首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
d-Cysteine desulfhydrase of Escherichia coli W3110 trpED102/F trpED102 was physiologically characterized. It was found to be located in the cytosolic fraction, as 3-chloro-d-alanine dehydrochlorinase is. d-Cysteine desulfhydrase catalyzed not only the ,-elimination reaction of O-acetyl-d-serine to form pyruvate, acetic acid and ammonia, but also the -replacement reaction of O-acetyl-d-serine with sulfide to form d-cysteine. However, these reactions appeared not to proceed in vivo. No other activity of d-cysteine synthesis from O-acetyl-d-serine and sulfide was detected in a crude cell extract of E. coli which was immunotitrated with antibodies raised against the purified d-cysteine desulfhydrase. Although d-cysteine desulfhydrase catalyzes the degradation (,-elimination reaction) of 3-chloro-d-alanine, which is an effective antibacterial agent, E. coli W3110 trpED102/F trpED102 did not show resistance against 3-chloro-d-alanine. Therefore, d-cysteine desulfhydrase does not contribute to 3-chloro-d-alanine detoxification in vivo.  相似文献   

2.
-Elimination of peptidorhamnomannans purified from yeast-like and mycelial phases ofSporothrix schenckii released neutral and acidic reduced oligosaccharides that were O linked to serine and/or threonine. Man-(1–2)Man-ol, Rha(1–3)Man(1–2)Man-ol, Rha(1–4)GlcA(1–2)Man(1–2)Man-ol, and Rha(1–4)[Rha(1–2)] GlcA(1–2)Man(1–2)Man-ol were characterized based on methylation analysis, proton magnetic resonance and fast atom bombardment mass spectrometry.Abbreviations FAB fast atom bombardment - GLC gas liquid chromatography - GlcA d-glucopyranosyluronic acid - Man d-mannopyranose - Man-ol d-mannitol - MS mass spectrometry - NMR nuclear magnetic resonance - Rha l-rhamnopyranose  相似文献   

3.
Summary Vicia faba callus line (VFS 1), isolated from expiants of immature embryo, grew satisfactorily onMurashige andSkoog complete medium with 1.38 M 2,4-D, or with 0.92 M 2,4-D to which 1.0 M kinetin was added. It also grew well on the B 5 modified medium containing 2.3 M 2,4-D and 25.0 M kinetin. On the last of these media the cultures grew more uniformly and without necrosis. They also showed diminishing variation in polyploidy in favour of diploids and corresponding aneuploids (hypodiploids).After being cultured for nearly three years on MS containing 1.38 M 2,4-D, 8–33% of cultures of VFS 1 were able to regenerate roots when transferred to either MS half strength with 5.37 M NAA, or to a medium without 2,4-D, or else to media with the addition of kinetin only (in various concentrations).  相似文献   

4.
Summary Analysis of 62 mature Norway spruce (Picea abies provenance Viborg) trees growing in a Danish plantation was undertaken along with analysis of their nutrient contents (N, P, K, Ca, Mg, Fe, Mn, Cu, Zn, B and Na), in each of the three youngest needle age classes, from branches of four exposure directions near the tree top. The aim was to investigate if one among the studied possible predisposing factors was also a triggering factor in the 1989 outbreak of the Red Norway spruce decline in Denmark. Neither nutrient imbalance or deficiency, nor excessive N-deposition or salt-stress were indicated as triggering factors in 1989. The Red syndrome, noticeable for the bright red colour of the current-year needles, was found to be an extension of the European type Novel Decline. Red syndrome is similar to previously reported phenomena of top-dying and sub top-dying, in that it had fewer needle age classes and significantly higher contents of mobile cations (and Ca) in the younger needle classes. Tree ring analysis suggested that the Red syndrome was initiated in the early 1980s, when the trees experienced adverse climatic conditions. Because of this long-term development of the Red Norway spruce decline syndrome, it is concluded that a triggering factor is of minor importance relative to the multitude of predisposing factors.  相似文献   

