首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amorphous ferrous sulfide, prepared by reacting ferrous ammonium sulfate and sodium sulfide, is an excellent reducing agent for the culture of anaerobes. It reduces resazurin and reacts much more rapidly with O2 than does either soluble sulfide (HS)- or cysteine. One of the end products of the oxidation of ferrous sulfide with O2 is red and serves as an indicator for the oxygen contamination of a culture medium. Amorphous ferrous sulfide served as a suitable reducing agent for the growth of species of Methanobacterium or Clostridium. Its use is recommended for enrichment or culture of anaerobes (e.g. autotrophs, fermentative organisms) from sediments and other habitats were organic reducing agents are undesirable and where soluble sulfide might be toxic.  相似文献   

2.
Studies of the metabolism of m-cresol under methanogenic conditions have been hampered by difficulties in enriching and maintaining active consortia. With anaerobic sewage sludge as an inoculum, m-cresol degradation was shown to be inhibited by sodium sulfide at concentrations typically used to pre-reduce culture medium. In enrichment cultures, the acclimation time for m-cresol degradation was shortened from 61 days to 37 days by using diluted (24% vol/vol) sludge rather than concentrated (96%) sludge, which contained 0.8 mM total sulfide. The m-cresol degrading activity of enrichment cultures transferred to fresh medium was greater when iron nails or amorphous ferrous sulfide were used as a reducing agent in place of sodium sulfide.  相似文献   

3.
The antioxidant potency of components from Xylaria gracillima in submerged culture was investigated, employing various established in vitro systems, such as superoxide (O2?-) and hydroxyl (?OH) radical scavenging, reducing power, and ferrous ion chelating ability. Tocopherol (Ve), butylated hydroxytoluene (BHT) and ethylenediaminetetraacetic acid (EDTA) were used as positive controls. According to the results, components from X. gracillima in submerged culture showed significant effect on ferrous ion chelating ability, O2?- and ?OH radical scavenging ability at the range of concentration tested, and their highest antioxidant activities reached 89.72%, 70.90% and 77.46% respectively. The components also showed positive results of reducing power. These in vitro results suggested the possibility that components from X. gracillima in submerged culture could be effectively employed as an ingredient in healthy or functional food.  相似文献   

4.
2-Mercaptoethanol applied to the surface of agar medium had a selective antibacterial effect on Propionibacterium acnes and Propionibacterium granulosum without interfering with the growth of Peptococcus saccharolyticus or staphylococci in anaerobic cultures of skin or in pure cultures. In aerobic broth culture, 2-mercaptoethanol inhibited aerobes and stimulated anaerobes, consistent with its action as a reducing agent.  相似文献   

5.
An enrichment culture from a boreal sulfide mine environment containing a low-grade polymetallic ore was tested in column bioreactors for simulation of low temperature heap leaching. PCR-denaturing gradient gel electrophoresis and 16S rRNA gene sequencing revealed the enrichment culture contained an Acidithiobacillus ferrooxidans strain with high 16S rRNA gene similarity to the psychrotolerant strain SS3 and a mesophilic Leptospirillum ferrooxidans strain. As the mixed culture contained a strain that was within a clade with SS3, we used the SS3 pure culture to compare leaching rates with the At. ferrooxidans type strain in stirred tank reactors for mineral sulfide dissolution at various temperatures. The psychrotolerant strain SS3 catalyzed pyrite, pyrite/arsenopyrite, and chalcopyrite concentrate leaching. The rates were lower at 5 degrees C than at 30 degrees C, despite that all the available iron was in the oxidized form in the presence of At. ferrooxidans SS3. This suggests that although efficient At. ferrooxidans SS3 mediated biological oxidation of ferrous iron occurred, chemical oxidation of the sulfide minerals by ferric iron was rate limiting. In the column reactors, the leaching rates were much less affected by low temperatures than in the stirred tank reactors. A factor for the relatively high rates of mineral oxidation at 7 degrees C is that ferric iron remained in the soluble phase whereas, at 21 degrees C the ferric iron precipitated. Temperature gradient analysis of ferrous iron oxidation by this enrichment culture demonstrated two temperature optima for ferrous iron oxidation and that the mixed culture was capable of ferrous iron oxidation at 5 degrees C.  相似文献   

