首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proton translocation assessed by the quinacrine fluorescence technique was compared with oxygen uptake during thiosulphate oxidation by cells of Thiobacillus denitrificans. The addition of thiosulphate to cell suspensions resulted in an outwardly directed proton translocation as reflected by an increased quinacrine fluorescence. Compared to the O2 uptake activity, the proton translocating system was much more sensitive to proton conductors, other ionophores and inhibitors of electron transport. The results indicate that (a) the proton-translocation activity (membrane energization) is enhanced in aged cell suspensions, (b) intactness of the cytoplasmic membrane is essential for establishing a protonmotive force in cells, (c) the fluorescence increase and proton translocation are reversible processes, (d) inhibitors of electron transport may also act as proton conductors by altering the integrity of the cytoplasmic membrane.Abbreviations CCCP carbonyl cyanide m-chlorophenyl-hydrazone - DBP 2,4-dibromophenol - DNP 2,4-dinitrophenol - HOQNO 2-heptyl-4-hydroxyquinoline-N-oxide - PCP pentachlorophenol - TPB tetraphenyl boron - TTFA 1-[thenoyl-(2)]-3,3,3-trifluoracetone  相似文献   

2.
1. Adenosine, a potent vasodilator, is transported very efficiently by pig aortic endothelium in monolayer culture (approx. 50pmol/min per 10(6) cells at 2 micrometer). Uptake proceeds by diffusion at high (millimolar) substrate concentrations, and by two discrete transport processes (Km approx. 3 micrometer and 250 micrometer) at lower concentrations. Over 90% of the adenosine taken up at 10 micrometer or 100 micrometer is rapidly converted into adenine nucleotides (mainly ATP). 2. The high-affinity process is selectively inhibited by dipyridamole and by nitrobenzylthioinosine. Adenine preferentially inhibits the lower-affinity process, papapaverine inhibits both transport processes, and inosine has no significant effect. 3. Pig aortic smooth-muscle cells in culture show no high-affinity transport system for adenosine; uptake is much slower at low concentrations than that by endothelium (approx. 5pmol/min per 10(6) cells at 2 micrometer). Over 80% of the incorporated adenosine at 10 micrometer or 100 micrometer is rapidly converted into adenine nucleotides. 4. The uptake of adenosine by smooth-muscle cells is powerfully inhibited by adenine, but dipyridamole is much less potent than in endothelium. 5. We conclude that endothelial cells are mainly responsible for the removal of circulating adenosine.  相似文献   

3.
Intestinal epithelial membrane transport of L-lactic acid was characterized using rabbit jejunal brush-border membrane vesicles (BBMVs). The uptake of L-[(14)C]lactic acid by BBMVs showed an overshoot phenomenon in the presence of outward-directed bicarbonate and/or inward-directed proton gradients. Kinetic analysis of L-[(14)C]lactic acid uptake revealed the involvement of two saturable processes in the presence of both proton and bicarbonate gradients. An arginyl residue-modifying agent, phenylglyoxal, inhibited L-[(14)C]lactic acid transport by the proton cotransporter, but not by the anion antiporter. The initial uptakes of L-[(14)C]lactic acid which are driven by bicarbonate ion and proton gradients were inhibited commonly by monocarboxylic acids and selectively by anion exchange inhibitor 4, 4'-diisothiocyanostilbene-2,2'-disulfonic acid and protonophore carbonylcyanide p-trifluoromethoxyphenylhydrazone, respectively. These observations demonstrate that L-lactic acid is transported across the intestinal brush-border membrane by multiple mechanisms, including an anion antiporter and a previously known proton cotransporter.  相似文献   