5.
A newly isolated strain, MU-2, which produces very high -fructofuranosidase activity, was identified asAspergillus japonicus. For enzyme production by the strain, sucrose at 20% (w/v) was the best carbon source and yeast extract at 1.5 to 3% (w/v) the best nitrogen source. Total enzymatic activity and cell growth were at maximum after 48 h, at 1.57×104 U/flask and 0.81 g dry cells/flask, respectively. The optimum pH value of the enzymatic reaction was between 5.0 and 5.5 and the optimum temperature 60 to 65°C. The enzyme produced 1-kestose (O--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) and nystose (O--d-fructofuranosyl-(21)--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) from sucrose by fructosyl-transferring activity. The strain was found to be very useful for industrial production of -fructofuranosidase.  相似文献   

6.
Particulate membrane preparations isolated from cambial cells and differentiating and differentiated xylem cells of pine (Pinus sylvestris L.) trees synthesised [14C]glucans using either guanosine 5-diphosphate (GDP)-D-[U-14C]glucose or uridine 5-diphosphate (UDP)-D-[U-14C]glucose as glycosyl donors. Although these glucans had -(13) and -(14) linkages in an approximate ratio 1:1, the distribution of the linkages in the glucan synthesised from GDP-D-glucose was different from that synthesised from UDP-D-glucose. The synthesis of the mixed -(13) and -(14) glucan from GDP-D-[U-14C]glucose was changed to that of -(14) glucomannan in the presence of increasing concentrations of GDP-D-mannose. The glucan formed from UDP-D-[U-14C]glucose was not affected by any concentration of GDP-D-mannose. The membrane preparations epimerized GDP-D-glucose to GDP-D-mannose; however, the low amount of GDP-D-mannose formed was not incorporated into the polymer becaus the affinity of the synthase for GDP-D-glucose was much greater than that for GDP-D-mannose. The glucan formed from GDP-D-glucose and the glucomannan formed from GDP-D-glucose together with GDP-D-mannose were characterized. The apparent K m and V max of the glucan synthase for GDP-D-glucose were 6.38 M and 5.08 M·min-1, respectively. No lipid intermediates were detected during the synthesis of either glucan or glucomannan. The results indicated that an enzyme complex for the formation of the glucomannan was bound to the membrane.Abbreviations GDP guanosine 5-diphosphate - GLC gasliquid chromatography - UDP trridine 5-diphosphate  相似文献   

7.
A stratagem for the synthesis ofneoglycoproteins suitable for the selective serodiagnosis of leprosy is described in which synthetic 3,6-di-O-methyl--d-glucopyranose, the epitope of phenolic glycolipid I fromMycobacterium leprae, was used. Condensation of 8-methoxycarbonyloctanol with the acetobromo derivative of 3,6-di-O-methylglucose gave 8-methoxycarbonyloctyl 2,4-di-O-acetyl-3,6-di-O-methyl--d-glucopyranoside in 65% yield, and with absolute stereospecificity for the anomer. The deacylated product was converted to the crystalline hydrazide and coupled to bovine gamma globulin, bovine serum albumin and poly-d-lysinevia intermediate acyl azide formation to produce the 8-carbonyloctyl 3,6-di-O-methyl--d-glucopyranosyl polypeptides. Theneoglycoproteins were highly sensitive in ELISA and emulated the specificity of the native glycolipid in analysis of sera from patients throughout the spectrum of leprosy and from different geographical regions. The 8-carbonyloctyl 3,6-di-O-methyl--d-glucopyranoside-bovine serum albumin was also synthesized and shown to have about one-half the activity of the -linkedneoglycoprotein. A different synthetic approach produced the 8-carbonyloctyl 4-O-(3,6-di-O-methyl--d-glucopyranosyl)--l-rhamnopyranoside-bovine serum albumin which was also highly sensitive and specific for the serodiagnosis of leprosy. The presence of the second sugar unit, similar to that in the native glycolipid but for the absence ofO-methyl groups, seemed to provide a probe with greater felicity for the serological detection of tuberculoid leprosy.Thus, the results indicate that highly sensitive and specific antigen probes for the serodiagnosis of leprosy can be constructed based only on the terminal one or two sugars of phenolic glycolipid I, and the synthetic approach leads to the formation of haptens with absolute stereospecificity.Nomenclature BGG bovine gamma globulin - PGL-I phenolic glycolipid I - PDL poly-d-lysine - PBS phophate-buffered saline - 3,6-Me2-Glc-Link-BSA 8-carbonyloctyl 3,6-di-O-methyl-glucopyranoside-bovine senalbumin - 3,6-Me2-Glc-Rha-Link-BSA 8-carbonyloctyl 4-O-(3,6-di-O-methyl--d-glucopyranosyl)--l-rhan pyranoside-BSA  相似文献   

