首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nitric oxide (NO) is a free radical that functions as a cell signaling molecule but at high concentrations can be toxic. It is formed from arginine, which is consumed by the mouse blastocyst, but its effect on early embryo development has been little studied. In this study, the role of NO in mouse preimplantation development has been examined in terms of developmental rate and oxidative metabolism. Zygotes were cultured in one of four media; potassium simplex optimization medium (KSOM), KSOM with amino acids (KSOMaa), KSOM without glutamine (KSOM-glut), or KSOM with 0.5 mM arginine (KSOMarg) +/- l-NAME (a specific inhibitor of NO production). End points were Day 4 blastocyst rates, cell counts determined using bisbenzimide and oxygen consumption. In KSOM and KSOM-glut, the blastocyst rate was decreased by 1 mM l-NAME from 50.2% +/- 3.1% and 37.4% +/- 4.5% to 6% +/- 3% and 0%, respectively. In KSOMaa, cavitation rates were unaltered but the blastocysts contained fewer cells (P < 0.001). Blastocysts cultured in KSOM and KSOM-glut consumed significantly more oxygen than those cultured in KSOMaa (P < 0.001 and P < 0.05, respectively). However, the addition of 0.1 mM or 1 mM l-NAME to KSOMaa significantly increased the amount of oxygen consumed (P < 0.05 and P < 0.001, respectively). The data suggest a physiological role for NO in mouse preimplantation metabolism and development. One possibility is that NO may limit oxygen consumption at the blastocyst stage at the level of mitochondrial cytochrome c oxidase.  相似文献   

2.
3.
4.
Nitric oxide and nitric oxide synthase activity in plants   总被引:26,自引:0,他引:26  
Research on NO in plants has gained considerable attention in recent years mainly due to its function in plant growth and development and as a key signalling molecule in different intracellular processes in plants. The NO emission from plants is known since the 1970s, and now there is abundant information on the multiple effects of exogenously applied NO on different physiological and biochemical processes of plants. The physiological function of NO in plants mainly involves the induction of different processes, including the expression of defence-related genes against pathogens and apoptosis/programmed cell death (PCD), maturation and senescence, stomatal closure, seed germination, root development and the induction of ethylene emission. NO can be produced in plants by non-enzymatic and enzymatic systems. The NO-producing enzymes identified in plants are nitrate reductase, and several nitric oxide synthase-like activities, including one localized in peroxisomes which has been biochemically characterized. Recently, two genes of plant proteins with NOS activity have been isolated and characterized for the first time, and both proteins do not have sequence similarities to any mammalian NOS isoform. However, different evidence available indicate that there are other potential enzymatic sources of NO in plants, including xanthine oxidoreductase, peroxidase, cytochrome P450, and some hemeproteins. In plants, the enzymatic production of the signal molecule NO, either constitutive or induced by different biotic/abiotic stresses, may be a much more common event than was initially thought.  相似文献   

5.
6.
7.
Cytoskeletal regulation of nitric oxide synthase   总被引:7,自引:0,他引:7  
  相似文献   

8.
The inducible isoform of nitric oxide synthase (iNOS) and three zinc tetrathiolate mutants (C104A, C109A, and C104A/C109A) were expressed in Escherichia coli and purified. The mutants were found by ICP-AES and the zinc-specific PAR colorimetric assay to be zinc free, whereas the wild-type iNOS zinc content was 0.38 +/- 0.01 mol of Zn/mol of iNOS dimer. The cysteine mutants (C104A and C109A) had an activity within error of wild-type iNOS (2.24 +/- 0.12 micromol of NO min(-1) mg(-1)), but the double cysteine mutant had a modestly decreased activity (1.75 +/- 0.14 micromol of NO min(-1) mg(-1)). To determine if NO could stimulate release of zinc and dimer dissociation, wild-type protein was allowed to react with an NO donor, DEA/NO, followed by buffer exchange. ICP-AES of samples treated with 10 microM DEA/NO showed a decrease in zinc content (0.23 +/- 0.01 to 0.09 +/- 0.01 mol of Zn/mol of iNOS dimer) with no loss of heme iron. Gel filtration of wild-type iNOS treated similarly resulted in approximately 20% more monomeric iNOS compared to a DEA-treated sample. Only wild-type iNOS had decreased activity (42 +/- 2%) after reaction with 50 microM DEA/NO compared to a control sample. Using the biotin switch method under the same conditions, only wild-type iNOS had increased levels of S-biotinylation. S-Biotinylation was mapped to C104 and C109 on wild-type iNOS using LysC digestion and MALDI-TOF/TOF MS. Immunoprecipitation of iNOS from the mouse macrophage cell line, RAW-264.7, and the biotin switch method were used to confirm endogenous S-nitrosation of iNOS. The data show that S-nitrosation of the zinc tetrathiolate cysteine results in zinc release from the dimer interface and formation of inactive monomers, suggesting that this mode of inhibition might occur in vivo.  相似文献   

