首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glazunov AV  Glazer VM 《Genetika》2000,36(12):1629-1633
In our previous works, a mutation in the RAD57 gene was shown to induce the plasmid DNA double-strand gap (DSG) repair via a special recombinational repair mechanism: homolog-dependent ligation responsible for reuniting disrupted plasmid ends without reconstructing the sequence lost because of the DSG. In this work, the role of the RAD55 gene in the plasmid DNA DSG repair was studied. A cold-sensitive rad55-3 mutation markedly decreased the precision of plasmid DNA DSG repair under conditions of restrictive temperature (23 degrees C): only 5-7% of plasmids can repair DSG, whereas under permissive conditions (36 degrees C), DSGs were repaired in approximately 50% of the cells. In the cold-sensitive mutation rad57-1, the proportion of plasmids in which DSGs were repaired was nearly the same under both permissive and restrictive conditions (5-10%). The results indicate that a disturbance in the function of the RAD55 gene, as in the RAD57 gene, leads to a drastic increase in the contribution of homolog-dependent ligation to the repair of double-strand DNA breaks.  相似文献   

2.
DNA double-strand breaks may be induced by endonucleases, ionizing radiation, chemical agents, and mechanical forces or by replication of single-stranded nicked chromosomes. Repair of double-strand breaks can occur by homologous recombination or by nonhomologous end joining. A system was developed to measure the efficiency of plasmid gap repair by homologous recombination using either chromosomal or plasmid templates. Gap repair was biased toward gene conversion events unassociated with crossing over using either donor sequence. The dependence of recombinational gap repair on genes belonging to the RAD52 epistasis group was tested in this system. RAD51, RAD52, RAD57, and RAD59 were required for efficient gap repair using either chromosomal or plasmid donors. No homologous recombination products were recovered from rad52 mutants, whereas a low level of repair occurred in the absence of RAD51, RAD57, or RAD59. These results suggest a minor pathway of strand invasion that is dependent on RAD52 but not on RAD51. The residual repair events in rad51 mutants were more frequently associated with crossing over than was observed in the wild-type strain, suggesting that the mechanisms for RAD51-dependent and RAD51-independent events are different. Plasmid gap repair was reduced synergistically in rad51 rad59 double mutants, indicating an important role for RAD59 in RAD51-independent repair.  相似文献   

3.
The repair of in vitro UV-irradiated DNA of plasmid pBB29 was studied in excision defective yeast mutants rad1, rad2, rad3, rad4, rad10 and in Escherichia coli mutants uvr- and recA-, by measuring the cell transformation frequency. Rad2, rad3, rad4, and rad10 mutants could repair plasmid DNA despite their inability to repair nuclear DNA, whereas the reduced ability of rad1 mutant for plasmid DNA repair demonstrated alone the same dependence on the host functions that are needed for nuclear DNA repair. In E. coli the repair of UV-irradiated plasmid DNA is carried out only by the excision-repair system dependent on uvr genes. Treatment of UV-irradiated plasmid DNA with UV endonuclease from Micrococcus luteus greatly enhances the efficiency of transformation of E. coli uvr- mutants. Similar treatment with cell-free extracts of yeast rad1 mutant or wild-type strains as well as with nuclease BaL31, despite their ability for preferential cutting of UV damaged DNA, showed no influence on cell transformation.  相似文献   

4.
5.
In our previous works, a mutation in the RAD57 gene was shown to induce the plasmid DNA double-strand gap (DSG) repair via a special recombinational repair mechanism: homology-dependent ligation responsible for reuniting disrupted plasmid ends without reconstructing the sequence lost because of the DSG. In this work, the role of the RAD55 gene in the plasmid DNA DSG repair was studied. A cold-sensitiverad55-3 mutation markedly decreased the precision of plasmid DNA DSG repair under conditions of restrictive temperature (23°C): only 5–7% of plasmids can repair DSG, whereas under permissive conditions (36°C), DSGs were repaired in approximately 50% of the cells. In the cold-sensitive mutation rad57-1, the proportion of plasmids in which DSGs were repaired was nearly the same under both permissive and restrictive conditions (5–10%). The results indicate that a disturbance in the function of the RAD55 gene, as in the RAD57 gene, leads to a drastic increase in the contribution of homology-dependent ligation to the repair of double-strand DNA breaks.  相似文献   

