首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lye YM  Chan M  Sim TS 《FEBS letters》2006,580(26):6083-6092
The canonical mitogen-activated protein kinase (MAPK) signal cascade was previously suggested to be atypical in the malaria parasite. This raises queries on the existence of alternative mediators of plasmodial MAPK pathways. This study describes, Pfnek3, a malarial protein kinase belonging to the NIMA (Never in Mitosis, Aspergillus) family. Endogenous Pfnek3 is expressed during late asexual to gametocyte stages and lacks some classical protein kinase sequence motifs. Moreover, Pfnek3 is phylogenetically distant from mammalian NIMA-kinases. Recombinant Pfnek3 was able to phosphorylate and stimulate a malarial MAPK (Pfmap2). Contrastingly, this was not observed with two other kinases, Pfmap1 and human MAPK1, suggesting that the Pfnek3-Pfmap2 interaction may be specific for Pfmap2 regulation. In summary, our data reveal a malarial NIMA-kinase with the potential to regulate a MAPK. Possessing biochemical properties divergent from classical mammalian NIMA-kinases, Pfnek3 could potentially be an attractive target for parasite-selective anti-malarials.  相似文献   

2.
Common mechanisms plants use to translate the external stimuli into cellular responses are the activation of mitogen-activated protein kinase (MAPK) cascade. These MAPK cascades are highly conserved in eukaryotes and consist of three subsequently acting protein kinases, MAP kinase kinase kinase (MAPKKK), MAP kinase kinase (MAPKK) and MAP kinase (MAPK) which are linked in various ways with upstream receptors and downstream targets. Plant MAPK cascades regulate numerous processes, including various environmental stresses, hormones, cell division and developmental processes. The number of MAPKKs in Arabidopsis and rice is almost half the number of MAPKs pointing important role of MAPKKs in integrating signals from several MAPKKKs and transducing signals to various MAPKs. The cross talks between different signal transduction pathways are concentrated at the level of MAPKK in the MAPK cascade. Here we discussed the insights into MAPKK mediated response to environmental stresses and in plant growth and development.  相似文献   

3.
Two members of the mitogen-activated protein kinase (MAPK) family have been previously characterized in Plasmodium falciparum, but in vitro attempts at identifying MAP kinase kinase (MAPKK) homologues have failed. Here we report the characterization of a novel plasmodial protein kinase, PfPK7, whose top scores in blastp analysis belong to the MAPKK3/6 subgroup of MAPKKs. However, homology to MAPKKs is restricted to regions of the C-terminal lobe of the kinase domain, whereas the N-terminal region is closer to fungal protein kinase A enzymes (PKA, members of the AGC group of protein kinases). Hence, PfPK7 is a 'composite' enzyme displaying regions of similarity to more than one protein kinase family, similar to a few other plasmodial protein kinases. PfPK7 is expressed in several developmental stages of the parasite, both in the mosquito vector and in the human host. Recombinant PfPK7 displayed kinase activity towards a variety of substrates, but was unable to phosphorylate the two P. falciparum MAPK homologues in vitro, and was insensitive to PKA and MEK inhibitors. Together with the absence of a typical MAPKK activation site in its T-loop, this suggests that PfPK7 is not a MAPKK orthologue, despite the fact that this enzyme is the most 'MAPKK-like' enzyme encoded in the P. falciparum genome. This is consistent with recent observations that the plasmodial MAPKs are not true orthologues of the ERK1/2, p38 or JNK MAPKs, and strengthens the evidence that classical three-component module-dependent MAPK signalling pathways do not operate in malaria parasites, a feature that has not been described in any other eukaryote.  相似文献   

4.
Summry— Numerous studies have been published these last few years on the involvement of MAP kinases in signal transduction reflecting their importance in cell cycle and cell growth controls. The identification and the characterization of their direct upstream activator has considerably enlarged our understanding of the phosphorylation network. The MAP kinase kinases (MAPKKs) are dual-specificity protein kinases which phosphorylate and activate MAP kinases. To date, MAPKK homologues have been found in yeast, invertebrates, amphibians, and mammals. Moreover, the MAPKK/MAPK phosphorylation switch constitutes a basic module activated in distinct pathways in yeast and in vertebrates. MAPKK regulation studies have led to the discovery of at least four MAPKK convergent pathways in higher organisms. One of these is similar to the yeast pheromone response pathway which includes the ste11 protein kinase. Two other pathways require the activation of either one or both of the serine/threonine kinase-encoded oncogenes c-Raf-I and c-Mos. Additionally, recent studies suggest a possible effect of the cell cycle control regulatory cyclin-dependent kinase 1 (cdc2) on MAPKK activity. Finally, MAPKKs seem to be essential transducers through which signals must pass before reaching the nucleus.  相似文献   