4.
Calcium transport in membrane vesicles of Streptococcus cremoris   总被引:2,自引:0,他引:2  
Rightside-out membrane vesicles of Streptococcus cremoris were fused with proteoliposomes containing the light-driven proton pump bacteriorhodopsin by a low-pH fusion procedure reported earlier [Driessen, A.J.M., Hellingwerf, K.J. & Konings, W.N. (1985) Biochim. Biophys. Acta 808, 1-12]. In these fused membranes a proton motive force, interior positive and acid, can be generated in the light and this proton motive force can drive the uptake of Ca2+. Collapsing delta psi with a concomitant increase in delta pH stimulates Ca2+ uptake while dissipation of the delta pH results in a reduced rate of Ca2+ uptake. Also an artificially generated delta pH, interior acid, can drive Ca2+ uptake in S. cremoris membrane vesicles. Ca2+ uptake depends strongly on the presence of external phosphate while Ca2+-efflux-induced proton flux is independent of the presence of external phosphate. Ca2+ accumulation is abolished by the divalent cation ionophore A23187. Calcium extrusion from intact cells is accelerated by lactose. Collapse of the proton motive force by the uncoupler carbonylcyanide p-trifluoromethoxyphenylhydrazone or inhibition of the membrane-bound ATPase by N,N'-dicyclohexylcarbodiimide strongly inhibits Ca2+ release. Further studies on Ca2+ efflux at different external pH values in the presence of either valinomycin or nigericin suggested that Ca2+ exit from intact cells is an electrogenic process. It is concluded that Ca2+ efflux in S. cremoris is mediated by a secondary transport system catalyzing exchange of calcium ions and protons.  相似文献   

5.
We studied the effect of compounds that uncouple oxidative phosphorylation on membrane function in Streptoccocus faecalis, an organism which relies upon glycolysis for the generation of metabolic energy. At low concentrations (ranging from 10(-7) to 10(-4)m), tetrachlorosalicylanilide, tetramethyldipicrylamine, carbonylcyanide m-chlorophenylhydrazone, pentachlorophenol, and dicoumarol strongly inhibited energy-dependent transport of rubidium, phosphate, and certain amino acids. However, these compounds had little effect on the generation of adenosine triphosphate via glycolysis or on its utilization for the synthesis of macromolecules. They also did not seriously inhibit uptake of those monosaccharides and amino acids which do not require concurrent metabolism. It is proposed that the uncouplers interfere with the utilization of metabolic energy for membrane transport. The uncouplers accelerated the translocation of protons across the cytoplasmic membrane. It appears that a proton-impermeable membrane is required for transport, perhaps, because a proton gradient is involved in the coupling of metabolic energy to the translocation of substrates across the membrane.  相似文献   

6.
Manganese was accumulated by cells of Escherichia coli by means of an active transport system quite independent of the magnesium transport system. When the radioisotope (54)Mn was used, manganese transport showed saturation kinetics with a K(m) of 2 x 10(-7)m and a V(max) of 1 to 4 nmoles/min per 10(12) cells at 25 C. The manganese transport system is highly specific; magnesium and calcium did not stimulate, inhibit, or compete with manganese for cellular uptake. Cobalt and iron specifically interfered with (54)Mn uptake, but only when added at concentrations 100 times higher than the K(m) for manganese. Active transport of manganese is temperature- and energy-dependent: uptake of (54)Mn was inhibited by cyanide, dinitrophenol, and m-chlorophenyl carbonylcyanide hydrazone (CCCP). Furthermore, the turnover or exit of manganese from intact cells was inhibited by energy poisons such as dinitrophenol and CCCP.  相似文献   

7.
Effect of pH on IAA Uptake by Maize Root Segments   总被引:3,自引:3,他引:0       下载免费PDF全文
The uptake of [5-3H]indoleacetic acid (IAA) by Zea mays L. root segments involves nonsaturable and saturable processes. The pH optimum of the saturable component was found to be 5.0. The proton ionophore carbonylcyanide p-trifluoromethoxyphenylhydrazone inhibited at 100 micromolar the saturable component of IAA uptake but had no effect on non-saturable uptake. This indicates that the saturable component of IAA uptake is dependent on the proton gradient across the plasmalemma. The high level of proton extrusion in the elongation zone of the root will stimulate nonsaturable and saturable uptake of IAA in that zone.  相似文献   