6.
7.
Summary The repair of UV-irradiated DNA of plasmid pBB29 was studied in an incision-defective rad3-2 strain of Saccharomyces cerevisiae and in a uvrA6 strain of Escherichia coli by the measurement of cell transformation. Plasmid pBB29 used in these experiments contained as markers the DNA of nuclear yeast gene LEU-2 and DNA of the bacterial plasmid pBR327 with resistance to Tet and Amp enabling simultaneous screening of transformant cells in both microorganisms.We found that the yeast rad3-2 mutant, deficient in incision of UV-induced pyrimidine dimers in nuclear DNA, was fully capable of repairing such lessions in plasmid DNA. The repair efficiency was comparable to that of the wild-type cells. The E. coli uvrA6 mutant, deficient in a specific nuclease for pyrimidine dimer excision from chromosomal DNA, was unable to repair UV-damaged plasmid DNA. The difference in repair capacity between the uvrA6 mutant strain and the wild-type strain was of several thousand-fold.It seems that the rad3 mutation, which confers deficiency in the DNA excision-repair system in yeast, is limited only to the nuclear DNA.  相似文献   

8.
Repair of mismatched DNA occurs mainly by the long-patch mismatch repair (MMR) pathway, requiring Msh2 and Pms1. In Schizosaccharomyces pombe mismatches can be repaired by a short-patch repair system, containing nucleotide excision repair (NER) factors. We studied mismatch correction efficiency in cells with inactivated DNA repair nucleases Rad13, Rad2 or Uve1 in MMR proficient and deficient background. Rad13 incises 3' of damaged DNA during NER. Rad2 has a function in the Uve1-dependent repair of DNA damages and in replication. Loss of Rad13 caused a strong reduction of short-patch processing of mismatches formed during meiotic recombination. Mitotic mutation rates were increased, but not to the same extent as in the NER mutant swi10, which is defective in 5' incision. The difference might be caused by an additional role of Rad13 in base excision repair or due to partial redundancy with other 3' endonucleases. Meiotic mismatch repair was not or only slightly affected in rad2 and uve1 mutants. In addition, inactivation of uve1 caused only weak effects on mutation avoidance. Mutation rates were elevated when rad2 was mutated, but not further increased in swi10 rad2 and rad13 rad2 double mutants, indicating an epistatic relationship. However, the mutation spectra of rad2 were different from that of swi10 and rad13. Thus, the function of Rad2 in mutation avoidance is rather independent of NER. rad13, swi10 and rad2, but not uve1 mutants were sensitive to the DNA-damaging agent methyl methane sulphonate. Cell survival was further reduced in the double mutants swi10 rad2, rad13 rad2 and, surprisingly, swi10 rad13. These data confirm that NER and Rad2 act in distinct damage repair pathways and further indicate that the function of Rad13 in repair of alkylated bases is partially independent of NER.  相似文献   

9.
The RAD10 gene of Saccharomyces cerevisiae is required for the incision step of excision repair of UV-damaged DNA. We show that the RAD10 gene is also required for mitotic recombination. The rad10 delta mutation lowered the rate of intrachromosomal recombination of a his3 duplication in which one his3 allele has a deletion at the 3' end and the other his3 allele has a deletion at the 5' end (his3 delta 3' his3 delta 5'). The rate of formation of HIS3+ recombinants in the rad10 delta mutant was not affected by the rad1 delta mutation but decreased synergistically in the presence of the rad10 delta mutation in combination with the rad52 delta mutation. These observations indicate that the RAD1 and RAD10 genes function together in a mitotic recombination pathway that is distinct from the RAD52 recombination pathway. The rad10 delta mutation also lowered the efficiency of integration of linear DNA molecules and circular plasmids into homologous genomic sequences. We suggest that the RAD1 and RAD10 gene products act in recombination after the formation of the recombinogenic substrate. The rad1 delta and rad10 delta mutations did not affect meiotic intrachromosomal recombination of the his3 delta 3' his3 delta 5' duplication or mitotic and meiotic recombination of ade2 heteroalleles located on homologous chromosomes.  相似文献   

