首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxidation of oxyhemoglobin produced by sodium nitrite occurs in two stages: 1) an initial slow phase followed by 2) a rapid autocatalytic phase that carries the reaction to completion. The length of the slow phase is extended when uric acid is added to the reaction mixture. As the concentration of uric acid increases, the length of the slow phase increases until a concentration is reached at which the rate of methemoglobin formation is nearly linear until the reaction is complete. Further increases in the concentration of uric acid do not affect the rate of the reaction in the slow phase. At low concentrations of uric acid, where an autocatalytic phase is reached, uric acid is degraded during the reaction. At concentrations of uric acid that keep the reaction in the linear phase, the uric acid is not degraded. It is concluded that uric acid may protect oxyhemoglobin by reacting with HbO2H to yield [HbOH]+ and the urate radical. The urate radical may react with a second molecule of HbO2H and become oxidized. At higher concentrations, the radical may undergo electron transfer with oxyhemoglobin to regenerate the uric acid and form methemoglobin.  相似文献   

2.
目的:探讨几种天然产物对高尿酸血症大鼠血清尿酸水平及尿酸排泄的影响.方法:对wistar大鼠灌胃氧嗪酸钾和酵母膏,制作高尿酸血症大鼠动物模型.灌胃给药褐藻糖胶、柠檬酸钾和东哥阿里提取物,2周后采血并进行代谢实验,检测血清尿酸、尿素氮,24小时尿液体积、pH值、尿酸浓度及总量,分析三种活性物质对机体尿酸水平、尿酸排泄、肾脏功能的影响.结果:三种物质均可显著降低高尿酸血症模型大鼠的血清尿酸水平,其中东哥阿里提取物组的24小时排泄尿酸总量较模型组显著降低,褐藻糖胶对实验大鼠的血清尿素氮水平升高有抑制作用.结论:三种活性物质对高尿酸血症大鼠血清尿酸浓度有降低作用,其中褐藻糖胶对肾脏功能有保护作用,从而保证尿酸的顺利排泄,而东哥阿里在降低血尿酸水平的同时,24小时尿液中排泄的尿酸总量也显著低于模型对照组,其机制可能与抑制尿酸生成有关.  相似文献   

3.
The present study investigated whether thermal sweating may relieve elevated concentrations of serum uric acid or urea. Concentrations of uric acid and urea were measured in the sweat of sixteen male volunteers, who were treated with external heat after one hour of intense physical exercise. The same analytes were also measured in their urine and serum samples. Furthermore, creatinine and some electrolytes were determined in these specimens. The results show that the concentration of uric acid in the sweat is 24.5 micromol/L, which is only 6.3% of that in serum. The concentration of urea in the sweat is 22.2 mmol/L, which is 3.6 times that in serum. The results indicate that sweat uric acid concentration is quite minimal, and the estimated total uric acid excretion per day in normal physiological range is insignificant. However, the level of sweat urea was found at a much higher concentration than the serum level. No correlation could be established between the level of uric acid in sweat and in serum. There was also no correlation between the level of urea in sweat and that in serum. These results suggest it would not be effective to relieve the elevated serum uric acid concentration by thermal sweating when the renal excretion of uric acid is partly compromised. Nevertheless, the potential of urea excretion via profuse sweating is apparent particularly when the kidneys are damaged or their function is impaired. These findings also suggest that persons who take vigorous exercise or are exposed to hot environments should be well advised to drink adequate fluids since heavy sweating excretes only minimal uric acid, accompanied by significant diminution of urinary output and diminished urinary excretions of uric acid, which may induce elevated levels of serum uric acid.  相似文献   

4.
Cerebral infarction (CI) is a common clinical cerebrovascular disease, and to explore the pathophysiological mechanisms and seek effective treatment means are the hotspot and difficult point in medical research nowadays. Numerous studies have confirmed that uric acid plays an important role in CI, but the mechanism has not yet been clarified. When treating HT22 and BV-2 cells with different concentrations of uric acid, uric acid below 450 μM does not have significant effect on cell viability, but uric acid more than 500 μM can significantly inhibit cell viability. After establishing models of OGD (oxygen-glucose deprivation) with HT22 and BV-2 cells, uric acid at a low concentration (50 μM) cannot improve cell viability and apoptosis, and Reactive oxygen species (ROS) levels during OGD/reoxygenation; a suitable concentration (300 μM) of uric acid can significantly improve cell viability and apoptosis, and reduce ROS production during OGD/reoxygenation; but a high concentration (1000 μM) of uric acid can further reduce cell viability and enhance ROS production. After establishing middle cerebral artery occlusion of male rats with suture method, damage and increase of ROS production in brain tissue could be seen, and after adding suitable concentration of uric acid, the degree of brain damage and ROS production was reduced. Therefore, different concentrations of uric acid should have different effect, and suitable concentrations of uric acid have neuroprotective effect, and this finding may provide guidance for study on the clinical curative effect of uric acid.  相似文献   

