首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the mechanism by which the polyomavirus large T antigen (T-Ag) promotes amplification of integrated viral sequences, we constructed a rat cell line, Hy2-ts5, carrying two different inserts of polyomavirus DNA. The first insert, designated the middle T (pmt) locus, was devised to analyze homologous recombination between two defective copies of pmt lying 3.3 kb apart on the same chromosome. Reconstitution of a functional pmt by spontaneous recombination occurred at a rate of about 2 x 10(-7) per cell generation. The second locus contained the polyomavirus large T (plt) gene carrying a temperature-sensitive mutation and producing a nonfunctional large T-Ag at 39 degrees C. A shift to the permissive temperature for as little as 24 h induced the production of a functional large T-Ag which, in turn, promoted homologous recombination in the pmt locus at a rate close to 1.0 per cell generation. The particularity of this system is that it allowed recombination products to be analyzed as early as a single cell doubling following the initial recombinational event. Amplification occurred by successive duplications of a discrete sequence in the viral insert. Unequal sister chromatid exchange was ruled out as the recombination mechanism promoted by large T-Ag. Instead, we proposed a model of nonconservative recombination involving mispairing between homologous sequences.  相似文献   

2.
To investigate the mechanism by which the large T antigen (T-Ag) of polyomavirus and simian virus 40 can promote recombination in mammalian cells, we analyzed homologous recombination events occurring between two defective copies of the polyomavirus middle T (pmt) oncogene lying in close proximity on the same chromosome in a rat cell line. Reconstitution of a functional pmt gene by spontaneous recombination occurred at a rate of about 2 x 10(-7) per cell generation. Introduction of the polyomavirus large T (plt) oncogene into the cell line by DNA transfection promoted recombination very efficiently, with rates in the range of 10(-1) to 10(-2) per cell generation. Recombination was independent of any amplification of viral sequences and could even be promoted by the large T-Ag from simian virus 40, which cannot activate polyomavirus DNA replication. To explain the role of large T-Ag, we propose a novel mechanism of nonconservative recombination involving slipped-strand mispairing between the two viral repeats followed by gap repair synthesis.  相似文献   

3.
L St-Onge  L Bouchard    M Bastin 《Journal of virology》1993,67(4):1788-1795
We investigated the mechanism by which the large T antigen (T-Ag) of both polyomavirus and simian virus 40 (SV40) promotes homologous recombination in mammalian cells. To this end, we constructed a rat cell line, designated Hy5, that carries two mutated copies of the polyomavirus middle-T-Ag (pmt) oncogene lying as direct repeats on the same chromosome. The structure of the viral insert was devised so that intrachromosomal recombination between the pmt repeats reconstitutes wild-type pmt and yields cell populations amenable to selection for the transformed phenotype. Correction of pmt by gene conversion occurred spontaneously at a rate of ca. 1.7 x 10(-7) per cell generation and was masked by another recombination event that also led to the transformation of the Hy5 cell line. This event was identified as chromosomal inversion and overexpression of the upstream pmt copy as a result of homologous recombination between adjacent pBR322 sequences. Both events were promoted by the polyomavirus large T-Ag by several orders of magnitude, as well as by mutants defective in the initiation of viral DNA synthesis. Large T-Ag also promoted reconstitution of wild-type pmt by unequal exchange between sister chromatids, yielding structures compatible with some of the chromosomal aberrations commonly observed in transformed cells. Our data indicate that large T-Ag has a recombination-promoting activity that can be dissociated from its replicative function.  相似文献   

4.
A portion of purA16 chromosomal locus of Bacillus subtilis was cloned into Rec+ cells of this microorganism with pBD12 plasmid (carrying chloramphenicol and kanamycin resistance determinants) serving as a vector. The hybrid plasmids were stably maintained in cells grown on media supplemented with antibiotics and were lost from cells in the absence of drugs. The cloned fragment could incorporate into the chromosome some with a frequency of 10(-2) per cell per generation. A clone carrying the hybrid plasmid inserted into the chromosome was detected.  相似文献   

5.
Cell lines established after transfer into FR3T3 rat fibroblast cells of 'immortalizing' oncogenes (plt gene (large T protein) of polyoma virus, v-myc gene of MC29 virus, rearranged forms of c-myc) exhibited increased rates of sister chromatid exchange (SCE). This was observed neither in cells which expressed one of the oncogenes responsible for the terminal stages of tumorigenic transformation (polyoma virus pmt (middle T protein), mutated ras genes), nor in cell lines carrying oncogenes of both types. Abnormal chromosome numbers were observed in cell lines expressing plt or myc, but not after transformation by pmt or ras oncogenes.  相似文献   