8.
The uptake of the basic amino acid, L-lysine, was studied in brush border membrane vesicles isolated from the kidney of the striped mullet (Mugil cephalus). The uptake of L-lysine was not significantly stimulated by a Na+ gradient and no overshoot was observed. However, when a proton gradient (pHo = 5.5; pHi = 8.3) was imposed across the membrane in the absence of Na+, uptake was transiently stimulated. When the proton gradient was short circuited by the proton ionophore, carbonylcyanide p-triflouromethoxyphenyl hydrazone, proton gradient-dependent uptake of lysine was inhibited. Kinetics of lysine uptake determined under equilibrium exchange conditions indicated that the Vmax increased as available protons increased (2.1 nmol/min/mg protein at pH 7.5 to 3.7 nmol/min/mg at pH 5.5), whereas the apparent Km (4.9 +/- 0.6 mM) was not altered appreciably. When membrane potential (inside negative) was imposed by K+ diffusion via valinomycin, a similar (but smaller) stimulation of lysine uptake was observed. When the membrane potential and the proton gradient were imposed simultaneously, a much higher stimulation in lysine uptake was shown, and the uptake of lysine was approximately the sum of the components measured separately. These results indicate that the uptake mechanism for basic amino acids is different from that of neutral or acidic amino acids and that the proton-motive force can provide the driving force for the uptake of L-lysine into the isolated brush border membrane vesicles.  相似文献   

9.
Bacterial metabolism excretes protons during normal metabolic processes. The protons may be recycled by chemiosmosis, diffuse through the wall into the medium, or bind to cell surface constituents. Calculations by Koch (J. Theor. Biol. 120:73-84, 1986) have suggested that the cell wall of gram-positive bacteria may serve as a reservoir of protons during growth and metabolism, causing the wall to have a relatively low pH. That the cell wall may possess a pH lower than the surrounding medium has now been tested in Bacillus subtilis by several independent experiments. When cultures of B. subtilis were treated with the proton conductors azide and carbonylcyanide m-chlorophenylhydrazone, the cells bound larger amounts of positively charged probes, including the chromium (Cr3+) and uranyl (UO2(2+) ions and were readily agglutinated by cationized ferritin. In contrast, the same proton conductors caused a decrease in the binding of the negatively charged probe chromate (CrO4(2-)). Finally, when levansucrase was induced in cultures by the addition of sucrose, the enzyme was inactive as it traversed the wall during the first 0.7 to 1.0 generation of growth. The composite interpretation of the foregoing observations suggests that the wall is positively charged during metabolism, thereby decreasing its ability to complex with cations while increasing its ability to bind with anions. This may be one reason why some enzymes, such as autolysins, are unable to hydrolyze their substrata until they reach the wall periphery or are in the medium.  相似文献   

10.
1. At pH 4.5 and 30degreesC, yeast preparations depleted of ATP in the presence of antimycin and deoxyglucose spontaneously lost K+, gaining roughly an equivalent amount of H+. 2. Five proton conductors including azide and 2,4-dinitrophenol accelerated this process, as did [14C]glycine, which was absorbed with two extra equivalents of H+. 3. The rate of glycine uptake at pH 4.5 diminished fourfold when cellular K+ fell by 20%. 4. The distribution of [14C]propionate indicated that the intracellular pH fell from 6.2 to 5.7 when the cellular content of K+ fell by 30%. 5. Glycine uptake from a 5 muM solution was about 400 times faster at pH 4.5 than it was at pH 7.4 with 100mM-KC1 present ostensibly to lower the membrane potential. 6. Yeast preparations containing 2mM-[14C]glycine absorbed a further amount from a 0.1 muM solution at pH 4.5. After about 10 min a net movement of [14C]glycine out of the yeast occurred. The ratio of the cellular [14Ia1glycine concentration to the concentration outside the yeast reached 4 X 10(4) in these assays, whereas at pH 7.4 in the presence of 100mM-KC1 it did not exceed 15 in 3h. Dimitrophenol lowered the accumulation ratio at pH 4.5, apparently by causing proton conduction. 7. The observations are consistent with the notion that glycine uptake is driven by a proton symport mechanism. 8. Possible factors governing the strikingly low rate of glycine efflux as opposed to its optimum rate of influx are discussed.  相似文献   