6.
The interactions between colorless sulfur bacteria and the chemical microgradients at the oxygen-sulfide interface were studied in Beggiatoa mats from marine sediments and in Thiovulum veils developing above the sediments. The gradients of O(2), H(2)S, and pH were measured by microelectrodes at depth increments of 50 mum. An unstirred boundary layer in the water surrounding the mats and veils prevented microturbulent or convective mixing of O(2) and H(2)S. The two substrates reached the bacteria only by molecular diffusion through the boundary layer. The bacteria lived as microaerophiles or anaerobes even under stirred, oxic water. Oxygen and sulfide zones overlapped by 50 mum in the bacterial layers. Both compounds had concentrations in the range of 0 to 10 mumol liter and residence times of 0.1 to 0.6 s in the overlapping zone. The sulfide oxidation was purely biological. Diffusion calculations showed that formation of mats on solid substrates or of veils in the water represented optimal strategies for the bacteria to achieve a stable microenvironment, a high substrate supply, and an efficient competition with chemical sulfide oxidation. The continuous gliding movement of Beggiatoa cells in mats or the flickering motion of Thiovulum cells in veils were important for the availability of both O(2) and H(2)S for the individual bacteria.  相似文献   

7.
The genus Paenibacillus was hardly described as a Fe(III)-reducing agent, only limited to reduce soluble forms or Fe inserted in poorly crystallized structures. In this study, three Paenibacillus strains capable of reducing manganese oxides in addition to iron oxides were isolated from Cameroonian and Brazilian soils. These strains reduced iron minerals from poorly crystallized 2-line ferrihydrite to well-crystallized Al-substituted and pure goethite with a significant production of soluble ferrous iron. These Paenibacillus strains, inhabitants from ferralitic temporarily waterlogged soils, could play an important role in the bioweathering of minerals and metal mobility in soils.  相似文献   

8.
Hydrogen peroxide (H2O2) is widely regarded as a cytotoxic agent whose levels must be minimized by the action of antioxidant defence enzymes. In fact, H2O2 is poorly reactive in the absence of transition metal ions. Exposure of certain human tissues to H2O2 may be greater than is commonly supposed; levels of H2O2 in the human body may be controlled not only by catabolism but also by excretion, and H2O2 could play a role in the regulation of renal function and as an antibacterial agent in the urine. Cell culture is a widely used method for the investigation of "physiological" processes such as signal transduction and regulation of gene expression, but chemical reactions involving cell culture media are rarely considered. Addition of reducing agents to commonly used cell-culture media can lead to generation of substantial amounts of H2O2. Some or all of the reported effects of ascorbic acid and polyphenolic compounds (e.g., quercetin, catechin, epigallocatechin, epigallocatechin gallate) on cells in culture may be due to H2O2 generation by interaction of these compounds with cell culture media.  相似文献   

9.
Activities of enzymes which mediate the oxidation of thiosulfate to sulfate and the assimilation of sulfate to sulfide were assayed in various cell-free fractions of Thiobacillus ferrooxidans grown autotrophically on either ferrous iron or thiosulfate or heterotrophically on glucose. There was no activity of the thiosulfate-oxidizing enzyme in extracts of bacteria grown with ferrous iron. Comparable activities for ATP-sulfurylase (EC 2.7.7.4), ADP-sulfurylase (EC 2.7.7.5), and adenylate kinase (EC 2.7.4.3) were found in the bacteria grown autotrophically with either Fe2+ or S2O32- or heterotrophically with glucose.  相似文献   