6.
This work presents a model describing the rate of recombination between homologous segments of DNA stably integrated into the genome of cultured cells. The model has been applied to rat cell lines carrying the polyomavirus middle T oncogene and a functional origin of viral DNA replication. Introduction of the gene coding for the polyoma large T antigen or the SV40 large T antigen into cells by DNA transfection promotes homologous recombination in the resident viral inserts with rates varying between 0.1 x 10(-3) and 3.7 x 10(-1) per cell generation.  相似文献   

7.
J Morrow 《Mutation research》1975,33(2-3):367-372
Recent estimates of spontaneous mutation rates in man, in which previous sources of bias are corrected, indicate that the average is about 3 x 10(-7) per locus per generation, a much lower figure than is generally accepted. Assuming 100 to 1000 cell divisions between each gametic union, this information predicts that cellular mutation rats should be in the order of 10(-9) per locus per generation. Since none of the mutation rates measured in cultured cells are this low (average for seven characters equals 7 x 10(-7)), the size of mutation rates in cultured cells cannot be used to substantiate the claim of epigenetic inheritance. Furthermore, this information suggests that in multicellular organisms the germinal tissue is sequestered from mutagenic insult or subjected to selection against mutational damage so as to keep the genetic load of a species at a tolerable level. Alternatively, cell culture environments may present an extremely abnormal situation to somatic cells, thus elevating the mutation rate.  相似文献   

8.
9.
A host-vector system for an Arthrobacter species   总被引:1,自引:0,他引:1  
An efficient host-vector system has been developed for an industrial strain of Arthrobacter sp. (NRRL B3728)used for glucose isomerase production. Protoplasts of Arthrobacter were generated by treating the cells with 0.5 mg lysozyme ml(-1) for 60 min in a solution containing 0.5 M-sucrose. Around 30% of the protoplasts regenerated on agar containing 0.5 M-sodium succinate as osmotic stabilizer. Three hybrid vectors, PBL2100, pCG1100 and pCG2100, were constructed by combining the Escherichia coli plasmid pBR322, a kanamycin- resistance gene from pNCAT4 and a cryptic plasmid from either Brevibacterium lactofermentum NCIB 9567 or Corynebacterium glutamicum NCIB 10026. These vectors transformed the protoplasts and expressed the kanamycin-resistance gene for screening. They contain a number of unique restrictions sites for cloning of foreign DNA. The transformation frequency of this system was 10(5)-10(6) transformants per micrograms of input plasmid and ws constant up to 5 micrograms of DNA. the probability of a plasmid transforming a plasmid transforming a protoplast was in the range 10(-5)-10(-6). The copy number of pBL2100 was around 5 per cell and those of pCG1100 and pCG2100 were around 33 per cell. Deletion mutants were generated from pCG2100. One of them, pCG2120, was able to transform protoplasts of strain NRRL B3728. Plasmids pBL2100 and pCG2100 were structurally stable in cells of NRRL B3728 but could not be maintained in non-selective medium. They segregated at a rate of 12.2 and 2.2% per generation respectively.  相似文献   

10.
The 2 microns circle plasmid is maintained at high frequencies in populations of yeast cells. To find out how the plasmid is maintained, three forces were measured: the selective advantage or disadvantage conferred by 2 microns circles, the rate of generation of [Cir0] cells, and the rate of illegitimate transfer of 2 microns circles from cell to cell. It was found that under the conditions used, 2 microns circles confer a selective disadvantage of about 1%, that [Cir0] cells are generated at the rate of 7.6 x 10(-5) per [Cir+] cell per generation, and that illegitimate transfer of 2 microns circles occurs at a rate less than 10(-7) per recipient cell per generation. The most likely explanation of 2 microns circle maintenance is that the plasmid is sexually transmitted at such a rate that it spreads through populations despite selection against it.  相似文献   