10.
Cis-diamminedichloroplatinum II (cisplatin) is a DNA inter- and intrastrand crosslinking agent which can sensitize prokaryotic and eukaryotic cells to killing by ionizing radiation. The mechanism of radiosensitization is unknown but may involve cisplatin inhibition of repair of DNA damage caused by radiation. Repair proficient wild type and repair deficient (rad52, recombinational repair or rad3, excision repair) strains of the yeast Saccharomyces cerevisiae were used to determine whether defects in DNA repair mechanisms would modify the radiosensitizing effect of cisplatin. We report that cisplatin exposure could sensitize yeast cells with a competent recombinational repair mechanism (wild type or rad3), but could not sensitize cells defective in recombinational repair (rad52), indicating that the radiosensitizing effect of cisplatin was due to inhibition of DNA repair processes involving error free RAD52-dependent recombinational repair. The presence or absence of oxygen during irradiation did not alter this radiosensitization. Consistent with this result, cisplatin did not sensitize cells to mutation that results from lesion processing by an error prone DNA repair system. However, under certain circumstances, cisplatin exposure did not cause radiosensitization to killing by radiation in repair competent wild type cells. Within 2 h after a sublethal cisplatin treatment, wild type yeast cells became both thermally tolerant and radiation resistant. Cisplatin pretreatment also suppressed mutations caused by exposure to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), a response previously shown in wild type yeast cells following radiation pretreatment. Like radiation, the cisplatin-induced stress response did not confer radiation resistance or suppress MNNG mutations in a recombinational repair deficient mutant (rad52), although thermal tolerance was still induced. These results support the idea that cisplatin adducts in DNA interfere with RAD52-dependent recombinational repair and thereby sensitize cells to killing by radiation. However, the lesions can subsequently induce a general stress response, part of which is induction of RAD52-dependent error free recombinational repair. This stress response confers radiation resistance, thermal tolerance, and mutation resistance in yeast.  相似文献   

11.
The RAD52 gene of Saccharomyces cerevisiae is essential for repair of DNA double-strand breaks (DSBs) by homologous recombination. Inactivation of this gene confers hypersensitivity to DSB-inducing agents and defects in most forms of recombination. The rad22+ gene in Schizosaccharomyces pombe (here referred to as rad22A+) has been characterized as a homolog of RAD52 in fission yeast. Here, we report the identification of a second RAD52 homolog in Schizosaccharomyces pombe, called rad22B+. The amino acid sequences of Rad22A and Rad22B show significant conservation (38% identity). Deletion mutants of respectively, rad22A and rad22B, show different phenotypes with respect to sensitivity to X-rays and the ability to perform homologous recombination as measured by the integration of plasmid DNA. Inactivation of rad22A+ leads to a severe sensitivity to X-rays and a strong decrease in recombination (13-fold), while the rad22B mutation does not result in a decrease in homologous recombination or a change in radiation sensitivity. In a rad22A-rad22B double mutant the radiation sensitivity is further enhanced in comparison with the rad22A single mutant. Overexpression of the rad22B+ gene results in partial suppression of the DNA repair defects of the rad22A mutant strain. Meiotic recombination and spore viability are only slightly affected in either single mutant, but outgrowth of viable spores is almost 31-fold reduced in the rad22A-rad22B double mutant. The results obtained imply a crucial role for rad22A+ in repair and recombination in vegetative cells just like RAD52 in S. cerevisiae. The rad22B+ gene presumably has an auxiliary role in the repair of DSBs. The drastic reduced spore viability in the double mutant suggests that meiosis in S. pombe is dependent on the presence of either rad22A+ or rad22B+.  相似文献   