10.
The group of anaerobic microorganisms collectively referred to as Sulphate Reducing Bacteria (SRB) is a major concern in the Oil and Gas industry primarily because of this group’s ability to generate substantial amounts of hydrogen sulfide and insoluble ferrous sulfide in the presence of iron. Traditionally, the Oil industry has relied on two recommended standard practices i.e. API RP-38 and NACE TM0194 for the detection and enumeration of culturable sulphate reducing bacteria for routine field monitoring. API RP-38 has now been withdrawn without any replacement. Data generated by nonstandard molecular microbiological methods which are still in the developmental stage cannot be compared with the accepted control levels for SRBs in oil field systems, monitored over the years with viable culture methods. Culture based methodologies are still important tools for the study of SRB, as they help in understanding the physiological characteristics which may be similar or different across phylogenetically similar bacteria. This review article therefore tries to highlight the continued importance of culture dependent methods for detection and enumeration of SRB in Oil field systems and the need for further development of an universal standard culture based method for studying SRB in the Oil and Gas industry.  相似文献   

11.
Thioalkalivibrio denitrificans is the first example of an alkaliphilic, obligately autotrophic, sulfur-oxidizing bacterium able to grow anaerobically by denitrification. It was isolated from a Kenyan soda lake with thiosulfate as electron donor and N2O as electron acceptor at pH 10. The bacterium can use nitrite and N2O, but not nitrate, as electron acceptors during anaerobic growth on reduced sulfur compounds. Nitrate is only utilized as nitrogen source. In batch culture at pH 10, rapid growth was observed on N2O as electron acceptor and thiosulfate as electron donor. Growth on nitrite was only possible after prolonged adaptation of the culture to increasing nitrite concentrations. In aerobic thiosulfate-limited chemostats, Thioalkalivibrio denitrificans strain ALJD was able to grow between pH values of 7.5 and 10.5 with an optimum at pH 9.0. Growth of the organism in continuous culture on N2O was more stable and faster than in aerobic cultures. The pH limit for growth on N2O was 10.6. In nitrite-limited chemostat culture, growth was possible on thiosulfate at pH 10. Despite the observed inhibition of N2O reduction by sulfide, the bacterium was able to grow in sulfide-limited continuous culture with N2O as electron acceptor at pH 10. The highest anaerobic growth rate with N2O in continuous culture at pH 10 was observed with polysulfide (S8(2-)) as electron donor. Polysulfide was also the best substrate for oxygen-respiring cells. Washed cells at pH 10 oxidized polysulfide to sulfate via elemental sulfur in the presence of N2O or O2. In the absence of the electron acceptors, elemental sulfur was slowly reduced which resulted in regeneration of polysulfide. Cells of strain ALJD grown under anoxic conditions contained a soluble cd1-like cytochrome and a cytochrome-aa3-like component in the membranes.  相似文献   

12.
Summary Bioleaching of manganese (IV) oxide with Thiobacillus thiooxidans has been studied in media with and without sulfur, ferrous sulfide and ferrous sulfate. The knowledge of the role played by the bacteria and the reducing substances suggest that the leaching of manganese (IV) ores through the use of thiobacteria is only justified when suitable amounts of sulfur or metal sulfides are present.  相似文献   

13.
Dibenzyldisulfide was reductively degraded by a methanogenic mixed culture derived from a sewage digestor. Toluene was produced with benzyl mercaptan as an intermediate in sulfur-limited medium. Toluene production was strictly associated with biological activity; however, the reducing agent for the culture medium, Ti(III), was partially responsible for production of benzyl mercaptan. Sulfide was not detected. Additions of sodium sulfide did not inhibit toluene production. Additions of 2-bromoethane sulfonic acid prevented methanogenesis but did not adversely affect toluene yields.  相似文献   

14.
Efforts in optimizing reducing agents, cysteine-HCl.H2O and sodium sulfide in order to attain satisfactory responses during acetic acid fermentation have been carried out in this study. Cysteine-HCl.H2O each with five concentrations (0.00-0.50 g/L) was optimized one at a time and followed by sodium sulfide component (0.00-0.50 g/L). Response surface methodology (RSM) was used to determine the optimum concentrations of cysteine-HCl.H2O and sodium sulfide. The statistical analysis showed that the amount of cells produced and efficiency in CO conversion were not affected by sodium sulfide concentration. However, sodium sulfide is required as it does influence the acetic acid production. The optimum reducing agents for acetic acid fermentation was at 0.30 g/L cysteine-HCl.H2O and sodium sulfide respectively and when operated for 60 h cultivation time resulted in 1.28 g/L acetic acid production and 100% CO conversion.  相似文献   