8.
Summary In three areas of vegetation (dune, mountain heath and salt marsh) the following phytosociological techniques have been tested and compared, using the same data: the Braun-Blanquet method; association and inverse analysis ofWilliams &Lambert; cluster analysis (agglomerative classification) based on different coefficients of similarity; and ordination (principal components analysis performed on matrices of different coefficients).The Braun-Blanquet method is considered to combine several advantages of the other methods and to be most economical in terms of efficiency (ratio of time input to information emerging).
Zusammenfassung Auf drei verschiedenen Vegetationsflächen (Bergheide, Küstendünen und Salzwiesen) sind die folgenden pflanzensoziologischen Methoden geprüft und verglichen worden: die Methode von Braun-Blanquet; association analysis vonWilliams &Lambert (1959, 1961); Ordination (principal components analysis); und cluster analysis (Sokal &Sneath, 1963). Die letzteren beiden wurden mit verschiedenen Ähnlichkeitskoeffizienten geprüft.Auf Grund solchen Erfahrungen, zeigte sich die Braun-Blanquetische Methode leistungsfähiger als die anderen Methoden (d.h. optimale Einsicht in der Vegetation pro Arbeitsstunde). Sie vereinigte viele Vorteile der anderen Methoden.
  相似文献   

9.
Two constitutive acetoacetyl-CoA (AcAc-CoA) reductases were purified from Methylobacterium rhodesianum MB 126, an NADPH-linked d(-)--hydroxybutyryl-CoA forming reductase (enzyme A) and an NADH-and NADPH-linked l(+)--hydroxybutyryl-CoA forming reductase (enzyme B). Enzyme A and B give apparent K m values of 15 M and 30 M for AcAc-CoA, 18 M for NADPH and 30 M for NADH, respectively. They are inhibited by AcAc-CoA at concentrations higher than 25 M and 50 M, respectively. The contribution of the two reductases to poly--hydroxybutyrate synthesis is discussed.  相似文献   

10.
Recent evidence of a pyruvate malate shuttle capable of transporting a large amount of NADPH equivalents out of mitochondria in pancreatic islets suggests that cytosolic NADP(H) plays a role in beta cell metabolism. To obtain clues about these processes the activities of several NADPHutilizing enzymes were estimated in pancreatic islets. Low levels of pyrroquinolone quinone (PQQ) and low levels of enzyme activity that reduce PQQ were found in islets. Low activities of palmitoylCoA and stearoylCoA desaturases were also detected. Significant activities of glutathione reductase, aldose reductase (EC.1.1.1.21) and aldehyde reductase (EC.1.1.1.2) were present in islets. Potent inhibitors of aldehyde and aldose reductases inhibited neither glucoseinduced insulin release nor glucose metabolism in islets indicating that these reductases are not directly involved in glucoseinduced insulin reaction. Over 90% of aldose reductase plus aldehyde reductase enzyme activity was present in the cytosol. Kinetic and chromatographic studies indicated that 60–70% of this activity in cytosol was due to aldehyde reductase and the remainder due to aldose reductase. Aldehyde reductaselike enzyme activity, as well as aldose reductase immunoreactivity, was detected in rat islet plasma membrane fractions purified by a polyethylene glycolDextran gradient or by a sucrose gradient. This is interesting in view of the fact that voltagegated potassium channel beta subunits that contain aldehyde and aldose reductaselike NADPH-binding motifs have been detected in plasma membrane fractions of islets [Receptors and Channels 7: 237–243, 2000] and suggests that NADPH might have a yet unknown function in regulating activity of these potassium channels. Reductases may be present in cytosol to protect the insulin cell from molecules that cause oxidative injury.  相似文献   