11.
In the membrane-bound redox-driven proton pump cytochrome c oxidase, electron- and proton-transfer reactions must be coupled, which requires controlled modulation of the kinetic and/or thermodynamic properties of proton-transfer reactions through the membrane-spanning part of the protein. In this study we have investigated proton-transfer reactions through a pathway that is used for the transfer of both substrate and pumped protons in cytochrome c oxidase from Rhodobacter sphaeroides. Specifically, we focus on the formation of the so-called F intermediate, which is rate limited by an internal proton-transfer reaction from a possible branching point in the pathway, at a glutamic-acid residue (E(I-286)), to the binuclear center. We have also studied the reprotonation of E(I-286) from the bulk solution. Evaluation of the data in terms of a model presented in this work gives a rate of internal proton transfer from E(I-286) to the proton acceptor at the catalytic site of 1.1 x 10(4) s(-1). The apparent pK(a) of the donor (E(I-286)), determined from the pH dependence of the F-formation kinetics, was found to be 9.4, while the pK(a) of the proton acceptor at the catalytic site is likely to be > or = 2.5 pH units higher. In the pH range up to pH 10 the proton equilibrium between the bulk solution and E(I-286) was much faster than 10(4) s(-1), while in the pH range above pH 10 the proton uptake from solution is rate limiting for the overall reaction. The apparent second-order rate constant for proton transfer from the bulk solution to E(I-286) is >10(13) M(-1) s(-1), which indicates that the proton uptake is assisted by a local buffer consisting of protonatable residues at the protein surface.  相似文献   

12.
The uptake of acetate by intact nongrowing cells of Acinetobacter calcoaceticus was studied in dependence on the C-source (acetate, n-alcanes, yeast extract, succinate, L-malate) and the growth phase. Single kinetic parameters of acetate uptake were determined. The best acetate uptake was observed with cells cultivated with acetate as the only C-source. Bacteria in the early growth phase were found to transfer acetate twice as fast as cells of the late logarithmic growth phase. The uptake of acetate can be described by a biphasic saturation kinetics with 2 Km values: the Km value for the first phase being 1.10(-5) M, and for the second one, 1.8 .10(-4) M. The corresponding maximal uptake rates are 8 and 37 mM/min/mg dry weight, respectively. Alpha-ketoglutarate, fumarate, L-malate, and oxalacetate inhibit the initial uptake of acetate. Uranylacetate, inhibitors of the respiratory chain and proton conductors in part completely inhibit the uptake of acetate.  相似文献   

13.
Accumulation of manganese was measured in subcellular membrane vesicles isolated from Escherichia coli. Accumulation of (54)Mn by vesicles in 0.5 m sucrose is stimulated by glucose and d-lactate and is inhibited by metabolic poisons such as dinitrophenol, m-chlorophenyl carbonylcyanide hydrazone, valinomycin, and nigericin. Manganese uptake by vesicles requires 10 mm calcium, which is not required for uptake of manganese by intact cells. The calcium requirement is specific and cannot be replaced by magnesium, sodium, or potassium. Strontium can replace calcium but is somewhat less effective than calcium. The uptake of manganese is via a manganese-specific system which shows saturation kinetics with manganese with a K(m) of 8 x 10(-6)m and a V(max) of 4 nmoles per min per g (wet weight) at 25 C. Magnesium and calcium do not compete for uptake. The accumulated manganese can be released from the vesicles by lipid active agents such as toluene, and can be exchanged for external manganese.  相似文献   

14.
Active transport of calcium ions has been demonstrated in inside-out membrane vesicles from Mycobacterium phlei mediated by respiratory linked substrates as well as by ATP hydrolysis. The uptake of calcium exhibited an apparent Km of 80 microM and V of 16.6 nmol calcium uptake x min-1 x mg protein-1. A fortyfold concentration gradient for calcium ions was calculated for both the ATP-induced and the respiration-induced transport of calcium. Removal of coupling-factor-latent ATPase resulted in the complete loss of ATP-driven Ca2+ transport whereas the respiration-driven uptake was reduced by 40-50%. The uptake of calcium was inhibited by the proton conducting ionophores carbonylcyanide m-chlorophenylhydrazone and Gramicidin-D. The accumulated calcium was freely exchangeable with external calcium and was rapidly released by the addition of inhibitors of energy transduction, proton-translocating uncouplers or the ionophore A23187. The uptake of the weak base, methylamine, upon the oxidation of respiratory-linked substrates or the hydrolysis of ATP showed the generation of a protein gradient (inside acidic) which was partially collapsed on the addition of calcium ions. These results suggest that a Ca2+/H+ antiport mechanism may be responsible for the transport of calcium.  相似文献   

