首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ren Z  Zhu B  Wang D  Ma E  Su D  Zhong Y 《Genetica》2008,132(1):103-112
Most of our current understanding of comparative population structure has been come from studies of parasite–host systems, whereas the genetic comparison of gallnut-aphids and their host-plants remain poorly documented. Here, we examined the population genetic structure of the Chinese sumac aphid Schlechtendalia chinensis and its unique primary host-plant Rhus chinensis in a mountainous province in western China using inter-simple sequence repeat (ISSR) markers. Despite being sampled from a mountainous geographic range, analysis of molecular variance (AMOVA) showed that the majority of genetic variation occurred among individuals within populations of both the aphid and its host. The aphid populations were found to be structured similarly to their primary host populations (F ST values were 0.239 for the aphid and 0.209 for its host), suggesting that there are similar patterns of gene flow between the populations of the aphid and between populations of its host-plant. The genetic distances (F ST/1 − F ST) between the aphid populations and between its host-plant populations were uncorrelated, indicating that sites with genetically similar host-plant populations may not always have genetically similar aphid populations. The lack of relationships between genetic and geographical distance matrices suggested that isolation by distance (IBD) played a negligible role at this level. This may be mainly attributed to the founder effect, genetic drift and the relative small spatial scale between populations. Zhumei Ren and Bin Zhu contributed equally to this work.  相似文献   

2.
Attempts to relate estimates of regional FST to gene flow and drift via Wright's (1931) equation FST ≈ 1/ (4Nm + 1) are often inappropriate because most natural sets of populations probably are not at equilibrium (McCauley 1993), as assumed by the island model upon which the equation is based, or ineffective because the influences of gene flow and drift are confounded in the product Nm. Evaluations of the association between genetic (FST) and geographic distances separating all pairwise populations combinations in a region allows one to test for regional equilibrium, to evaluate the relative influences of gene flow and drift on population structure both within and between regions, and to visualize the behavior of the association across all degrees of geographic separation. Tests of the model using microsatellite data from 51 populations of eastern collared lizards (Crotaphytus collaris collaris) collected from four distinct geographical regions gave results highly consistent with predicted patterns of association based on regional differences in various historical and ecological factors that affect the amount of drift and gene flow. The model provides a prerequisite for and an alternative to regional FST analyses, which often simply assume regional equilibrium, thus potentially leading to erroneous and misleading inferences regarding regional population structure.  相似文献   

3.
Using a combination of population‐ and individual‐based analytical approaches, we provide a comprehensive examination of genetic connectivity of Dungeness crab (Cancer magister) along ~1,200 km of the California Current System (CCS). We sampled individuals at 33 sites in 2012 to establish a baseline of genetic diversity and hierarchal population genetic structure and then assessed interannual variability in our estimates by sampling again in 2014. Genetic diversity showed little variation among sites or across years. In 2012, we observed weak genetic differentiation among sites (FST range = ?0.005–0.014) following a pattern of isolation by distance (IBD) and significantly high relatedness among individuals within nine sampling sites. In 2014, pairwise FST estimates were lower (FST range = ?0.014–0.007), there was no spatial autocorrelation, and fewer sites had significant evidence of relatedness. Based on these findings, we propose that interannual variation in the physical oceanographic conditions of the CCS influences larval recruitment and thus gene flow, contributing to interannual variation in population genetic structure. Estimates of effective population size (Ne) were large in both 2012 and 2014. Together, our results suggest that Dungeness crab in the CCS may constitute a single evolutionary population, although geographically limited dispersal results in an ephemeral signal of IBD. Furthermore, our findings demonstrate that populations of marine organisms may be susceptible to temporal changes in population genetic structure over short time periods; thus, interannual variability in population genetic measures should be considered.  相似文献   

4.
Contrary to assumptions commonly made in the study of population genetics, the demographic properties of many populations are not always constant. Important characteristics of populations such as migration rate and population size may vary in time and space. Moreover, local populations often come and go; the rate of extinction and the properties of colonization may also vary. In this paper, the approach to equilibrium following a disturbance in the genetic variance among populations is described. The rate of migration is shown to be critical in determining the extent to which extinction and recolonization affects genetic differentiation. Perturbations and variations through time and space in demographic parameters such as population size and migration rate are shown to be important in determining the partitioning of genetic variance. Equations are given to predict the average through time of genetic differentiation among populations in the event of a single disturbance or in constant fluctuations in the pertinent demographic parameters. In general, these fluctuations increase the FST of a species. Spatial demographic variation affects FSTmuch more than temporal variation. These demographic properties make some species unsuitable for the empirical analysis of migration with indirect genetic measures. Demographic instability may play a large role in the evolution of genetic variation.  相似文献   