12.
Summary We studied the repair of double-strand breaks (DSB) in plasmid DNA introduced into haploid cells of the yeast Saccharomyces cerevisiae. The efficiency of repair was estimated from the frequency of transformation of the cells by an autonomously replicated linearized plasmid. The frequency of lithium transformation of Rad+ cells was increased greatly (by 1 order of magnitude and more) compared with that for circular DNA if the plasmid was initially linearized at the XhoI site within the LYS2 gene. This effect is due to recombinational repair of the plasmid DNA. Mutations rad52, rad53, rad54 and rad57 suppress the repair of DSB in plasmid DNA. The kinetics of DSB repair in plasmid DNA are biphasic: the first phase is completed within 1 h and the second within 14–18 h of incubating cells on selective medium.  相似文献   

13.
I V Fedorova  T N Kozhina 《Genetika》1987,23(9):1564-1573
The method of repeated irradiation has been used to study excision of 8-MOP monoadducts from plasmid and chromosomal DNA in cells of wild type and rad2 mutant of Saccharomyces cerevisiae. The measurement of kinetics of monoadduct removal from chromosomal DNA in intact and competent yeast cells showed that monoadducts were excised in both types of cells with normal repair, but this process was blocked in intact and competent cells of the rad2 mutant. The survival of pYF91 plasmid treated in vitro with 8-MOP plus near UV-light has been studied in the cells of the wild type and in incision-defective rad2 mutant by the measurement of cell transformation frequency. Episomic pYF91 plasmid used in these experiments contained the yeast nuclear LEU2 gene, a portion of 2 mkm DNA and DNA of bacterial plasmid pBR322 with resistance to ampicillin. The pYF91 plasmid was treated with 8-MOP plus near UV-light in vitro, then unbound 8-MOP was removed by dialysis. This DNA was used for transformation. The transformed yeast cells were irradiated repeatedly. The quantitative alteration of the yield of transformants, depending on the time of keeping these yeast cells in complete liquid medium at 30 degrees C, prior to repeated irradiation, allowed to measure the kinetics of monoadduct excision from plasmid DNA. It was shown that monoadducts were removed equally effectively from plasmid DNA introduced into cells of the wild type and rad2 mutant. Possibly, the repair system of both these strains provides excision of monoadducts from plasmid DNA, but this process is blocked in the rad2 mutant, relatively to monoadduct excision from chromosomal DNA.  相似文献   

14.
The lambda phage Red recombination system can mediate efficient homologous recombination in Escherichia coli, which is the basis of the DNA engineering technique termed recombineering. Red mediated insertion of DNA requires DNA replication, involves a single-stranded DNA intermediate and is more efficient on the lagging strand of the replication fork. Lagging strand recombination has also been postulated to explain the Red mediated repair of gapped plasmids by an Okazaki fragment gap filling model. Here, we demonstrate that gap repair involves a different strand independent mechanism. Gap repair assays examining the strand asymmetry of recombination did not show a lagging strand bias. Directly testing an ssDNA plasmid showed lagging strand recombination is possible but dsDNA plasmids did not employ this mechanism. Insertional recombination combined with gap repair also did not demonstrate preferential lagging strand bias, supporting a different gap repair mechanism. The predominant recombination route involved concerted insertion and subcloning though other routes also operated at lower frequencies. Simultaneous insertion of DNA resulted in modification of both strands and was unaffected by mutations to DNA polymerase I, responsible for Okazaki fragment maturation. The lower efficiency of an alternate Red mediated ends-in recombination pathway and the apparent lack of a Holliday junction intermediate suggested that gap repair does not involve a different Red recombination pathway. Our results may be explained by a novel replicative intermediate in gap repair that does not involve a replication fork. We exploited these observations by developing a new recombineering application based on concerted insertion and gap repair, termed SPI (subcloning plus insertion). SPI selected against empty vector background and selected for correct gap repair recombinants. We used SPI to simultaneously insert up to four different gene cassettes in a single recombineering reaction. Consequently, our findings have important implications for the understanding of E. coli replication and Red recombination.  相似文献   