11.
12.
Designing transformation experiments for either functional genomics or crop improvement requires knowledge of the transgene locus structure, number, transmission and expression resulting from a specific transformation method. We recently reported an improvement to the soybean [Glycine max (L.) Merrill] cotyledonary-node transformation method that resulted in the efficient production of transgenic plants. To characterize the transgene loci resulting from this method, we analysed 270 independent T0 plants and 95 randomly selected T1 progenies for T-DNA locus complexity using Southern analysis. The lines were transformed with Agrobacterium tumefaciens strains LBA4404 or EHA105 carrying the binary plasmids pGPTV, pTOK233, pCAMBIA1303 or pCAMBIA1309, and regenerated in medium supplemented with or without silver nitrate (AgNO3). Analysis in the T0 generation showed that the number of hpt-hybridizing fragments per plant ranged from 1-15, with 31.5% of the lines having a single hpt-hybridizing fragment. Each primary soybean transformant had, on average, 2.0 unlinked transgene loci and that half of the segregating loci in the T1 progenies were single, simple T-DNA insertions. Of the loci containing multiple T-DNA fragments, a low frequency had tandem and inverted repeat T-DNA structures. Integration of binary plasmid backbone sequences occurred in 37% of primary transformants. A. tumefaciens strain, binary plasmid and thiol treatment had no significant effect on transgene locus structure, numbers or expression. Interestingly, exposure of soybean explants to AgNO3 throughout shoot induction and elongation increased T-DNA locus complexity in the primary transformants and decreased silencing of gusA expression in the T1 generation.  相似文献   

13.
The estuarine bacterium Vibrio strain DI-9 has been shown to be naturally transformable with both broad host range plasmid multimers and homologous chromosomal DNA at average frequencies of 3.5 X 10(-9) and 3.4 X 10(-7) transformants per recipient, respectively. Growth of plasmid transformants in nonselective medium resulted in cured strains that transformed 6 to 42, 857 times more frequently than the parental strain, depending on the type of transforming DNA. These high-frequency-of-transformation (HfT) strains were transformed at frequencies ranging from 1.1 X 10(-8) to 1.3 X 10(-4) transformants per recipient with plasmid DNA and at an average frequency of 8.3 X 10(-5) transformants per recipient with homologous chromosomal DNA. The highest transformation frequencies were observed by using multimers of an R1162 derivative carrying the transposon Tn5 (pQSR50). Probing of total DNA preparations from one of the cured strains demonstrated that no plasmid DNA remained in the cured strains which may have provided homology to the transforming DNA. All transformants and cured strains could be differentiated from the parental strains by colony morphology. DNA binding studies indicated that late-log-phase HfT strains bound [3H]bacteriophage lambda DNA 2.1 times more rapidly than the parental strain. These results suggest that the original plasmid transformation event of strain DI-9 was the result of uptake and expression of plasmid DNA by a competent mutant (HfT strain). Additionally, it was found that a strain of Vibrio parahaemolyticus, USFS 3420, could be naturally transformed with plasmid DNA. Natural plasmid transformation by high-transforming mutants may be a means of plasmid acquisition by natural aquatic bacterial populations.  相似文献   

14.
The estuarine bacterium Vibrio strain DI-9 has been shown to be naturally transformable with both broad host range plasmid multimers and homologous chromosomal DNA at average frequencies of 3.5 X 10(-9) and 3.4 X 10(-7) transformants per recipient, respectively. Growth of plasmid transformants in nonselective medium resulted in cured strains that transformed 6 to 42, 857 times more frequently than the parental strain, depending on the type of transforming DNA. These high-frequency-of-transformation (HfT) strains were transformed at frequencies ranging from 1.1 X 10(-8) to 1.3 X 10(-4) transformants per recipient with plasmid DNA and at an average frequency of 8.3 X 10(-5) transformants per recipient with homologous chromosomal DNA. The highest transformation frequencies were observed by using multimers of an R1162 derivative carrying the transposon Tn5 (pQSR50). Probing of total DNA preparations from one of the cured strains demonstrated that no plasmid DNA remained in the cured strains which may have provided homology to the transforming DNA. All transformants and cured strains could be differentiated from the parental strains by colony morphology. DNA binding studies indicated that late-log-phase HfT strains bound [3H]bacteriophage lambda DNA 2.1 times more rapidly than the parental strain. These results suggest that the original plasmid transformation event of strain DI-9 was the result of uptake and expression of plasmid DNA by a competent mutant (HfT strain). Additionally, it was found that a strain of Vibrio parahaemolyticus, USFS 3420, could be naturally transformed with plasmid DNA. Natural plasmid transformation by high-transforming mutants may be a means of plasmid acquisition by natural aquatic bacterial populations.  相似文献   