15.
We have examined the mechanism of action of adenosine, a naturally occurring nucleoside that has profound effects on lymphocyte function. Adenosine (0.01 micrometer to 10 micrometer) increased lymphocytes cAMP levels in a dose-dependent fashion with a maximal (10 micrometer) increase of about 4-fold, whereas adenine, guanosine, and inosine had no effect on lymphocyte cAMP levels at concentrations of 100 micrometer. Adenosine appears to act on the cell surface since 1) 2-chloroadenosine, a poorly metabolized adenosine analogue, was as active as adenosine and 2) dipyridamole, which markedly inhibited [3H]-adenosine uptake by human lymphocytes, did not affect adenosine-induced accumulation of cAMP. The specificity of the adenosine effect was established by showing that the methylxanthine derivatives, theophylline and 3-isobutyl-1-methylxanthine (IBMX), specifically block the accumulation of cAMP in lymphocytes induced by adenosine. Theophylline is a competitive inhibitor of the effect of adenosine, with an estimated dissociation constant of theophylline-receptor complex of about 6.3 X 10(-7) M. The results suggest that adenosine increases the intracellular cAMP content of lymphocytes as a result of its interaction with a specific membrane receptor which results in the activation of adenylate cyclase.  相似文献   

16.
R. McDonald  S. Fieuw  J. W. Patrick 《Planta》1996,198(4):502-509
The mechanism of carrier-mediated sucrose uptake by the dermal transfer cells of developing Vicia faba L. cotyledons was studied using excised cotyledons and isolated transfer cell protoplasts. Addition of sucrose resulted in a transitory alkalinization of the bathing solution whereas additions of glucose, fructose or raffinose had no effect. Dissipating the proton motive force by exposing cotyledons and isolated transfer cell protoplasts to an alkaline pH, carbonylcyanide m-chlorophenylhydrazone, weak acids (propionic acid and 5,5-dimethyl-oxazolidine-2,4-dione) or tetraphenylphos-phonium ion resulted in a significant reduction of sucrose uptake. The ATPase inhibitors, erythrosin B (EB), diethylstilbestrol (DES) and N,N-dicyclohexylcarbodiimide (DCCD) were found to abolish the sucrose-induced medium alkanization as well as reduce sucrose uptake. Cytochemical localization of the ATPase, based on lead precipitation, demonstrated that the highest activity was present in the plasma membranes located in wall ingrowth regions of the dermal transfer cells. The presence of a transplasma-membrane redox system was detected by the extracellular reduction of the electron acceptor, hexacyanoferrate III. The reduction of the ferric ion was coupled to a release of protons. The redox-induced proton extrusion was abolished by the ATPase inhibitors EB, DES and DCCD suggesting that proton extrusion was solely through the H+-ATPase. Based on these findings, it is postulated that cotyledonary dermal transfer cells take up sucrose by a proton symport mechanism with the proton motive force being generated by a H + -ATPase. Sucrose uptake by the storage parenchyma and inner epidermal cells of the cotyledons did not exhibit characteristics consistent with sucrose-proton symport.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - DES diethylstilbestrol - EB erythrosin B - Em membrane potential - FC fusicoccin - HCF II hexacyanoferrate II - HCF III hexacyanoferrate III - Mes 2-(N-morpholino)ethanesulfonic acid - pmf proton motive force - TPP+ tetraphenylphosphonium ion The investigation was supported by funds from the Research Management Committee, The University of Newcastle and the Australian Research Council. One of us, R. McDonald, gratefully acknowledges the support of an Australian Postgraduate Research Award. We are indebted to Stella Savory for preparing the ultrathin sections for electron microscopy.  相似文献   

17.
Putrescine uptake in Trypanosoma cruzi epimastigotes is 10 to 50-fold higher than in Leishmania mexicana or Crithidia fasciculata. Polyamine transport in all these trypanosomatids is an energy-dependent process strongly inhibited by the presence of 2,4-dinitrophenol or KCN. Putrescine uptake in T. cruzi and L. mexicana was markedly decreased by the proton ionophore carbonylcyanide m-chlorophenylhydrazone but it was not affected by ouabain, a Na(+)-K+ pump inhibitor. The depletion of intracellular polyamines by treatment of parasite cultures with alpha-difluoromethylornithine elicited a marked induction of putrescine uptake in L. mexicana and C. fasciculata by increasing considerably the Vmax of this process. Conversely, the uptake of putrescine in T. cruzi was essentially unchanged by the same treatment. The differential regulation of putrescine transport in T. cruzi might be related to some distinctive features of polyamine metabolism in this parasite.  相似文献   