5.
Mortality due to nephritis and uric acid diathesis was observed during the fall and winter in captive willow ptarmigan. The present study examined how feed protein concentration influences feed and water consumption, plasma uric acid concentration, and mortality due to nephritis and uric acid diathesis in captive wrillow ptarmigan. An increase in feed protein concentration from 14 to 24 % resulted in reduced feed consumption and increased plasma uric acid concentration. Mortality due to nephritis and uric acid diathesis was not influenced by variations in feed protein concentration, but an admixture of 14 % grass meal to the diet reduced the incidence markedly.  相似文献   

6.
Littorina saxatilis and Littorina arcana collected from a boulder field low in the intertidal zone had a uric acid concentration significantly higher than snails collected from nearby cliff crevices that were at the upper limit of their vertical range on the shore. The absolute concentrations varied with different collections, suggesting a possible seasonal fluctuation in uric acid. L. arcana had a greater concentration of uric acid than did L. saxatilis when both were from the boulder field, but the two did not differ significantly when taken from crevices. Samples from the two sites were marked and transplanted; by four weeks the transplanted animals showed a tendency to develop a uric acid concentration similar to that of natives of the site, suggesting a physiological rather than a genetic adaptation. Xanthine dehydrogenase activity differed between animals from the two sites in the same manner as the uric acid concentration.  相似文献   

7.
Hyperuricemia has been recognized as an independent risk factor for cardiovascular disease. Urate stimulates NADPH oxidase and induces production of reactive oxygen species (ROS); consequently, intracellular urate accumulation can induce oxidative stress leading to endothelial dysfunction. Here, we studied the mechanism involved, using human umbilical vascular endothelial cells (HUVEC) as a model. Pretreatment with 15 mg/dL unlabeled uric acid (corresponding to hyperuricemia) resulted in increased uptake of [14C]uric acid at steady-state by HUVEC, whereas pretreatment with 5 mg/dL uric acid (in the normal serum concentration range) did not. However, the initial uptake rate of [14C]uric acid was not affected by uric acid at either concentration. These results suggest that efflux transport of uric acid is decreased under hyperuricemic conditions. We observed a concomitant decrease of phosphorylated endothelial nitric oxide synthase. Plasma membrane expression of breast cancer resistance protein (BCRP), a uric acid efflux transporter, was decreased under hyperuricemia, though the total cellular expression of BCRP remained constant. Uric acid did not affect expression of another uric acid efflux transporter, multidrug resistance associated protein 4 (MRP4). Moreover, phosphorylation of Akt, which regulates plasma membrane localization of BCRP, was decreased. These uric acid-induced changes of BCRP and Akt were reversed in the presence of the antioxidant N-acetylcysteine. These results suggest that in hyperuricemia, uric acid-induced ROS generation inhibits Akt phosphorylation, causing a decrease in plasma membrane localization of BCRP, and the resulting decrease of BCRP-mediated efflux leads to increased uric acid accumulation and dysregulation of endothelial function.  相似文献   

8.
In adult Calliphora uric acid is excreted throughout the Malpighian tubules. Histochemical preparations for the light microscope show uric acid passing through the cells and forming crystalline spheres in immediate contact with the microvilli. Uric acid appears to be synthesized and discharged into the haemolymph by the fat body cells. In Rhodnius there is no visible uric acid in the cells or lumen of the upper segment of the tubule (two-thirds of the total length of the tubule) apart from occasional deposits in the basal lamina. All uric acid excretion depends on the lower segment. Electron micrographs after argentaffin staining show high concentration of uric acid in the cytoplasm below the basal lamina (which also contains uric acid deposits). Uric acid is visible throughout the cell, particularly aroand the mitochondria; it is absent from the infolded plasma membrane and from all vacuoles. At the lumen there is a concentrated deposit of uric acid immediately beyond the plasma membrane. The uric acid particles unite with particles of unstained matrix material to form crystalline spheres. The fat body shows active synthesis of uric acid which is discharged by the cells into the intercellular channels and so to the basal lamina through which it passes into the haemolymph. As judged by histochemical preparations the haemolymph contains a high concentration of uric acid, very variable in different sites. Likewise large variations in uric acid secretion occur in different parts of the fat body.  相似文献   

