so-called expression QTL (eQTL). Single-feature polymorphisms (SFPs) associated with sequence disparities between ecotypes were purged from the data. SFPs may alter the hybridization efficiency between cDNAs from one ecotype with probes of another ecotype. In genome scans, five eQTL hot spots were found with significant marker-by-gene linkages. Two of the hot spots coincided with classical QTL conditioning shoot regeneration, suggesting that some of the heritable gene expression changes observed in this study are related to differences in shoot regeneration efficiency between ecotypes. Some of the most significant eQTL, particularly those at the shoot regeneration QTL sites, tended to show cis-chromosomal linkages in that the target genes were located at or near markers to which their expression was linked. However, many linkages of lesser significance showed expected "trans-effects," whereby a marker affects the expression of a target gene located elsewhere on the genome. Some of these eQTL were significantly linked to numerous genes throughout the genome, suggesting the occurrence of large groups of coregulated genes controlled by single markers.  相似文献   

3.
Unraveling the role of genes annotated as protein of unknown function is of importance in progression of plant science. l-Galactono-1,4-lactone (l-GalL) is the terminal precursor for ascorbic acid (AsA) biosynthesis in Arabidopsis thaliana, and a previous study showed two DUF (domains of unknown function) 642 family genes (At1g80240 and At5g25460, designated as DGR1 and DGR2, respectively) to be sensitive to it. In this work, leaves from wild-type Arabidopsis were fed with d-glucose, l-galactose, l-GalL and AsA, and the expression level of the At1g80240 and At5g25460 genes showed a specific response to l-GalL, but not to the other supplements despite the increases of the tissue AsA contents. Analysis of promoter-β-glucuronidase (GUS) transgenic plants showed the two genes to be complementarily expressed at the root apex and in the rest of the root excluding the apex, respectively, in both young and old seedlings, and to be expressed at the leaf primordia. The GUS activity under the control of the At5g25460 promoter was high in the cotyledon and leaf veins of young seedlings. These findings were consistent with the results of quantitative real-time PCR. Interestingly, the T-DNA insertion mutant of At5g25460 (SALK_125079) displayed shorter roots and smaller rosettes than Col-0; however, no phenotypic difference was observed between the T-DNA insertion mutant of At1g80240 and the wild type. This is the first report on the expression and functional analysis of these two DUF642 family genes, with the results revealing the contribution of DGR genes to the development of Arabidopsis.  相似文献   

4.
5.
6.
In Saccharomyces cerevisiae, the SAC1 gene encodes a polyphosphoinositide phosphatase (PPIPase) that modulates the levels of phosphoinositides, which are key regulators of a number of signal transduction processes. SAC1p has been implicated in multiple cellular functions: actin cytoskeleton organization, secretory functions, inositol metabolism, ATP transport, and multiple-drug sensitivity. Here, we describe the characterization of three genes in Arabidopsis thaliana, AtSAC1a, AtSAC1b, and AtSAC1c, encoding proteins similar to those of yeast SAC1p. We demonstrated that the three AtSAC1 proteins are functional homologs of the yeast SAC1p because they can rescue the cold-sensitive and inositol auxotroph yeast sac1-null mutant strain. The fact that Arabidopsis and yeast SAC1 genes derived from a common ancestor suggests that this plant multigenic family is involved in the phosphoinositide pathway and in a range of cellular functions similar to those in yeast. Using GFP fusion experiments, we demonstrate that the three AtSAC1 proteins are targeted to the endoplasmic reticulum. Their expression patterns are overlapping, with at least two members expressed in each organ. Remarkably, AtSAC1 genes are not expressed during seed development, and therefore additional phosphatases are required to control phosphoinositide levels in seeds.  相似文献   