5.
Mitogen-activated protein kinase (MAPK) signaling cascades are evolutionarily conserved fundamental signal transduction pathways. A MAPK cascade consists of many distinct MAPKKK–MAPKK–MAPK modules linked to various upstream receptors and downstream targets through sequential phosphorylation and activation of the cascade components. These cascades collaborate in transmitting a variety of extracellular signals and in controlling cellular responses and processes such as growth, differentiation, cell death, hormonal signaling, and stress responses. Although MAPK proteins play central roles in signal transduction pathways, our knowledge of MAPK signaling in hormonal responses in rice has been limited to a small subset of specific upstream and downstream interacting targets. However, recent studies revealing direct MAPK and MAPKK interactions have provided the basis for elucidating interaction specificities, functional divergence, and functional modulation during hormonal responses. In this review, we highlight current insights into MAPKK–MAPK interaction patterns in rice, with emphasis on the biological significance of these interacting pairs in SA (salicylic acid), JA (jasmonic acid), ET (ethylene), and ABA (abscisic acid) responses, and discuss the challenges in understanding functional signal transduction networks mediated by these hormones.  相似文献   

6.
Mechanisms of regulating the Raf kinase family   总被引:28,自引:0,他引:28  
The MAP Kinase pathway is a key signalling mechanism that regulates many cellular functions such as cell growth, transformation and apoptosis. One of the essential components of this pathway is the serine/threonine kinase, Raf. Raf (MAPKK kinase, MAPKKK) relays the extracellular signal from the receptor/Ras complex to a cascade of cytosolic kinases by phosphorylating and activating MAPK/ERK kinase (MEK; MAPK kinase, MAPKK) that phosphorylates and activates extracellular signal regulated kinase (ERK; mitogen-activated protein kinase, MAPK), which phosphorylates various cytoplasmic and nuclear proteins. Regulation of both Ras and Raf is crucial in the proper maintenance of cell growth as oncogenic mutations in these genes lead to high transforming activity. Ras is mutated in 30% of all human cancers and B-Raf is mutated in 60% of malignant melanomas. The mechanisms that regulate the small GTPase Ras as well as the downstream kinases MEK and extracellular signal regulated kinase (ERK) are well understood. However, the regulation of Raf is complex and involves the integration of other signalling pathways as well as intramolecular interactions, phosphorylation, dephosphorylation and protein-protein interactions. From studies using mammalian isoforms of Raf, as well as C. elegans lin45-Raf, common patterns and unique differences of regulation have emerged. This review will summarize recent findings on the regulation of Raf kinase.  相似文献   

7.
促分裂原活化蛋白激酶(MAPK)级联途径主要MAPKKK、MAPKK和MAPK三个组分构成,彼此逐级磷酸化进而传递细胞信号。这些激酶可以将信息从感应器传递到效应器,并在胞内外信号传递中起多种作用。同时,MAPK级联途径通过相互“交谈”形成复杂的信号传递网络,从而有效地传递各种特异信号。迄今为止,拟南芥AtMPK3、AtMPK4和AtMPK6是研究最多的MAPKs。本文综述AtMPK6参与调控植物对逆境胁迫的响应,以及在生长发育过程中的作用,并介绍AtMPK6与蛋白磷酸酶之间的关系。  相似文献   

8.
丝裂原活化蛋白激酶(MAPK)超家族是介导细胞反应的重要信号系统,主要由MAPK、MAPK激酶(MAPKK)、MAPKK激酶(MAPKKK)等3类保守的蛋白激酶组成,通过级联反应不断磷酸化下游靶蛋白而参与细胞的增殖、分化、衰老、凋亡。辐射损伤使细胞膜受体和其他感应分子激活细胞内的MAPK信号通路,产生一系列应答反应。简要介绍MAPK家族中各条通路在辐射应答中的作用。  相似文献   