18.
Abstract Proton extrusion of maize root Zea mays segments, was inhibited by the presence of Cr (o.n. + 6; present in solution as CrO42-, Cr2O72-) in the incubation medium: the minimum inhibiting concentration was 2 × 10?3 mol m?3 and the inhibition progressively increased with Cr concentration. Cr inhibited proton extrusion. Also, when this activity was stimulated by the presence of K+ or fusicoccin (FC) in the incubation medium, the K+ and FC stimulating effect was still present when proton extrusion was inhibited by Cr. In addition, Cr inhibited K+ uptake. This inhibition was higher (50%) at K+ concentrations up to 1 mol m?3 lower (15%) at higher K+ concentrations. This result indicates that the system responsible for K+ uptake operating at low K+ concentrations is more sensitive to Cr inhibition. Cr had no effect on transmembrane electric potential (PD). The depolarizing and hyper-polarizing effect of K+ and FC, respectively, were not affected by Cr; but Cr enhances the depolarizing effect of the uncoupler carbonylcyanide m-chlorophenylhydrazone (CCP). These results indicate that Cr inhibited the proton translocating mechanism coupled with K+ uptake, but did not change the net transport of charges through the plasmalemma. The Cr effect is discussed, taking into account the possibility of a direct effect of Cr at the membrane level or, alternatively, of an effect on some metabolic processes controlling membrane function.  相似文献   

19.
The incorporation of sucrose into the thermophilic fungus,Thermomyces lanuginosus, occurred only in mycelia previously exposed to sucrose or raffinose. Sucrose uptake and invertase were inducible. Both activities appeared in sucrose-induced mycelia at about the same time. Both activities declined almost simultaneously following the exhaustion of sucrose in the medium. The sucrose-induced uptake system was specific for -fructofuranosides as revealed by competition with various sugars. The induction of sucrose uptake system was blocked by cycloheximide, showing that it was dependent on new protein synthesis. Transport of sucrose did not seem to be dependent on ATP. Rather, uptake of this sugar seemed to be driven by a proton gradient across the plasma membrane. The uptake system showed Michaelis-Menten kinetics.Abbreviations FCCP carbonylcyanide p-trifluoromethylphenyl hydrazone - 2,4-DNP 2,4-dinitrophenol  相似文献   

20.
The present investigation showed that active processes were involved in the uptake of 2,4-dichlorophenoxyacetate (2,4-D) by Delftia acidovorans MC1. With 2,4-D-grown cells, uptake at pH 6.8 was highly affine and showed a complex pattern-forming intermediary plateau at 20-100 microM 2,4-D. The kinetics became increasingly sigmoidal with raising of the pH to 7.5 and 8.5, and complexity disappeared. The apparent maximum was obtained at around 400 microM 2,4-D at either pH, and amounted to 15-20 nmol/min x mg protein. Higher substrate concentrations resulted in significant inhibition. With cells grown on (RS)-2-(2,4-dichlorophenoxy)propionate, 2,4-D uptake increased significantly and reached 45 nmol/min x mg, hinting at induction of a specific carrier(s). The kinetic characteristics made it apparent that several proteins contribute to 2,4-D uptake in MC1. An open reading frame was detected which has similarity to genes encoding major facilitator superfamily (MFS) transporters. Mutant strains that lacked this gene showed altered kinetics with decreased affinity to 2,4-D at pH 6.8. A mutant with complete deficiency in phenoxyalkanoate utilization showed an almost linear uptake pattern hinting at sole diffusion. Cloning of tfdK encoding a specific transporter for 2,4-D resulted in an increased uptake rate and, above all, higher affinity at slightly alkaline conditions due to hyperbolic kinetics. The presence of carbonylcyanide m-chlorophenylhydrazone led to the subsequent strong inhibition of 2,4-D uptake, suggesting proton symport as the likely active mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号