7.
8.
9.
10.
The epigenetic regulation of the floral repressor FLOWERING LOCUS C ( FLC ) is one of the critical factors that determine flowering time in Arabidopsis thaliana . Although many FLC regulators, and their effects on FLC chromatin, have been extensively studied, the epigenetic resetting of FLC has not yet been thoroughly characterized. Here, we investigate the FLC expression during gametogenesis and embryogenesis using FLC::GUS transgenic plants and RNA analysis. Regardless of the epigenetic state in adult plants, FLC expression disappeared in gametophytes. Subsequently, FLC expression was reactivated after fertilization in embryos, but not in the endosperm. Both parental alleles contributed equally to the expression of FLC in embryos. Surprisingly, the reactivation of FLC in early embryos was independent of FRIGIDA (FRI) and SUPPRESSOR OF FRIGIDA 4 (SUF4) activities. Instead, FRI , SUF4 and autonomous-pathway genes determined the level of FLC expression only in late embryogenesis. Many FLC regulators exhibited expression patterns similar to that of FLC , indicating potential roles in FLC reprogramming. An FVE mutation caused ectopic expression of FLC in the endosperm. A mutation in PHOTOPERIOD-INDEPENDENT EARLY FLOWERING 1 caused defects in FLC reactivation in early embryogenesis, and maintenance of full FLC expression in late embryogenesis. We also show that the polycomb group complex components, Fertilization-Independent endosperm and MEDEA, which mediate epigenetic regulation in seeds, are not relevant for FLC reprogramming. Based on our results, we propose that FLC reprogramming is composed of three phases: (i) repression in gametogenesis, (ii) reactivation in early embryogenesis and (iii) maintenance in late embryogenesis.  相似文献   

11.
We have identified the cDNAs of two new zebrafish preprosomatostatins, PPSS1 and PPSS3, in addition to the previously cloned PPSS2 (Argenton et al., 1999). PPSS1 is the orthologue of mammalian PPSSs, with a conserved C-terminal SS-14 sequence, PPSS2 is a divergent SS precursor and PPSS3 is a cortistatin-like prohormone. Using whole-mount in situ hybridisation, we have analysed the expression of PPSS1 and PPSS2 in zebrafish embryos up to 5 days post fertilisation. PPSS1 was expressed in the developing pancreas and central nervous system (CNS), whereas PPSS2 expression was exclusively pancreatic. In the CNS, PPSS1 was detected in several areas, in particular in the vagal motor nucleus and in cells that pioneer the tract of the postoptic commissure. PPSS1 was also expressed transiently in the telencephalon and spinal motor neurons. In all areas but the telencephalon PPSS1 was coexpressed with islet-1.  相似文献   

12.
Summary We have previously isolated and characterized over 90 recessive mutants of Arabidopsis thaliana defective in embryo development. These emb mutants have been shown to differ in lethal phase, extent of abnormal development, and response in culture. We demonstrate in this report the value and efficiency of mapping emb genes relative to visible and molecular markers. Sixteen genes essential for embryo development were mapped relative to visible markers by analyzing progeny of selfed F1 plants. Embryonic lethals are now the most common type of visible marker included on the linkage map of Arabidopsis. Backcrosses were used in several cases to orient genes relative to adjacent markers. Three genes were located to chromosome arms with telotrisomics by screening for a reduction in the percentage of aborted seeds produced by F1 plants. A restriction fragment length polymorphism (RFLP) mapping strategy that utilizes pooled EMB/EMB F2 plants was devised to increase the efficiency of mapping embryonic lethals relative to molecular markers. This strategy was tested by demonstrating that the biol locus of Arabidopsis is within 0.5 cM of an existing RFLP marker. Mapping embryonic lethals with both visible and molecular markers may therefore help to identify large numbers of genes with essential functions in Arabidopsis.  相似文献   