9.
Mitogen-activated protein kinase (MAPK) cascades are conserved signaling modules composed of three sequentially activated kinases (MAPKKK, MAPKK and MAPK). Because individual cells contain multiple MAPK cascades, mechanisms are required to ensure the fidelity of signal transmission. In yeast, external high osmolarity activates the HOG (high osmolarity glycerol) MAPK pathway, which consists of two upstream branches (SHO1 and SLN1) and common downstream elements including the Pbs2 MAPKK and the Hog1 MAPK. The Ssk2/Ssk22 MAPKKKs in the SLN1 branch, when activated, exclusively phosphorylate the Pbs2 MAPKK. We found that this was due to an Ssk2/Ssk22-specific docking site in the Pbs2 N-terminal region. The Pbs2 docking site constitutively bound the Ssk2/Ssk22 kinase domain. Docking site mutations drastically reduced the Pbs2-Ssk2/Ssk22 interaction and hampered Hog1 activation by the SLN1 branch. Fusion of the Pbs2 docking site to a different MAPKK, Ste7, allowed phosphorylation of Ste7 by Ssk2/Ssk22. Thus, the docking site contributes to both the efficiency and specificity of signaling. During these analyses, we also found a nuclear export signal and a possible nuclear localization signal in Pbs2.  相似文献   

10.
MAP kinases (MAPK) are serine/threonine kinases which are activated by a dual phosphorylation on threonine and tyrosine residues. Their specific upstream activators, called MAP kinase kinases (MAPKK), constitute a new family of dual-specific threonine/tyrosine kinases, which in turn are activated by upstream MAP kinase kinase kinases (MAPKKK). These three kinase families are successively stimulated in a cascade of activation described in various species such as mammals, frog, fly, worm or yeast.In mammals, the MAP kinase module lies on the signaling pathway triggered by numerous agonists such as growth factors, hormones, lymphokines, tumor promoters, stress factors, etc. Targets of MAP kinase have been characterize tin all subcellular compartments. In yeast, genetic epistasis helped to characterize the presence of several MAP kinase modules in the same system. By complementation tests, the relationships existing between phylogenetically distant members of each kinase family have been described. The roles of the MAP kinase cascade have been analyzed by engineering various mutations in the kinases of the module. The MAP kinase cascade has thus been implicated in higher eukaryotes in cell growth, cell fate and differentiation, and in low eukaryotes, in conjugation, osmotic stress, cell wall constrct and mitosis.  相似文献   

11.
Signaling through MAP kinase networks in plants   总被引:13,自引:0,他引:13  
Protein phosphorylation is the most important mechanism for controlling many fundamental cellular processes in all living organisms including plants. A specific class of serine/threonine protein kinases, the mitogen-activated protein kinases (MAP kinases) play a central role in the transduction of various extra- and intracellular signals and are conserved throughout eukaryotes. These generally function via a cascade of networks, where MAP kinase (MAPK) is phosphorylated and activated by MAPK kinase (MAPKK), which itself is activated by MAPKK kinase (MAPKKK). Signaling through MAP kinase cascade can lead to cellular responses including cell division, differentiation as well as response to various stresses. In plants, MAP kinases are represented by multigene families and are organized into a complex network for efficient transmission of specific stimuli. Putative plant MAP kinase cascades have been postulated based on experimental analysis of in vitro interactions between specific MAP kinase components. These cascades have been tested in planta following expression of epitope-tagged kinases in protoplasts. It is known that signaling for cell division and stress responses in plants are mediated through MAP kinases and even auxin, ABA and possibly ethylene and cytokinin also utilize a MAP kinase pathway. Most of the biotic (pathogens and pathogen-derived elicitors) including wounding and abiotic stresses (salinity, cold, drought, and oxidative) can induce defense responses in plants through MAP kinase pathways. In this article we have covered the historical background, biochemical assay, activation/inactivation, and targets of MAP kinases with emphasis on plant MAP kinases and the responses regulated by them. The cross-talk between plant MAP kinases is also discussed to bring out the complexity within this three-component module.  相似文献   