9.
The interdependent relationships among nitric oxide synthase (NOS), its coenzyme, cofactors and nitric oxide (NO(free radical) were studied using electron paramagnetic resonance spectroscopy. It was found that superoxide-dependent hydroxyl free radical (OH(free radical), derived from NOS coenzyme and cofactors, inhibits NOS activity, and that endogenous NO(free radical) generated by NOS scavenges OH(free radical) and protects NOS function. These results reveal a new role for NO(free radical) that may be important in NOS function and cellular free radical homeostasis.  相似文献   

10.
11.
Dou D  Gao YS 《生理科学进展》2005,36(4):345-348
血管内皮型一氧化氮合酶(eNOS)的调控机制可分为基因表达水平调节和蛋白水平调节两个方面。其中,eNOS的基因表达水平调节主要包含启动子的调节和mRNA的稳定性调节两方面。而eNOS的蛋白水平调节又可分为三个方面:eNOS细胞内转位的调节机制;eNOS复合体形成的调节机制;eNOS氨基酸残基磷酸化的调节机制。eNOS的分子调控机制与临床疾病的发生、发展及其治疗有着密切的关系,故对eNOS分子调控机制的进一步了解有着非常重要的意义。  相似文献   

12.
The radical gas nitric oxide (NO) is synthesized by nitric oxide synthase (NOS) from l-arginine and molecular oxygen. Nitric oxide is an important signaling molecule in invertebrate and vertebrate systems. Previously we have shown that NOS is localized to more tissues in Brugia malayi than has been reported in Ascaris suum. In this paper, we analyze the distribution of NOS in Acanthocheilonema viteae, a filarial nematode that differs from B. malayi in that A. viteae females release microfilariae without a sheath. A. viteae is also one of a few filarial parasites without the Wolbachia intracellular endosymbiont. By use of a specific antibody, NOS was demonstrated in extracts of A. viteae and Dirofilaria immitis. The localization pattern of NOS in A. viteae was similar to that seen in B. malayi, with the enzyme localized to the body wall muscles of both sexes, developing spermatozoa, intrauterine sperm, and early embryos. By use of DAF-2, a fluorescent indicator specific for nitric oxide, the embryos of B. malayi and A. viteae were demonstrated to produce NO ex utero. The near identical staining patterns seen in A. viteae and B. malayi argue that NO is not produced by Wolbachia, nor is it produced by the nematodes in response to the infection. Localization of NOS to the sperm of filarial nematodes suggests a role for NO during fertilization as has been described for sea urchin and ascidian fertilization. Demonstration of the activity of embryonic NOS supports our earlier hypothesis that NO is a signaling molecule during embryogenesis in filarial nematodes.  相似文献   

13.
A protein inhibitor of neuronal nitric oxide synthase (nNOS) was identified and designated as PIN. PIN was reported to inhibit nNOS activity in cell lysates through disruption of enzyme dimerization. However, there has been lack of direct characterization of the effect of PIN on NO production from purified nNOS. Furthermore, nNOS also generates superoxide (.O(2)(-)) at low levels of L-arginine. It is unknown whether PIN affects .O(2)(-) generation from nNOS. Therefore, we performed direct measurements of the effects of PIN on NO and .O(2)(-) generation from purified nNOS using electron paramagnetic resonance spin trapping techniques. nNOS was isolated by affinity chromatography and a fusion protein CBP-PIN was used to probe the effect of PIN. While the tag CBP did not affect nNOS activity, CBP-PIN caused a dose-dependent inhibition on both NO and L-citrulline production. In the absence of L-arginine, strong .O(2)(-) generation was observed from nNOS, and this was blocked by CBP-PIN in a dose-dependent manner. With low-temperature polyacrylamide gel electrophoresis, neither CBP nor CBP-PIN was found to affect nNOS dimerization. Thus, these results suggested that PIN not only inhibits NO but also .O(2)(-) production from nNOS, and this is through a mechanism other than decomposition of nNOS dimers.  相似文献   