11.
N-acetylhexosaminidase fromNocardia orientalis catalysed the synthesis of lacto-N-triose II glycoside (-d-GlcNAc-(1-3)--d-Gal-(1-4)--d-Glc-OMe,3) with its isomers -d-GlcNAc-(1-6)--d-Gal-(1-4)--d-Glc-OMe (4) and -d-Gal-(1-4)-[-d-GlcNAc-(1-6)]--d-Glc-OMe (5) throughN-acetylglucosaminyl transfer fromN,N-diacetylchitobiose (GlcNAc2) to methyl -lactoside. The enzyme formed the mixture of trisac-charides3, 4 and5 in 17% overall yield based on GlcNAc2, in a ratio of 20:21:59. Withp-nitrophenyl -lactoside as an acceptor, the enzyme also producedp-nitrophenyl -lacto-N-trioside II (-d-GlcNAc-(1-3)--d-Gal-(1-4)--d-Glc-OC6H4NO2-p,6) with its isomers -d-GlcNAc-(1-6)--d-Gal-(1-4)--d-Glc-OC6H4NO2-p (7) and -d-Gal-(1-4)-[-d-GlcNAc-(1-6)]--d-Glc-OC6H4NO2-p (8). In this case, when an inclusion complex ofp-nitrophenyl lactoside acceptor with -cyclodextrin was used, the regioselectivity of glycosidase-catalysed formation of trisaccharide glycoside was substantially changed. It resulted not only in a significant increase of the overall yield of transfer products, but also in the proportion of the desired compound6.Abbreviations GlcNAc2 2-acetamido-2-deoxy--d-glucopyranosyl-(1-4)-2-acetamido-2-deoxy-d-glucose - NAHase N-acetylhexosaminidase - -CD -cyclodextrin  相似文献   

12.
The synthesis of the methyl - and -N-dansyl-d-galactosaminides is described using methyl ,-2-azido-2-deoxy-d-galactopyranoside as starting material. This was reduced to the corresponding methyl ,-2-amino-2-deoxy-d-galactopyranoside and then treated with dansyl chloride to yield a mixture of methyl ,-N-dansyl-d-galactosaminides which was separated into individual anomeric forms by flash chromatography on silica gel. Methyl -N-dansyl-d-galactosaminide was used as a fluorescent indicator ligand in continuous substitution titrations to determine the association constants of nonchromophoric carbohydrates with theN-acetyl-d-galactosamine specific lectin fromErythrina corallodendron.Abbreviations ECorL Erythrina corallodendron lectin - MeGalNDns methyl 2-deoxy-2-(5-dimethylamino-1-naphthalenesulfamido)--d-galactopyranoside - MeGalNDns methyl 2-deoxy-2-(5-dimethylamino-1-naphthalenesulfamido)--d-galactopyranoside Dedicated to Hilde De Boeck (1958–1991).  相似文献   

13.
We have analysed the mucins synthesized by the HT-29 MTX cell subpopulation, derived from the HT-29 human colon carcinoma cells through a selective pressure with methotrexate (Lesuffleuret al., 1990,Cancer Res 50: 6334–43), in the presence of benzyl-N-acetyl--galactosaminide (GalNAc-O-benzyl), which is a potential competitive inhibitor of the 1,3-galactosyltransferase that synthesizes the T-antigen. The main observation was a 13-fold decrease in the sialic acid content of mucins after 24 h of exposure to 5mm GalNAc-O-benzyl. This effect was accompanied by an increased reactivity of these mucins to peanut lectin, testifying to the higher amount of T-antigen. The second observation was a decrease in the secretion of the mucins by GalNAc-O-benzyl treated cells. The decrease in mucin sialyation was achieved through thein situ -galactosylation of GalNAc-O-benzyl into Gal1–3GalNAc-O-benzyl, which acts as a competitive substrate of Gal1–3GalNAc 2,3-sialyltransferase, as shown by the intracellular accumulation of NeuAc2–3Gal1–3GalNAc-O-benzyl in treated cells.Abbreviations BSM bovine submaxillary mucin - MTX methotrexate - PBS sodium phosphate 10mm, NaCl 0.15m, pH 7.4 buffer - pNp p-nitrophenol - TBS Tris/HCl 10mm, NaCl 0.15m, pH 7.4 buffer Enzymes: CMP-NeuAc: Gal1–3/4GlcNAc 2,3-sialyltransferase, ST3(N), EC 2.4.99.6; CMP-NeuAc: Gal1–4GlcNAc 2,6-sialyltransferase, ST6(N), EC 2.4.99.1; CMP-NeuAc: Gal1–3GalNAc 2,3-sialyltransferase, ST3(O), EC 2.4.99.4; CMP-NeuAc: R-GalNAc1-O-Ser 2,6-sialyltransferase, ST6(O)-I, EC 2.4.99.3; CMP-NeuAc: NeuAc2–3Gal1–3GalNAc 2,6-sialyltransferase, ST6(O)-II, EC 2.4.99.7; UDP-GlcNAc: Gal1–3GalNAc-R·(GlcNAc to GalNAc) 1,6-N-acetylglucosaminyltransferase, EC 2.4.1.102; UDP-GlcNAc: GalNAc-R 1,3-N-acetylglucosaminyltransferase, EC 2.4.1.147; UDP-Gal: GalNAc-R 1,3-galactosyltransferase, EC 2.4.1.122.  相似文献   