15.
Plasmid pBR313 carrying a 1.4 kb EcoRI fragment from the yeast TRP1 region (designated pLC544) is capable of transforming yeast trp1 mutants to Trp+ at high frequency (10(3)--10(4) transformants/micrograms DNA). Transformation can be achieved either by using purified plasmid DNA or by fusion of yeast spheroplasts with partially lysed Escherichia coli [pLC544] protoplast preparations. The Trp+ yeast transformants are highly unstable, segregating Trp- cells at frequencies of 0.18 per cell per generation (haploids) and 0.056 per cell per generation (diploids) in media containing tryptophan. Plasmid pLC544 replicates autonomously in the nucleus of yeast cells and segregation of Trp-cells is associated with the complete loss of plasmid sequences. In genetic crosses, pLC544 is randomly assorted during meiosis and is carried unchanged through the mating process into haploid recombinants.  相似文献   

16.
17.
We tested the possibility of nonconjugative lateral DNA transfer in a colony biofilm of mixed Escherichia coli strains. By simply coculturing a plasmid-free F(-) strain and another F(-) strain harboring a nonconjugative plasmid in a colony biofilm on antibiotic-free agar media, transformed cells were produced within 24-48 h at the frequency of 10(-10)-10(-9) per recipient cell. PCR analysis of the transformed cells demonstrated the occurrence of lateral plasmid transfer. These cells survived until at least day 7 under antibiotic-free conditions. Liquid cultures of the same strains in Luria-Bertani broth produced no or few transformants, suggesting the importance of colony-biofilm formation for plasmid transfer. This is a novel line of evidence indicating that nonconjugative, nonviral horizontal gene transfer can occur between E. coli cells.  相似文献   

18.
19.
A chimeric plasmid (pYT760-ADH1) containing the yeast killer toxin-immunity cDNA was transformed into a leucine-histidine mutant (AH22) and into four industrial toxin-sensitive yeasts. The chimeric plasmid was very stable and expressed toxin production (89.5 +/- 4.8% killer cells) in two of the transformed yeasts that contained the 2mu plasmid, but was lost within 10 generations from two other transformed pickle yeasts that did not contain the 2mu plasmid. It suggested that plasmid stability was dependent on the presence of the 2mu plasmid which is naturally present in some yeasts. The plasmid was extremely stable (100% killer cells) and expressed more toxin in the mutant strain AH22. The effects of dilution rate, D(h(-1)) on plasmid stability and toxin expression were studied in transformed AH22 (AH22/T3) and Montrachet 522 (522/T1) wine yeast grown in glucose-limited chemostat cultures. The results show that killer toxin production by AH22/T3 cells increased as a function of D(h(-1)) and that plasmid stability reached 100% at D >/= 0.09 +/- 0.01 h(-1). However, with Montrachet 522/T1 transformed cells, 100% plasmid stability was seen at D >/= 0.18 +/- 0.02. h(-1). We also challenged the AH22/T3 in chemostat culture (D = 0.25 h(-1)) with an equal number of untransformed cells (AH22). Transformed cells dominated the population (100%) within 8-10 h of growth, a time equivalent to two mean residence time.  相似文献   

20.
We have previously used NotI as the marker enzyme (recognizing GCGGCCGC) in a genome scanning approach for detection of mutations induced in mouse spermatogonia and estimated the mutation induction rate as about 0.7 x 10(-5) per locus per Gy. To see whether different parts of the genome have different sensitivities for mutation induction, we used AflII (recognizing CTTAAG) as the marker enzyme in the present study. After the screening of 1,120 spots in each mouse offspring, we found five mutations among 92,655 spots from the unirradiated paternal genome, five mutations among 218,411 spots from the unirradiated maternal genome, and 13 mutations among 92,789 spots from 5 Gy-exposed paternal genome. Among the 23 mutations, 11 involved mouse satellite DNA sequences (AT-rich), and the remaining 12 mutations also involved AT-rich but non-satellite sequences. Both types of sequences were found as multiple, similar-sequence blocks in the genome. Counting each member of cluster mutations separately and excluding results on one hypermutable spot, the spontaneous mutation rates were estimated as 3.2 (+/- 1.9) x 10(-5) and 2.3 (+/- 1.0) x 10(-5) per locus per generation in the male and female genomes, respectively, and the mutation induction rate as 1.1 (+/- 1.2) x 10(-5) per locus per Gy. The induction rate would be reduced to 0.9 x 10(-5) per locus per Gy if satellite sequence mutations were excluded from this analysis. The results indicate that mutation induction rates do not largely differ between GC-rich and AT-rich regions: 1 x 10(-5) per locus per Gy or less, which is close to 1.08 x 10(-5) per locus per Gy, the current estimate for the mean mutation induction rate in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号