9.
Periwinkles, as typical inhabitants of sea-shores, are subjected to extreme changes of environmental conditions, which affect their excretion. InLittorina littorea uric acid, urea and ammonium were detected particularly in the kidney, but the only metabolite excreted was ammonium. Only the concentration of uric acid was dependent on the availability of water; decreasing periods of submersion during low tide and raised salinities caused a higher concentration of uric acid, while increasing periods of submersion and lowered salinities effected the opposite. Transfer of periwinkles within their intertidal habitat and laboratory experiments to test the effect of salinity showed that the concentration of uric acid in the kidney is adaptable. The dependence of uric acid concentration in the kidney on environmental conditions and the ammoniotelic excretion ofL. littorea are discussed with regard to its particular living conditions. It is suggested that uric acid serves as nitrogen depot and has a particular function in osmoregulation.  相似文献   

10.
目的:利用合成生物学方法构建尿酸介导的基因回路,在细胞水平上研究回路对尿酸稳态的调控作用。方法:以耐辐射异常球菌R1基因组中转录抑制物基因hucR及其结合位点基因hucO为基础,化学合成具有转录抑制功能的基因mUTs及其结合位点的8串联结构hucO8,构建基因回路;转染HeLa细胞,通过检测分泌型碱性磷酸酶(SEAP)的表达量来验证回路的作用原理和对尿酸的感应作用;在此基础上,用优化的黄曲霉菌尿酸氧化酶(Uox)基因smUox替换SEAP基因,转染HeLa细胞,通过检测转染前后培养基中尿酸浓度的变化,验证回路对尿酸的调节作用。结果:分别构建了优化的转录抑制物表达载体pcDNA3.1/V5-mUTs、报告基因表达载体pSEAP-hucO8、优化的黄曲霉菌Uox表达载体phucO8-smUox、pBudCE4.1-smUox,双向共表达载体pBudCE4.1-SEAP-mUTs、pBudCE4.1-mUTs-smUox;单独转染pBudCE4.1-SEAP-mUTs或共转染pSEAP-hucO8和pcDNA3.1/V5-mUTs,通过检测培养基中SEAP的表达量,证明双载体及单载体回路对尿酸的感应作用;用smUox替换SAEP基因后,通过检测转染48 h后培养基中尿酸含量的变化,证明双载体及单载体基因回路均具有一定的尿酸调节能力。结论:在细胞水平上,构建的双载体基因回路(phucO8-smUox、pcDNA3.1/V5-mUTs)和单载体基因回路(pBudCE4.1-mUTs-smUox)均可实现对尿酸的感应及调控作用,在一定范围内通过增加mUTs与hucO8的摩尔比,可以改变回路对尿酸的调控范围及调节程度。  相似文献   

11.
An uric acid biosensor fabricated from a uricase-immobilized eggshell membrane and an oxygen electrode was presented. The detection schemes involve the enzymatic reactions of the uricase leading to the depletion of dissolved oxygen level upon exposure to uric acid solution. The decrease in oxygen level was monitored and related to the uric acid concentration. The scanning electron micrographs show the microstructure of the eggshell membrane within which the uricase is successfully immobilized. The effects of enzyme loading, pH, temperature, and phosphate buffer concentration on the response of the biosensor were investigated in detail. The uric acid biosensor has a linear response range of 4.0-640 microM with a detection limit of 2.0 microM (S/N=3). The response time was less than 100 s. The biosensor exhibited good repeatable response to a 0.10mM uric acid solution with a relative standard deviation of 3.1% (n=7). The reproducibility of fabrication of the biosensors using four different membranes was good with a R.S.D. of 3.2%. The biosensor showed extremely good stability with a shelf-life of at least 3 months. Some common potential interferents in samples such as glucose, urea, ascorbic acid, lactic acid, glycine, DL-alpha-alanine, DL-cysteine, KCl, NaCl, CaCl2, MgSO4, and NH4Cl showed no interferences on the response of the uric acid biosensor. The biosensor was successfully applied to determine the uric acid level in some human serum and urine samples, and the results agreed well with those obtained by a commercial colorimetric assay kit.  相似文献   