13.
The newly fertilized preimplantation embryo depends entirely on maternal mRNAs and proteins deposited and stored in the oocyte prior to its ovulation. If the oocyte is not sufficiently equipped with maternally stored products, or if zygotic gene expression does not commence at the correct time, the embryo will die. One of the major abnormalities observed during early development is cellular fragmentation. We showed previously that cellular fragmentation in human embryos can be attributed to programmed cell death (PCD). Here, we demonstrate that the PCD that occurs during the 1-cell stage of mouse embryogenesis is likely to be regulated by many cell death genes either maternally inherited or transcribed from the embryonic genome. We have demonstrated for the first time the temporal expression patterns of nine cell death regulatory genes, and our preliminary experiments show that the expression of these genes is altered in embryos undergoing fragmentation. The expression of genes involved in cell death (MA-3, p53, Bad, and Bcl-xS) seems to be elevated, whereas the expression of genes involved in cell survival (Bcl-2) is reduced. We propose that PCD may occur by default in embryos that fail to execute essential developmental events during the first cell cycle. Mol. Reprod. Dev. 51:243–253, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
The Hsp90 family of proteins in Arabidopsis thaliana   总被引:6,自引:0,他引:6       下载免费PDF全文
The 90-kDa heat shock protein (Hsp90) is an essential molecular chaperone in eukaryotic cells, with key roles in the folding and activation of proteins involved in signal transduction and control of the cell cycle. A search for Hsp90 sequences in the Arabidopsis thaliana genome revealed that this family includes 7 members. The AtHsp90-1 through AtHsp90-4 proteins constitute the cytoplasmic subfamily, whereas the AtHsp90-5, AtHsp90-6, and AtHsp90-7 proteins are predicted to be within the plastidial, mitochondrial, and endoplasmic reticulum compartments, respectively. The deduced amino acid sequences of each of the cytoplasmic proteins contains the highly conserved C-terminal pentapeptide MEEVD. All of the AtHsp90 sequences include a conserved adenosine triphosphate-binding domain, whereas only the cytoplasmic and endoplasmic reticulum-resident sequences include an adjacent charged linker domain that is common in mammalian and yeast sequences. The occurrence of multiple AtHsp90 proteins in the cytoplasm and of family members in other subcellular compartments suggests a range of specific functions and target polypeptides.  相似文献   

15.
16.
17.
The process of endochondral bone formation was examined with regard to expression of seven heat shock proteins (Hsps): two small Hsps, the constitutive and the inducible forms of the 70 and the 90 Hsp families, the collagen chaperone Hsp47-and a cytosolic chaperone, TCP-1α, using immunohistochemistry. Around day 15.5 of embryo-genesis the calcification of the long endochondral bones occurs through progressive replacement of the cartilaginous scaffold (rich in type II collagen) with an ossified matrix (rich in type I collagen), and thus a longitudinal section of limb bone recapitulates all the steps of chondrogenesis and the early steps of osteogenesis. We observed that all these Hsps and chaperones are differentially expressed during bone development in a stage-specific pattern reaching very high levels at some specific stages. The involvement of chaperones during these important differentiation steps will be discussed.  相似文献   

18.
19.
The differential regulation of the two nitrate reductase (NR, EC 1.6.6.1) genes of Arabidopsis thaliana L. Heynh was examined. cDNAs corresponding to each of the NR genes (NR1 and NR2) were used to measure changes in the steady-state levels of NR mRNA in response to nitrate, light, circadian rhythm, and tissue specificity. Although nitrate-induction kinetics of the two genes are very similar, NR1 is expressed in the absence of nitrate at a higher basal level than NR2. Nitrate induction is transient both in the roots and leaves, however the kinetics are different: the induction and decline in the roots precede that in the leaves. Light induces the expression of each of the genes with significantly different kinetics: NR2 reached saturation more rapidly than did NR1. Both genes showed similar diurnal patterns of circadian rhythm, with NR2 mRNA accumulating earlier in the morning.  相似文献   

20.
Hsp70 and Hsp90 protein chaperones cooperate in a protein-folding pathway required by many "client" proteins. The co-chaperone Sti1p coordinates functions of Hsp70 and Hsp90 in this pathway. Sti1p has three tetratricopeptide repeat (TPR) domains. TPR1 binds Hsp70, TPR2a binds Hsp90, and the ligand for TPR2b is unknown. Although Sti1p is thought to be dedicated to the client folding pathway, we earlier showed that Sti1p regulated Hsp70, independently of Hsp90, in a way that impairs yeast [PSI+] prion propagation. Using this prion system to monitor Sti1p regulation of Hsp70 and an Hsp90-inhibiting compound to monitor Hsp90 regulation, we identified Sti1p mutations that separately affect Hsp70 and Hsp90. TPR1 mutations impaired Sti1p regulation of Hsp70, but deletion of TPR2a and TPR2b did not. Conversely, TPR2a and TPR2b mutations impaired Sti1p regulation of Hsp90, but deletion of TPR1 did not. All Sti1p mutations variously impaired the client folding pathway, which requires both Hsp70 and Hsp90. Thus, Sti1p regulated Hsp70 and Hsp90 separately, Hsp90 is implicated as a TPR2b ligand, and mutations separately affecting regulation of either chaperone impair a pathway that is dependent upon both. We further demonstrate that client folding depended upon bridging of Hsp70 and Hsp90 by Sti1p and find conservation of the independent regulation of Hsp70 and Hsp90 by human Hop1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号