14.
UDP-GlcNAc: Man3R 2-N-acetylglucosaminyltransferase I (GlcNAc-T I; EC 2.4.1.101) is the key enzyme in the synthesis of complex and hybrid N-glycans. Rat liver GlcNAc-T I has been purified more than 25,000-fold (M r 42,000). TheV max for the pure enzyme with [Man6(Man3)Man6](Man3)Man4GlcNAc4GlcNAc-Asn as substrate was 4.6 µmol min–1 mg–1. Structural analysis of the enzyme product by proton nuclear magnetic resonance spectroscopy proved that the enzyme adds anN-acetylglucosamine (GlcNAc) residue in 1–2 linkage to the Man3Man-terminus of the substrate. Several derivatives of Man6(Man3)Man-R, a substrate for the enzyme, were synthesized and tested as substrates and inhibitors. An unsubstituted equatorial 4-hydroxyl and an axial 2-hydroxyl on the -linked mannose of Man6(Man3)Man-R are essential for GlcNAc-T I activity. Elimination of the 4-hydroxyl of the 3-linked mannose (Man) of the substrate increases theK M 20-fold. Modifications on the 6-linked mannose or on the core structure affect mainly theK M and to a lesser degree theV max, e.g., substitutions of the Man6 residue at the 2-position by GlcNAc or at the 3- and 6-positions by mannose lower theK M, whereas various other substitutions at the 3-position increase theK M slightly. Man6(Man3)4-O-methyl-Man4GlcNAc was found to be a weak inhibitor of GlcNAc-T I.Abbreviations BSA Bovine serum albumin - Bn benzyl - Fuc, F l-fucose - Gal, G d-galactose - GalNAc, GA N-acetyl-d-galactosamine - Glc d-glucose - GlcNAc, Gn N-acetyl-d-glucosamine - HPLC high performance liquid chromatography - Man, M d-mannose - mco 8-methoxycarbonyl-octyl, (CH2)8 COOOCH3 - Me methyl - MES 2-(N-morpholino)ethanesulfonate - NMR nuclear magnetic resonance - PMSF phenylmethylsulfonylfluoride - pnp p-nitrophenyl - SDS sodium dodecyl sulfate - T transferase - Tal d-talose - Xyl d-xylose; - {0, 2 + F} Man6 (GlcNAc2Man3) Man4GlcNAc4 (Fuc6) GlcNAc - {2, 2} GlcNAc2Man6 (GlcNAc2Man3) Man4GlcNAc4GlcNAc; M5-glycopeptide, Man6 (Man3) Man6 (Man3) Man4 GlcNAc4GlcNAc-Asn Enzymes: GlcNAc-transferase I, EC 2.4.1.101; GlcNAc-transferase II, EC 2.4.1.143; GlcNAc-transferase III, EC 2.4.1.144; GlcNAc-transferase IV, EC 2.4.1.145; GlcNAc-transferase V, UDP-GlcNAc: GlcNAc2 Man6-R (GlcNAc to Man) 6-GlcNAc-transferase; GlcNAc-transferase VI, UDP-GlcNAc: GlcNAc6(GlcNAc2) Man6-R (GlcNAc to Man) 4-GlcNAc-transferase; Core 1 3-Gal-transferase, EC 2.4.1.122; 4-Gal-transferase, EC 2.4.1.38; 3-Gal-transferase, UDP-Gal: GlcNAc-R 3-Gal-transferase; blood group i 3-GlcNAc-transferase, EC 2.4.1.149; blood group I 6-GlcNAc-transferase, UDP-GlcNAc: GlcNAc3Gal-R (GlcNAc to Gal) 6-GlcNAc-transferase.  相似文献   