15.
Z Zgaga 《Mutation research》1991,263(4):211-215
UV-irradiated single-stranded replicative plasmids were used to transform different yeast strains. The low doses of UV used in this study (10-75 J/m2) caused a significant decrease in the transforming efficiency of plasmid DNA in the Rad+ strain, while they had no effect on transformation with double-stranded plasmids of comparable size. Neither the rev3 mutation, nor the rad18 or rad52 mutations influenced the efficiency of transformation with irradiated single-stranded plasmid. However, it was found to be decreased in the double rev3 rad52 mutant. Extracellular irradiation of plasmid that contains both URA3 and LEU2 genes (psLU) gave rise to up to 5% Leu- transformants among selected Ura+ ones in the repair-proficient strain. Induction of Leu- transformants was dose-dependent and only partially depressed in the rev3 mutant. These results suggest that both mutagenic and recombinational repair processes operate on UV-damaged single-stranded DNA in yeast.  相似文献   

16.
Excision repair defects of Saccharomyces cerevisiae rad1-1, rad4-4, rad7-1 and rad14 mutants were examined. As previously found, transformation of such cells with UV-irradiated plasmid DNA is poor compared to wild-type yeast. Treatment of UV-irradiated YRp12 plasmid DNA with crude preparations of Micrococcus luteus UV endonuclease before introducing it into rad1-1 cells increased transformation efficiency to wild-type levels. This is consistent with earlier reports of rad1-1 mutants being defective in the incision step of excision repair. However, with purified UV endonuclease little or no rescue occurred when the UV-irradiated plasmid was incised before transformation into rad1-1 or rad4-4 cells. Furthermore, the purified UV endonuclease reduced transformation of rad7-1 and rad14 mutants to levels seen in rad1-1 and rad4-4 cells. In contrast such treatment caused only a small decrease in the transforming ability of UV-irradiated DNA in wild-type cells. These results show that yeast can normally process pre-incised, UV-irradiated DNA and that this activity is absent in rad1-1, rad4-4, rad7-1 and rad14 mutants. Thus, in addition to their previously reported roles in incision, the RAD1, 4, 7 and 14 gene products are also required for repair to continue after the incision of DNA lesions.  相似文献   

17.
We screened a yeast genomic library for recombinant DNA plasmids that complemented the ultraviolet (u.v.) sensitivity of a strain of Saccharomyces cerevisiae designated rad4-3 that is defective in excision repair of DNA. A multicopy plasmid (pNF4000) with a 9.4 X 10(3) base-pair yeast DNA insert partially complemented the u.v. sensitivity of rad4-3, but not of two other rad4 allelic mutants (rad4-2 and rad4-4), or of other u.v.-sensitive rad mutants. The yeast insert was analyzed by restriction mapping, DNA-DNA hybridization, DNA-tRNA hybridization and DNA sequencing. This analysis revealed the presence of a normal tRNAGln gene, a yeast sigma element situated 5' to the transfer RNA gene, a Ty element and a solo delta element. Deletion analysis of pNF4000 showed that the tRNAGln gene is required for partial complementation of the u.v. sensitivity of rad4-3. Furthermore, a multicopy plasmid containing a tRNAGln gene derived from a different region of the yeast genome also partially complemented the u.v. sensitivity of rad4-3. The rad4-3 mutation is suppressed following transformation with a plasmid containing the known ochre suppressor SUP11-o, indicating that it is an ochre mutation. We therefore conclude that when expressed in sufficient quantity, normal tRNAGln (which usually decodes the sense codon CAA) can weakly suppress the nonsense ochre codon UAA, and suggest that this represents an example of wobble occurring at the first rather than at the third position of the codon.  相似文献   