12.
Urinary excretion accounts for two-thirds of total elimination of uric acid and the remainder is excreted in feces. However, the mechanism of extra-renal elimination is poorly understood. In the present study, we aimed to clarify the mechanism and the extent of elimination of uric acid through liver and intestine using oxonate-treated rats and Caco-2 cells as a model of human intestinal epithelium. In oxonate-treated rats, significant amounts of externally administered and endogenous uric acid were recovered in the intestinal lumen, while biliary excretion was minimal. Accordingly, direct intestinal secretion was thought to be a substantial contributor to extra-renal elimination of uric acid. Since human efflux transporter BCRP/ABCG2 accepts uric acid as a substrate and genetic polymorphism causing a decrease of BCRP activity is known to be associated with hyperuricemia and gout, the contribution of rBcrp to intestinal secretion was examined. rBcrp was confirmed to transport uric acid in a membrane vesicle study, and intestinal regional differences of expression of rBcrp mRNA were well correlated with uric acid secretory activity into the intestinal lumen. Bcrp1 knockout mice exhibited significantly decreased intestinal secretion and an increased plasma concentration of uric acid. Furthermore, a Bcrp inhibitor, elacridar, caused a decrease of intestinal secretion of uric acid. In Caco-2 cells, uric acid showed a polarized flux from the basolateral to apical side, and this flux was almost abolished in the presence of elacridar. These results demonstrate that BCRP contributes at least in part to the intestinal excretion of uric acid as extra-renal elimination pathway in humans and rats.  相似文献   

13.
Allopurinol (4-hydroxypyrazolo (3,4-d)-pyrimidine) is a potent xanthine oxidase inhibitor which inhibits the oxidation of naturally occurring oxypurines, thus decreasing uric acid formation. The clinical and metabolic effects of this agent were studied in 80 subjects with primary and secondary gout and other disorders of uric acid metabolism. Allopurinol has been universally successful in lowering the serum uric acid concentration and uric acid excretion to normal levels, while not significantly affecting the clearance of urate or other aspects of renal function. Oxypurine excretion increased concomitantly with the fall in urine uric acid. The agent is particularly valuable in the management of problems of gout with azotemia, acute uric acid nephropathy and uric acid urolithiasis. The minor side effects, clinical indications and theoretical complications are discussed.  相似文献   

14.
Abstract: We have investigated further the anomalously high concentration of brain extracellular uric acid detected with in vivo sampling probes reported recently. The contribution by uric acid and 5-hydroxyindoleacetic acid (5-HIAA) to peak 2 recorded in rat striatum with chronically implanted carbon paste electrodes (CPEs) of different sizes was estimated by comparing peak current densities and the effect of the monoamine oxidase inhibitor pargyline. The concentration of uric acid in the extracellular fluid was some 50 times greater for 320-μm-diameter CPEs than for 160-μm-diameter electrodes, where the urate level was estimated at ∼1 μ M. The concentration of 5-HIAA was similar for 320-, 260-, and 160-μm-diameter CPEs. These data provide an explanation for the previously observed differences in 5-HIAA/urate ratios re corded with 320-μm-diameter CPEs and smaller carbon fibre electrodes. The results also indicate that chronically implanted sampling probes of diameter >160 μm perturb the surrounding tissue, which produces uric acid by a mechanism yet unknown, although preliminary histological data suggest that glial cells may be involved.  相似文献   

15.
During exhausting exercise adenylate kinase in the muscle cells is activated and a degradation of adenosine 5'-diphosphate occurs. Consequently, degradation products of adenosine 5'-monophosphate including hypoxanthine and uric acid, accumulate in plasma. The aim of this study was to compare the concentration changes of hypoxanthine and uric acid in plasma following running of varying duration and intensity. In addition, plasma creatine kinase activity was measured to assess the possible relationship between metabolic stress and protein release. Four groups of competitive male runners ran 100 m (n = 7), 800 m (n = 11), 5000 m (n = 7) and 42,000 m (n = 7), respectively, at an exhausting pace. Subsequent to the 100 m event (mean running time 11 s) plasma concentrations of hypoxanthine and uric acid increased by 364% and 36% respectively (P less than 0.05), indicating a very high rate of adenine nucleotide degradation during the event. Following the 800-m event (mean running time 125 s), hypoxanthine and uric acid concentrations had increased by 1598% and 66%, respectively (P less than 0.05). Both the events of longer duration, 5000 m and 42,000 m, also caused a significant increase in plasma concentration of hypoxanthine (742% and 237% respectively, P less than 0.05) and plasma uric acid (54% and 34% respectively, P less than 0.05). Plasma activities of creatine kinase were significantly increased at 24 h only following the 5000 m and 42,000 m events (64% and 1186% respectively, P less than 0.05). Changes in plasma creatine kinase activity showed no correlation with changes in plasma concentration of either hypoxanthine or uric acid for the 5000 m and 42,000 m events (r = 0.00-0.45, P greater than 0.05).  相似文献   