15.
Negative-ion fast atom bombardment tandem mass spectrometry has been used in the characterization of non-, mono-, di- and trisulfated disaccharides from heparin and heparan sulfate. The positional isomers of the sulfate group of monosulfated disaccharides were distinguished from each other by negative-ion fast atom bombardment tandem mass spectra, which provide an easy way of identifying the positional isomers. This fast atom bombardment collision induced dissociation mass spectrometry/mass spectrometry technique was also applied successfully to the characterization of di- and trisulfated disaccharides.Abbreviations FABMS fast atom bombardment mass spectrometry - CID collision induced dissociation - MIKE mass analysed ion kinetic energy - MS/MS mass spectrometry/mass spectrometry - HPLC high performance liquid chromatography - UA d-gluco-4-enepyranosyluronic acid - CS chondroitin sulfate - DS dermatan sulfate - HA hyaluronan - Hep heparin - HS heparan sulfate - UA(14) GlcNAc 2-acetamido-2-deoxy-4-O-(-d-gluco-4-enepyranosyluronic acid)-d-glucose - UA(14)GlcNAc6S 2-acetamido-2-deoxy-4-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA2S(14)GlcNAc 2-acetamido-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-glucose - UA2S(14)GlcNAc6S 2-acetamido-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA(14)GlcN6S 2-amino-2-deoxy-4-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA2S(14)GlcN 2-amino-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-glucose - UA2S(14)GlcN6S 2-amino-2-deoxy-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA(14)GlcNS 2-deoxy-2-sulfamino-4-O-(-d-gluco-4-enepyranosyluronic acid)-d-glucose - UA(14)GlcNS6S 2-deoxy-2-sulfamino-4-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA2S(14)GlcNS 2-deoxy-2-sulfamino-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-glucose - UA2S(14)GlcNS6S 2-deoxy-2-sulfamino-4-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-glucose - UA(13)GalNAc 2-acetamido-2-deoxy-3-O-(-d-Gluco-4-enepyranosyluronic acid)-d-galatose - UA(13)GalNAc4S 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-4-O-sulfo-d-galactose - UA(13)GalNAc6S 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-galactose - UA2S(13)GalNAc 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-d-galactose - UA2S(13)GalNAc4S 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-4-O-sulfo-d-galactose - UA2S(13)GalNAc6S 2-acetamido-2-deoxy-3-O-(2-O-sulfo--d-gluco-4-enepyranosyluronic acid)-6-O-sulfo-d-galactose - UA(13)GalNAcDiS 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-4,6-di-O-sulfo-d-galactose - UA(13)GlcNAc 2-acetamido-2-deoxy-3-O-(-d-gluco-4-enepyranosyluronic acid)-d-glucose.  相似文献   

16.
Summary A series of man-Chinese hamster and man-mouse somatic cell hybrids was investigated to study the localization of the genes coding for the human lysosomal enzyme -galactosidase (EC 3.2.1.23) and for its protective protein. Using a monoclonal antibody, raised against human placental -galactosidase, it was observed that the structural locus for the -galactosidase polypeptide is located on chromosome 3. The nature of the involvement of chromosome 22 in the expression of human -galactosidase was elucidated by metabolic labelling of the hybrids with radioactive amino acids, immunoprecipitation with monoclonal and polyclonal antibodies against -galactosidase, followed by analysis via gel electrophoresis and fluorography.The data show that the presence of chromosome 22 coincides with the presence of a 32 kd protein. This polypeptide, the protective protein was previously shown to be intimately associated with human -galactosidase. In addition, the protective protein was found to be essential for the in vivo stability of -galactosidase by aggregating -galactosidase monomers into high molecular weight multimes. Both chromosome 3 and 22 are therefore necessary to obtain normal levels og -galactosidase activity in human cells.  相似文献   