15.
The antioxidant activity of glucosamine hydrochloride in vitro   总被引:1,自引:0,他引:1  
Xing R  Liu S  Guo Z  Yu H  Li C  Ji X  Feng J  Li P 《Bioorganic & medicinal chemistry》2006,14(6):1706-1709
The antioxidant potency of chitin derivative-glucosamine hydrochloride was investigated employing various established in vitro systems, such as superoxide (O2*-)/hydroxyl (*OH)-radical scavenging, reducing power, and ferrous ion chelating potency. As expected, we obtained several satisfying results, as follows: first, glucosamine hydrochloride had pronounced scavenging effect on superoxide radical. For example, the O2*- scavenging activity of glucosamine hydrochloride was 83.74% at 0.8 mg/mL. Second, the *OH scavenging activity of glucosamine hydrochloride was also strong and was about 54.89% at 3.2 mg/mL. Third, the reducing power of glucosamine hydrochloride was more pronounced. The reducing power of glucosamine hydrochloride was 0.632 at 0.75 mg/mL. However, ferrous ion-chelating potency was soft. Furthermore, ferrous ion-chelating potency, the scavenging rate of radical, and the reducing power of glucosamine hydrochloride increased with their increasing concentration, and they were concentration dependent. The multiple antioxidant activity of glucosamine hydrochloride was evident as it showed considerable reducing power, superoxide/hydroxyl-radical scavenging ability. These in vitro results suggest the possibility that glucosamine hydrochloride could be effectively employed as an ingredient in health or functional food, to alleviate oxidative stress.  相似文献   

16.
The extreme sensitivity of many Archaea to oxygen is a major obstacle for their cultivation in the laboratory and the development of archaeal genetic exchange systems. The technique of Balch and Wolfe (1976) is suitable for the cultivation of anaerobic Archaea but involves time-consuming procedures such as the use of air locks and glove boxes. We describe here a procedure for the cultivation of anaerobic Archaea that is more convenient and faster and allows the preparation of liquid media without the use of an anaerobic chamber. When the reducing agent sodium sulfide (Na2S) was replaced by sodium sulfite (Na2SO3), anaerobic media could be prepared without protection from oxygen outside an anaerobic chamber. Exchange of the headspace of serum bottles by appropriate gases was sufficient to maintain anaerobic conditions in the culture media. Organisms that were unable to utilize sulfite as a source for cellular sulfur were supplemented with hydrogen sulfide. H2S was simply added to the headspace of serum bottles by a syringe. The use of H2S as a source for sulfur minimized the precipitation of cations by sulfide. Representatives of 12 genera of anaerobic Archaea studied here were able to grow in media prepared by this procedure. For the extremely oxygen-sensitive organism Methanococcus thermolithotrophicus, we show that plates could be prepared outside an anaerobic chamber when sulfite was used as reducing agent. The application of this method may faciliate the cultivation and handling of extreme anaerobic Archaea considerably. Received: January 4, 2000 / Accepted: April 5, 2000  相似文献   