18.
A new Schizosaccharomyces pombe mutant (rad32) which is sensitive to gamma and UV irradiation is described. Pulsed field gel electrophoresis of DNA from irradiated cells indicates that the rad32 mutant, in comparison to wild type cells, has decreased ability to repair DNA double strand breaks. The mutant also undergoes decreased meiotic recombination and displays reduced stability of minichromosomes. The rad32 gene has been cloned by complementation of the UV sensitive phenotype. The gene, which is not essential for cell viability and is expressed at a moderate level in mitotically dividing cells, has significant homology to the meiotic recombination gene MRE11 of Saccharomyces cerevisiae. Epistasis analysis indicates that rad32 functions in a pathway which includes the rhp51 gene (the S.pombe homologue to S.cerevisiae RAD51) and that cells deleted for the rad32 gene in conjunction with either the rad3 deletion (a G2 checkpoint mutation) or the rad2 deletion (a chromosome stability and potential nucleotide excision repair mutation) are not viable.  相似文献   

19.
Zhang X  Paull TT 《DNA Repair》2005,4(11):1281-1294
In Saccharomyces cerevisiae, the Mre11/Rad50/Xrs2 (MRX) complex plays important roles in both homologous and non-homologous pathways of DNA repair. In this study, we investigated the role of the MRX complex and its enzymatic functions in non-homologous repair of DNA ends containing incompatible end structures. Using a plasmid transformation assay, we found that mre11 and rad50 null strains are extremely deficient in joining of incompatible DNA ends. Expression of the nuclease-deficient Mre11 mutant H125N fully complemented the mre11 strain for joining of mismatched ends in the absence of homology, while a mutant of Rad50 deficient in ATP-dependent activities exhibited levels of end-joining similar to a rad50 deletion strain. Although the majority of non-homologous end-joining (NHEJ) products isolated did not contain microhomologies, introduction of an 8bp microhomology at mismatched ends resulted in microhomology-mediated joining in all of the products recovered, demonstrating that a microhomology exerts a dominant effect on processing events that occur during NHEJ. Nuclease-deficient Mre11p was less efficient in promoting microhomology-mediated end-joining in comparison to its ability to stimulate non-microhomology-mediated events, suggesting that Mre11p influences, but is not essential for, microhomology-mediated repair. When the linearized DNA was transformed in the presence of an intact homologous plasmid to facilitate gap repair, there was no decrease in NHEJ products obtained, suggesting that NHEJ and homologous repair do not compete for DNA ends in vivo. These results suggest that the MRX complex is essential for joining of incompatible ends by NHEJ, and the ATP-dependent activities of Rad50 are critical for this process.  相似文献   

20.
Martini EM  Keeney S  Osley MA 《Genetics》2002,160(4):1375-1387
To investigate the role of the nucleosome during repair of DNA damage in yeast, we screened for histone H2B mutants that were sensitive to UV irradiation. We have isolated a new mutant, htb1-3, that shows preferential sensitivity to UV-C. There is no detectable difference in bulk chromatin structure or in the number of UV-induced cis-syn cyclobutane pyrimidine dimers (CPD) between HTB1 and htb1-3 strains. These results suggest a specific effect of this histone H2B mutation in UV-induced DNA repair processes rather than a global effect on chromatin structure. We analyzed the UV sensitivity of double mutants that contained the htb1-3 mutation and mutations in genes from each of the three epistasis groups of RAD genes. The htb1-3 mutation enhanced UV-induced cell killing in rad1Delta and rad52Delta mutants but not in rad6Delta or rad18Delta mutants, which are defective in postreplicational DNA repair (PRR). When combined with other mutations that affect PRR, the histone mutation increased the UV sensitivity of strains with defects in either the error-prone (rev1Delta) or error-free (rad30Delta) branches of PRR, but did not enhance the UV sensitivity of a strain with a rad5Delta mutation. When combined with a ubc13Delta mutation, which is also epistatic with rad5Delta, the htb1-3 mutation enhanced UV-induced cell killing. These results suggest that histone H2B acts in a novel RAD5-dependent branch of PRR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号