12.
Autosomal dominant mutations in the human Leucine-Rich Repeat Kinase 2 ( LRRK2 ) gene represent the most common monogenetic cause of Parkinson disease (PD) and increased kinase activity observed in pathogenic mutants of LRRK2 is most likely causative for PD-associated neurotoxicity. The sequence of the LRRK2 kinase domain shows similarity to MAP kinase kinase kinases. Furthermore, LRRK2 shares highest sequence homology with mixed linage kinases which act upstream of canonical MAPKK and are involved in cellular stress responses. Therefore, we addressed the question if LRRK2 exhibits MAPKKK activity by systematically testing MAPKKs as candidate substrates, in vitro . We demonstrate that LRRK2 variants phosphorylate mitogen-activated protein kinase kinases (MAPKK), including MKK3 -4, -6 and -7. MKKs act upstream of the MAPK p38 and JNK mediating oxidative cell stress, neurotoxicity and apoptosis. The disease-associated LRRK2 G2019S and I2020T mutations show an increased phosphotransferase activity towards MKKs correlating with the activity shown for its autophosphorylation. Our findings present evidence of a new class of molecular targets for mutant LRRK2 that link to neurotoxicity, cellular stress, cytoskeletal dynamics and vesicular transport.  相似文献   

13.
Mitogen-activated protein kinase (MAPK) cascade is a ubiquitous signaling module that transmits extracellular stimuli through the cytoplasm to the nucleus; in response to activating stimuli, MAPKs translocate into the nucleus. Mammalian MEK MAPK kinases (MAPKKs) have in their N termini an MAPK-docking site and a nuclear export signal (NES) sequence, which are known to play critical roles in maintaining ERK MAPKs in the cytoplasm of unstimulated cells. Herein, we show that the Wis1 MAPKK of the stress-activated Spc1 MAPK cascade in fission yeast also has a MAPK-docking site and an NES sequence in its N-terminal domain. Unexpectedly, an inactivating mutation to the NES of chromosomal wis1(+) does not affect the subcellular localization of Spc1 MAPK, whereas this NES mutation disturbs the cytoplasmic localization of Wis1. However, when Wis1 is targeted to the nucleus by fusing to a nuclear localization signal sequence, stress-induced nuclear translocation of Spc1 is abrogated, indicating that cytoplasmic Wis1 is required for nuclear transport of Spc1 upon stress. Moreover, we have observed that a fraction of Wis1 translocates into the nucleus in response to stress. These results suggest that cytoplasmic localization of Wis1 MAPKK by its NES is important for stress signaling to the nucleus.  相似文献   

14.
Mitogen-activated protein kinase (MAPK) and its direct activator, MAPK kinase (MAPKK), have been suggested to play a pivotal role in a variety of signal transduction pathways in higher eukaryotes. The fission yeast Schizosaccharomyces pombe carries a gene, named spk1, whose product is structurally related to vertebrate MAPK. Here we show that Spk1 is functionally related to Xenopus MAPK. (i) Xenopus MAPK partially complemented a defect in the spk1- mutant. An spk1- diploid strain could not sporulate, but one carrying Xenopus MAPK could. (ii) Both Spk1 and Xenopus MAPK interfered with sporulation if overexpressed in S. pombe cells. (iii) Spk1 underwent tyrosine phosphorylation as does Xenopus MAPK. Tyrosine phosphorylation of Spk1 appeared to be dependent upon mating signals because it occurred in homothallic cells but not in heterothallic cells. Furthermore, this phosphorylation was diminished in a byr1 disruptant strain, suggesting that spk1 lies downstream of byr1, which encodes a MAPKK homolog in S. pombe. Taken together, the MAPKK-MAPK cascade may be evolutionarily conserved in signaling pathways in yeasts and vertebrates.  相似文献   

15.
真核生物的MAPK级联信号传递途径   总被引:15,自引:0,他引:15  
MAPK级联途径在真核生物细胞的信号传递过程中起着重要的作用.MAPK级联途径由MAPK、MAPKK和MAPKKK三类酶蛋白组成.这三类蛋白质的结构非常保守,通过磷酸化作用传递各种信号.在酵母和动、植物细胞中已经发现了一系列的MAPK级联途径成员,使真核生物的信号传递途径逐渐得到阐明.  相似文献   