14.
iNOS-mediated nitric oxide production and its regulation   总被引:29,自引:0,他引:29  
Aktan F 《Life sciences》2004,75(6):639-653
  相似文献   

15.
During spermatogenesis, preleptotene and leptotene spermatocytes, residing in the basal compartment of the seminiferous epithelium, must traverse the blood-testis barrier (BTB) to gain entry to the adluminal compartment for further development at late stage VIII and early stage IX of the epithelial cycle. As such, the timely opening and closing of the BTB is crucial to spermatogenesis. A compromise in this process can lead to infertility. Moreover, the BTB is unique in its relative localization in the seminiferous epithelium compared to the tight junctions (TJs) found in other epithelia. Sertoli cell TJs are situated near the basal lamina in the testis, closest to the basement membrane (a modified form of extracellular matrix [ECM]), unlike TJs found in other epithelia, which are found nearest the apical portion of an epithelium, farthest away from ECM. Needless to say, BTB function in the testis is maintained by intricate regulatory mechanisms. In addition to hormones and cytokines, nitric oxide (NO) was recently shown to be a putative TJ regulator in the testis. Perhaps equally important, TJ dynamics in the testis were shown to be regulated, at least in part, by occludin, a TJ-integral membrane protein, via the NO/soluble guanylate cyclase/cGMP/protein kinase G signaling pathway. This minireview summarizes recent advances in the field regarding the role of NO in testicular function, with special emphasis regarding its role in TJ dynamics and the likely implications of these studies for male contraceptive development.  相似文献   

16.
This study examined the notion that exogenous generation of nitric oxide (NO) modulates NOS gene expression and activity. Bovine pulmonary artery endothelial cells (BPAEC) were treated with the NO donors, 1 mM SNAP (S-nitroso-N-acetylpenicillamine), 0.5 mM SNP (sodium nitroprusside) or 0.2 microM NONOate (spermine NONOate) in medium 199 containing 2% FBS. Controls included untreated cells and cells exposed to 1 mM NAP (N-acetyl-D-penicillamine). NOS activity was assessed using a fibroblast-reporter cell assay; intracellular Ca2+ concentrations were assessed by Fura-2 microfluorometry; and NO release was measured by chemiluminescence. Constitutive endothelial (e) and inducible (i) NOS gene and protein expression were examined by northern and western blot analysis, respectively. Two hours exposure to either SNAP or NONOate caused a significant elevation in NO release from the endothelial cells (SNAP = 51.4 +/- 5.9; NONOate = 23.8 +/- 4.2; control = 14.5 +/- 2.8 microM); but A23187 (3 microM)-stimulated NO release was attenuated when compared to controls. Treatment with either SNAP or NONOate for 2 h also resulted in a significant increase in NOS activity in endothelial homogenates (SNAP = 23.6 +/- 2.5; NONOate= 29.8 +/- 7.7; control = 14.5 +/- 2.5fmol cGMP/microg per 10(6) cells). Exposure to SNAP and SNP, but not NONOate, for 1 h caused an increase in intracellular calcium. Between 4 and 8 h, SNAP and NONOate caused a 2- to 3-fold increase in eNOS, but not iNOS, gene (P < 0.05) and protein expression. NAP had little effect on either eNOS gene expression, activity or NO production. Our data indicate that exogenous generation of NO leads to a biphasic response in BPAEC, an early increase in intracellular Ca2+, and increases in NOS activity and NO release followed by increased expression of the eNOS gene, but not the iNOS gene. We conclude that eNOS gene expression and activity are regulated by a positive-feedback regulatory action of exogenous NO.  相似文献   