16.
Antioxidants can be assayed by their reaction with 1,1-diphenyl-2-picrylhydrazyl (DPPH), which results in a decrease in absorbance at 517 nm of the DPPH. Both uric acid and 3-ribosyluric acid reacted with DPPH to produce about the same change in absorbance at 517 nm as an equal concentration of ascorbic acid. Fourteen related purines, pyrimidines, and their nucleosides, including xanthine and xanthosine, failed to give a reaction with DPPH at the same concentration as the urates or at 10 times this concentration. When DPPH interacted with [2-14C]uric acid, it was converted to allantoin. Cold trichloroacetic acid extracts of bovine blood contained two major compounds that reacted with DPPH, ribosyluric acid and glutathione. These compounds were found only in the red cells and not in the plasma.  相似文献   

17.
1. A single intraportal injection of insulin remarkably stimulated uric acid production in the chicken infused with ammonium acetate and significantly depressed the increase in plasma glutamine concentration by the infusion of ammonia (P less than 0.01 at 20 min, P less than 0.05 at 40 min after the start of infusion). 2. The increases in ammonia concentration in the blood and kidney during the infusion of ammonia were not affected by the insulin pretreatment. 3. The depressive effect of insulin on the increase in plasma glutamine concentration by ammonia may be due to the acceleration by insulin of incorporation of glutamine into biosynthetic pathway of uric acid in the chicken.  相似文献   

18.
Free radicals play an important role in the pathogenesis of brain injury. This study evaluates the potential relationship between ischaemia/reperfusion (I/R)-induced brain injury, peripheral oxidative stress (lymphocyte DNA damage), plasma antioxidant potential and uric acid levels. We observed that 15 min of ischaemia were sufficient to significantly increase lymphocyte DNA damage that remained elevated at the end of early (3 h) reperfusion and at later (72 h) reperfusion time; this parameter was not significantly increased, when compared to preoperated levels. In parallel, antioxidant potential was elevated after 15 min of ischaemia, remained high at early (3 h) reperfusion and decreased again with longer (72 h) reperfusion. A close association between the plasma antioxidant status and the uric acid content has been confirmed by findings that changes in TRAP values positively correlate with uric acid concentration in rat plasma after ischaemic injury. Moreover, results of in vitro experiments with extra uric acid addition to control plasma have shown that uric acid contributes to a greater part of TRAP values. These results indicate a similar time course of brain I/R-associated oxidative stress and peripheral antioxidant defence status and/or oxidative stress in animal experiments.  相似文献   

19.
To date, few studies have examined uric acid in saliva or dental calculus. The purpose of this study is to examine the uric acid concentration in saliva and serum. Saliva and blood samples were collected from 244 participants. We divided them into four groups: untreated or treated group in normal or abnormal serum uric acid concentration groups. Within the untreated group, Pearson??s correlation coefficient was used to examine the correlation between salivary and serum uric acid concentrations. We compared uric acid concentrations between saliva and serum, or between untreated and treated groups using the paired or unpaired student??s t-test. In the untreated group, uric acid concentrations in saliva and serum were significantly and positively correlated (r?=?0.503, P?<?0.01). Within the untreated group, those with abnormal serum uric acid concentrations had significantly higher uric acid concentrations in serum and saliva compared to those with normal serum uric acid concentrations (P?<?0.01). Within the untreated group, uric acid concentrations in serum were significantly higher than that in saliva (P?<?0.01). Uric acid concentrations in saliva of the treated group were significantly higher than that of the untreated group (P?<?0.01). Within the treated group, uric acid concentrations in saliva were significantly higher than that of serum, particularly in users of benzbromarone (P?<?0.01). Uric acid concentrations in saliva were lower than that in serum among non-users of benzbromarone. In contrast, uric acid concentrations in saliva of patients taking benzbromarone were higher than that in serum. We surmise that URAT1 may influence uric acid excretion in the salivary gland.  相似文献   

20.
《FEBS letters》1985,183(2):256-259
Uric acid enters Bacillus fasitidiosus spores by a constitutive carrier-mediated mechanism. The extent of uptake was proportional to the external uric acid concentration up to the limit of solubility. Most of the uric acid taken up after 2 min of incubation was not exchangeable with cold uric acid, suggesting that the uric acid was being quickly metabolized. Allantoin (an uric acid degradation product) was not incorporated by spores unles they were triggered to germinate with uric acid and the induced by allantoin. The induction of this uptake system was inhibited by chloramphenicol. The inability of spores to germinate in the sporulation medium was found to be due to the high pH of the sporulation medium after growth and sporulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号