5.
1. Gene flow and dispersal among populations of a stone‐cased caddis (Tasimiidae: Tasimia palpata) were estimated indirectly using a 460 bp region of the cytochrome oxidase I gene of mitochondrial DNA. 2. There was no significant differentiation at the largest spatial scale (between catchments) and no correlation between genetic distance and geographic distance. These results are consistent with widespread adult dispersal. 3. Conversely, significant genetic differentiation was detected at the smallest spatial scale examined (among reaches within streams). This pattern was primarily because of significant FST values in a single stream (Bundaroo Creek). 4. Bundaroo Creek also had the lowest mean number of haplotypes per population (n = 7) suggesting that a limited number of females may be responsible for recruitment at these sites. Significant FST's at the reach scale may be a result of this ‘patchy’ recruitment. However, additional evidence regarding the long‐range dispersal ability and fecundity of T. palpata females is needed to test this hypothesis fully.  相似文献   

6.
Populations of common mynas introduced to Australia, New Zealand, Fiji, Hawaii, and South Africa from India during the last century were compared genetically with the extant native population using isozyme electrophoresis of 39 presumptive loci. Average heterozygosity, mean number of alleles/locus, and the percentage of polymorphic loci are lower in the introduced populations, and the 18% loss of alleles involves only alleles that are rare in the native population. The native population is only weakly subdivided genetically (FST = 0.032) whereas the introduced populations are much more differentiated (FST = 0.123), and the mean genetic distance among them is significantly greater than among native samples. The reduction in mean number of alleles/locus and average heterozygosity is greatest in the South African population, consistent with a very small effective size in the founder population. In the introduced populations, random drift is implicated by the different subsets of polymorphic loci they possess, by their greater variance in allele frequencies, and by shifts either side of the native means. It is concluded that in the evolutionarily short period of 100–120 years, bottlenecks and random drift have promoted genetic shifts equal to those between different subspecies of birds.  相似文献   

7.
Termite alates are thought to be poor active flyers, and this should lead to considerable genetic differentiation on small spatial scales. However, using four microsatellite loci for the termite Macrotermes michaelseni we found low values of genetic differentiation (FST) across a spatial scale of even more than 50 km. Genetic differentiation between populations increased with spatial distance up to 50 km. Furthermore, up to this distance, the scatter around the linear regression of genetic differentiation versus spatial distance increased with spatial distance. This suggests that across such spatial distances gene flow and genetic drift are of about equal importance, and near equilibrium. Using a regional FST as well as the distance between populations with non-significant FST-values (up to 25 km), gene flow is sufficiently high so that populations may be regarded as panmictic on spatial scales of 25 to 50 km. The apparent contradiction between dispersal distances observed in the field and estimates of gene flow from genetic markers may be due to the masses of swarming alates. Assuming a leptokurtic distribution of dispersal distances, atleast some alates are expected to travel considerable distances, most likely by passive drift. Received 25 January 2005; revised 11 April 2005; accepted 26 April 2005.  相似文献   

8.
Genetic structure and inferred rates of gene flow in macrogeographic populations of the eastern tent caterpillar Malacosoma americanum were analyzed at two hierarchical scales: local demes and regional subpopulations. Wright's F-statistics were used to estimate population genetic structure using multilocus genotypic data generated electrophoretically. Estimated values of FST and the distribution of private alleles were then used to obtain indirect estimates of gene flow. We found modest, though significant, genetic structure at both spatial scales, a pattern consistent with high rates of gene flow over the large distances involved. Modest values obtained for Nei's genetic distance also suggested high levels of gene flow across the range of this species, although some gene-flow restriction resulting from isolation by distance was suggested by a positive regression of genetic distance on geographic distance. The observed homogeneity at enzyme loci across the range of M. americanum parallels the reported uniformity in morphology, suggesting a general absence of local genetic differentiation in this widely distributed species. The genetic homogeneity observed in this wide-ranging insect is discussed in terms of organism-specific environmental experience at different spatial scales. Some organisms occupying apparently heterogeneous environments may ameliorate unsuitable local conditions through microhabitat selection or behavioral modification of their microenvironment. This may be accomplished in M. americanum through group shelter construction and behavioral thermoregulation, closely tying thermoregulation to social biology in this species. If in this way the tent helps produce an effectively homogeneous environment for this species across its extensive range, this system may provide a unique example of how social behavior can influence the distribution of genetic variation in a population.  相似文献   