16.
Mammalian mitogen-activated protein kinase (MAPK) cascades control various cellular events, ranging from cell growth to apoptosis, in response to external stimuli. A conserved docking site, termed DVD, is found in the mammalian MAP kinase kinases (MAPKKs) belonging to the three major subfamilies, namely MEK1, MKK4/7, and MKK3/6. The DVD sites bind to their specific upstream MAP kinase kinase kinases (MAPKKKs), including MTK1 (MEKK4), ASK1, TAK1, TAO2, MEKK1, and Raf-1. DVD site is a stretch of about 20 amino acids immediately on the C-terminal side of the MAPKK catalytic domain. Mutations in the DVD site strongly inhibited MAPKKs from binding to, and being activated by, their specific MAPKKKs, both in vitro and in vivo. DVD site mutants could not be activated by various external stimuli in vivo. Synthetic DVD oligopeptides inhibited specific MAPKK activation, both in vitro and in vivo, demonstrating the critical importance of the DVD docking in MAPK signaling.  相似文献   

17.
Mitogen-activated protein kinase cascade is evolutionarily conserved signal transduction module involved in transducing extracellular signals to the nucleus for appropriate cellular adjustment. This cascade consists essentially of three components, a MAPK kinase kinase (MAPKKK), a MAPK kinase (MAPKK) and a MAPK connected to each other by the event of phosphorylation. These kinases play various roles in intra- and extra-cellular signaling in plants by transferring the information from sensors to responses. Signaling through MAP kinase cascade can lead to cellular responses including cell division, differentiation as well as responses to various stresses. MAPK signaling has also been associated with hormonal responses. In plants, MAP kinases are represented by multigene families and are involved in efficient transmission of specific stimuli and also involved in the regulation of the antioxidant defense system in response to stress signaling. In the current review we summarize and investigate the participation of MAPKs as possible mediators of various abiotic stresses in plants.Key words: abiotic stress, cross talk, mitogen-activated protein kinases, heat map, MAPK signaling, signal transduction, stress signaling  相似文献   

18.
MAP kinase kinase (MAPKK) was purified 30,000-fold to homogeneity from extracts of rabbit skeletal muscle and shown to be a monomeric protein of apparent molecular mass 44 kDa. MAPKK activated the 42 kDa isoform of MAP kinase by phosphorylation of Thr-183 and Tyr-185, and phosphorylated itself slowly on tyrosine, threonine and serine residues, establishing that it is a 'dual specificity' protein kinase. Peptide sequences from MAPKK were homologous to other protein serine/threonine kinases, especially to the subfamily that includes yeast protein kinases that lie upstream of yeast MAP kinase homologues in the pheromone-dependent mating pathways.  相似文献   

19.
In response to various external stimuli, MAP kinases are activated by phosphorylation on tyrosine and threonine by MAP kinase kinase (MAPKK), a dual specificity kinase. This kinase is in turn activated via Raf-1 and MAPKK kinase (MAPKKK). To determine regulatory phosphorylation sites of MAPKK, we isolated a Chinese hamster cDNA, that we epitope-tagged and expressed in fibroblasts. This hamster MAPKK (MEK1 isoform) can reactivate recombinant p44mapk when immunoprecipitated from growth factor-stimulated cells or when incubated with an active form of MAPKKK. Mutations at either of two residues that are conserved among kinases, D208N or S222A, abolished MAPKK activity. However, only S222A/MAPKK showed a reduction in phosphorylation in response to active MAPKKK and exerted a dominant negative effect on the serum-stimulated endogenous MAPKK. Finally, replacing Ser222 with Asp, a negatively charged residue, restored MAPKK activity independently of the upstream kinase. These results strongly suggest that Ser222 represents one key MAPKKK-dependent phosphorylation site switching on and off the activity of MAPKK, an event crucial for growth control.  相似文献   

20.
Classical mitogen-activated protein kinases (MAPKs) play a pivotal role in a variety of cellular signal transduction pathways. MAPKs are activated by phosphorylation at specific threonine and tyrosine residues catalyzed by upstream MAPK kinases (MAPKKs). Mutations of these two activation phosphorylation sites into acidic amino acids, however, do not convert MAPKs into constitutively active forms. Here, we report an approach to make a molecule with constitutive MAPK activity. The nuclear export signal-disrupted, constitutively active MAPKK was fused to the N-terminal end of wild-type MAPK. When the resulting fusion protein was expressed in Escherichia coli, the MAPK moiety became phosphorylated and the fusion protein was constitutively active as MAPK. Moreover, when expressed in mammalian cultured cells, the fusion protein was also activated as MAPK and was able to induce marked morphological changes in NIH-3T3 cells. These results suggest that the fusion protein can work as constitutively active MAPK and that this approach may be applicable to other members of the MAPK family to make constitutively active forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号