17.
Preimplantation mouse embryos were exposed to nitrous oxide for 30 min to determine its effects on subsequent development after short durations of exposure. Two-cell mouse embryos were exposed to 60% nitrous oxide/40% oxygen at 6-7 h, 3-4 h, or 0-1 h prior to the expected onset of their first cleavage in vitro, or at the 4-cell or morula stages. Effects of nitrous oxide were not observed except in 2-cell embryos treated within 4 h of the expected in vitro cleavage. At 3-4 h and 0-1 h prior to the onset of cleavage, exposure to 60% nitrous oxide/40% oxygen resulted in blastocyst development rates of 27.7% and 4.7%, respectively, while control rates ranged from 75% to 77%. The majority of affected embryos were halted at the 2-cell stage before completing cell division. Similar effects were obtained with 80% nitrous oxide/20% oxygen. Thus, we conclude that brief exposure of mouse preimplantation embryos to nitrous oxide may be deleterious to subsequent embryo cleavage, but this effect is highly dependent on the developmental stage at which exposure occurs.  相似文献   

18.
Nitric oxide has been extensively studied as an effector molecule of the host immune response against both protozoa and helminths, but parasites can also produce this molecule, through the action of nitric oxide (NO) synthases or NO synthases-like enzymes. The aim of this study was to verify the possible production of NO by Trichinella britovi L(1) larvae and the enzymes involved in this process. The NO synthase immunoreactivity and putative nitric oxide synthase-activity was analysed using antibodies to mammalian NO synthase III and to nitrotyrosine with immunohistochemistry, gold immunocytochemistry and immunoblot analysis and NADPH-diaphorase histochemistry. Our results show that T. britovi L(1) larvae possess an enzymatic activity capable of producing NO. The localisation of this activity, according to the NADPH-diaphorase histochemistry, is both at the cuticular and the internal level. This localisation is confirmed by nitrotyrosine immunohistochemistry both under optical and electron microscopy. Using the NO synthase III antibody, a similar pattern of labelling was found: in particular, electron microscopy showed a localisation of this immunoreactivity in the cuticle and in the stichocytes, where only the alpha2 granules contained gold particles, mainly concentrated at their periphery. Four polypeptides reacting to the NO synthase III antibody are revealed by Western blotting. Their molecular weight ranged from 38 to 50 kDa. A significant reaction of the anti-nitrotyrosine antibody to polypeptides 95, 60, 48 and 39 kDa from the same sample suggested the presence of different nitrosylated proteins.  相似文献   

19.
20.
Bone resorption by osteoclasts is modified by agents that affect cyclic guanosine monophosphate (cGMP), but their relative physiological roles, and what components of the process are present in osteoclasts or require accessory cells such as osteoblasts, are unclear. We studied cGMP regulation in avian osteoclasts, and in particular the roles of nitric oxide and natriuretic peptides, to clarify the mechanisms involved. C-type natriuretic peptide drives a membrane guanylate cyclase, and increased cGMP production in mixed bone cells. However, C-type natriuretic peptide did not increase cGMP in purified osteoclasts. By contrast, osteoclasts did produce cGMP in response to nitric oxide (NO) generators, sodium nitroprusside or 1-hydroxy-2-oxo-3,3-bis(3-aminoethyl)-1-triazene. These findings indicate that C-type natriuretic peptide and NO modulate cGMP in different types of bone cells. The activity of the osteoclast centers on HCI secretion that dissolves bone mineral, and both NO generators and hydrolysis-resistant cGMP analogues reduced bone degradation, while cGMP antagonists increased activity. NO synthase agonists did not affect activity, arguing against autocrine NO production. Osteoclasts express NO-activated guanylate cyclase and cGMP-dependent protein kinase (G-kinase). G-kinase reduced membrane HCI transport activity in a concentration-dependent manner, and phosphorylated a 60-kD osteoclast membrane protein, which immunoprecipitation showed is not an H+-ATPase subunit. We conclude that cGMP is a negative regulator of osteoclast activity. cGMP is produced in response to NO made by other cells, but not in response to C-type natriuretic peptide. G-kinase modulates osteoclast membrane HCI transport via intermediate protein(s) and may mediate cGMP effects in osteoclasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号