17.
Growth of sulfate-reducing bacteria with solid-phase electron acceptors   总被引:1,自引:0,他引:1  
Hannebachite (CaSO3 x 0.5H2O), gypsum (CaSO4 x 2H2O), anglesite (PbSO4), and barite (BaSO4) were tested as electron acceptors for sulfate-reducing bacteria with lactate as the electron donor. Hannebachite and gypsum are commonly associated with flue gas desulfurization products, and anglesite is a weathering product found in lead mines. Barite was included as the most insoluble sulfate. Growth of sulfate-reducing bacteria was monitored by protein and sulfide (dissolved H2S and HS-) measurements. Biogenic sulfide formation occurred with all four solid phases, and protein data confirmed that bacteria grew under these electron acceptor conditions. Sulfide formation from gypsum was almost comparable in rate and quantity to that produced from soluble sulfate salt (Na2SO4); hannebachite reduction to sulfide was not as fast. Anglesite as the electron acceptor was also reduced to sulfide in the solution phase and galena (PbS) was detected in solids retrieved from spent cultures. Barite as the electron acceptor supported the least amount of growth and H2S formation. The results demonstrate that low-solubility crystalline phases can be biologically reactive under reducing conditions. Furthermore, the results demonstrate that galena precipitation through sulfide production by sulfate-reducing bacteria serves as a lead enrichment mechanism, thereby also alleviating the potential toxicity of lead. In view of the role of acidophilic thiobacilli in the oxidation of sulfides, the present work accentuates the role of anaerobic and aerobic microbes in the biogeochemical cycling of solid-phase sulfates and sulfides.  相似文献   

18.
Hydrogen sulfide (H2S) inhibits the last step of the denitrification process, i.e. the reduction of nitrous oxide (N2O) to dinitrogen gas (N2), both in natural environments (marine sediments) and industrial processes (activated sludge, methanogenic sludge, BioDeNOx process). In a previously published study, we showed that the inhibitory effect of sulfide to N2O reduction in mixed microbial communities is reversible and can be counteracted by dosing trace amounts of copper. It remained, however, unclear if this was due to copper sulfide precipitation or a retrofitting of the copper containing N2O-reductase (N2OR). The present study aimed to elucidate the mechanism of the restoration of sulfide-inhibited N2O reducing activity by metal addition to a pure Pseudomonas aeruginosa culture. This was done by using other metals (zinc, cobalt and iron) in comparison with copper. Zinc and cobalt clearly alleviated the sulfide inhibition of N2OR to the same extent as copper and the activity restoration was extremely fast (within 15 min, Fig. 3) for zinc, cobalt and copper. This suggests that the alleviation of the inhibitory effect of sulfide is due to metal sulfide precipitation and thus not exclusively limited to Cu. This work also underlines the importance of metal speciation: supply of iron did not restore the N2OR activity because it was precipitated by the phosphates present in the medium and thus could not precipitate the sulfide.  相似文献   

19.
Separate pathways for transport of nontransferrin ferric and ferrous iron into tissue cultured cells were demonstrated. Neither the ferric nor ferrous pathway was shared with either zinc or copper. Manganese shared the ferrous pathway but had no effect on cellular uptake of ferric iron. We postulate that ferric iron was transported into cells via beta(3)-integrin and mobilferrin (IMP), whereas ferrous iron uptake was facilitated by divalent metal transporter-1 (DMT-1; Nramp-2). These conclusions were documented by competitive inhibition studies, utilization of a beta(3)-integrin antibody that blocked uptake of ferric but not ferrous iron, development of an anti-DMT-1 antibody that blocked ferrous iron and manganese uptake but not ferric iron, transfection of DMT-1 DNA into tissue culture cells that showed enhanced uptake of ferrous iron and manganese but neither ferric iron nor zinc, hepatic metal concentrations in mk mice showing decreased iron and manganese but not zinc or copper, and data showing that the addition of reducing agents to tissue culture media altered iron binding to proteins of the IMP and DMT-1 pathways. Although these experiments show ferric and ferrous iron can enter cells via different pathways, they do not indicate which pathway is dominant in humans.  相似文献   

20.
Investigation of human and bovine lenses has demonstrated the presence of a methionine sulfoxide (Met(O)) peptide reductase activity. The reductase can use either dithiothreitol or thioredoxin but not glutathione as a reducing agent. The enzyme is present primarily in the water soluble fraction. The highest specific activity is in the outer epithelial layer with decreasing activity in the inner layers of the tissue. The known high level of methionine sulfoxide residues in cataractous lens protein is not due to a decreased level of Met (O)-peptide reductase itself since a comparison of normal and cataractous human lenses showed no statistically significant decrease in reductase activity in the cataract population. However, it is not known whether the reducing system for Met (O)-peptide reductase (probably the thioredoxin system) is deficient in cataractous lenses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号