17.
1,3-Galactosylation of radiolabelled bi-antennary acceptors Gal1-4GlcNAc1-3(Gal1-4GlcNAc1-6)Gal-R (R=1-OH, 1-4GlcNAc or 1-4Glc) with bovine thymus 1,3-galactosyltransferase was studied. At all stages of the reactions the three acceptors reacted faster at the 1 6 linked arm than at the 1 3 linked branch. Hence, in addition to the doubly 1,3-galactosylated products, practically pure Gal1-4GlcNAc1-3(Gal1-3Gal1-4GlcNAc1-6)Gal-R could be obtained from the three acceptors in reactions that had proceeded to near completion. The isomeric mono-1,3-galactosylated products were identified by using exoglycosidases to remove the branches unprotected by 1,3-galactoses and by subsequently identifying the resulting linear glycans chromatographically.Abbreviations Gal d-galactose - GlcNAc N-acetyl-d-glucosamine - Lac lactose - LacNAc Gal1-4GlcNAc - MH maltoheptaose - MP maltopentaose - MT maltotriose - MTet maltotetraose - WGA wheat germ agglutinin - 3 position 3 of the galactose unit of LacNAc or Lac - 6 position 6 of the galactose unit of LacNAc or Lac  相似文献   

18.
The effect of structural analogues of l-malate was studied on NADP-malic enzyme purified from Zea mays L. leaves. Among the compounds tested, the organic acids behaved as more potent inhibitors at pH 7.0 than at pH 8.0, suggesting that the dimeric form was more susceptible to the inhibition than the tetrameric form of the enzyme.Oxalate, ketomalonate, hydroxymalonate, malonate, oxaloacetate, tartrate, -hydroxybutyrate, -ketobutyrate, -ketoglutarate and -hydroxyglutarate exhibited linear competitive inhibition with respect to the substrate l-malate at pH 8.0. On the other hand, glyoxylate and glycolate turned out to be non-competitive inhibitors, while glycolaldehyde, succinate, fumarate, maleate and - and -hydroxybutyrate had no effect on the enzyme activity, at the concentrations assayed. These results suggest that the extent of inhibition was dependent on the size of the analogues and that the presence of an 1-carboxyl group along with a 2-hydroxyl or 2-keto group was important for binding of the substrate analogue to the enzyme.  相似文献   

19.
On the basis of symposium contributions onChlorella, Hibbertia, Eucalyptus, Ambrosia and on numerical approaches some fundamental problems of (bio)systematics, evolution, and taxonomic categories are discussed: Methods available for analysing affinities; conflicting evidence from phenetic, biochemical, cytogenetic and other analyses; further classification problems in cases of intermediacy, etc. While sibs of various levels and their natural hierarchy often can be objectively defined, this appears impossible for particular taxonomic levels itself (e. g. species). A single objective taxonomic system of organisms is unrealistic. Certain guiding lines for relative and practicable concepts of species and genus are proposed.Presented at the symposium Speciation and the Species Concept during the XIIth International Botanical Congress, Leningrad, July 8, 1975.  相似文献   

20.
Callus growth and the production of anthocyanins were sustained on the salts and vitamins of Murashige and Skoog. Callus growth was stimulated at a concentration of 8–32 M -naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-d). Benzyladenine (BA) and zeatin at 8 M inhibited callus growth whereas isopentenyladenine (iP) stimulated callus growth. NAA repressed anthocyanin production with an increase in NAA from 8–32 M. Anthocyanin synthesis was promoted by an increase in 2,4-d from 0.5 to 2 M and decreased thereafter up to a concentration 32 M 2,4-d. A concentration of 8 M BA, thidiazuron and zeatin, respectively stimulated pigment production. Sucrose stimulated callus growth at 60 mM and pigment production at 120–360 mM.Abbreviations BA 6-benzyladenine - 2,4-d 2,4-dichlorophenoxyacetic acid - NAA -naphthaleneacetic acid - iP isopentenyladenine - TZ thidiazuron-N-phenyl-N-1,2,3-thiadiazol-5-yl-urea - Bu-HCl Butanol-2N HCl - BAW Butanol-acetic acid-water  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号