9.
The genetic structure of populations of the clone-forming tropical terrestrial bromeliad, Aechmea magdalenae, was examined by electrophoretic analyses in nine populations occurring on and near Barro Colorado Island, Republic of Panama. For the nine populations as a whole, 33% of the loci were polymorphic and the genetic diversity was 0.121. Within populations, the mean percent of polymorphic loci was 24.1% and the mean genetic diversity was 0.084. About one-third of the total allozyme diversity resided among populations (mean GST = 0.356). The distribution of A. magdalenae was patchy in the study area. This, coupled with the relatively small effective population sizes and the possible founding of populations by few individuals may have contributed to the large among-population component of genetic diversity. The extent of clonal growth was inferred by examining the relationship between the proportion of rosette-pairs sharing identical multilocus genotypes and distance between pairs. This method indicates that clonal spread is local; individuals sharing multilocus genotypes most often occur within 10 m of each other.  相似文献   

10.
This study assesses two hypotheses on the genetic diversity of populations of Gigartina skottsbergii Setchell et Gardner (Rhodophyta, Gigartinales) at the border of the species distribution: 1) peripheral populations display a reduced genetic diversity compared with central populations, and 2) genetic differentiation is higher among peripheral than among central populations. Two peripheral and four central populations were sampled along the Chilean coast and 113 haploid individuals were analyzed using 17 random amplification of polymorphic DNA loci. The genetic diversity was estimated by allele diversity (He), allele richness (Â), and the mean pair‐wise differences among multilocus genotypes. All three estimates consistently and significantly indicated a lower genetic diversity within the peripheral than within the central populations. Genetic differentiation between the two peripheral populations was stronger (FST=0.35) than between central populations at similar spatial scales (FST ranging from 0 to 0.25). In addition, it appeared from the distribution of pair‐wise differences that peripheral populations are in demographic expansion after a recent bottleneck. The results are discussed in the specific context of potential overharvesting of these wild populations.  相似文献   

11.
The population genetic structure of the Anopheles gambiae in western Kenya was studied using length variation at five microsatellite loci and sequence variation in a 648-nt mtDNA fragment. Mosquitoes were collected from houses in villages spanning up to 50 km distance, The following questions were answered, (i) Are mosquitoes in a house more related genetically to each other than mosquitoes between houses? (ii) What degree of genetic differentiation occurs on these geographical scales? (iii) How consistent are the results obtained with both types of genetic markers? At the house level, no differentiation was detected by FST and RST, and the band sharing index test revealed no significant associations of alleles across loci. Likewise, indices of kinship based on mtDNA haplotypes in houses were even lower than in the pooled sample. Therefore, the hypothesis that mosquitoes in a house are more related genetically was rejected. At increasing geographical scales, microsatellite allele distributions were similar among all population samples and no subdivision of the gene pool was detected by FST or RST. Likewise, estimates of haplotype divergence of mtDNA between populations were not higher than the within population estimates, and mtDNA-based FST values were not significantly different from zero. That sequence variation in mtDNA provided matching results with microsatellite loci (while high genetic variation was observed in all loci), suggested that this pattern represents the whole genome. The minimum area associated with a deme of A. gambiae in western Kenya is therefore larger than 50 km in diameter.  相似文献   

12.
Many species exist as metapopulations in balance between local population extinction and recolonization, processes that may strongly affect the distribution of neutral genetic diversity within demes and in the metapopulation as a whole. In this paper we use both the infinite-alleles and the infinite-sites models to reframe Slatkin's propagulepool and migrant-pool models in terms of mean within-deme and among-deme genetic diversity; the infinite-sites model is particularly relevant to DNA sequence data. Population turnover causes a major reduction in neutral genetic diversity within demes, πS, and in the metapopulation as a whole, πt. This effect is particularly strong for propagulepool colonization, in which colonists are drawn from a single extant deme. Because metapopulation dynamics affect both within-deme and total metapopulation diversity similarly, comparisons between species with different ecologies on the basis of ratios such as FST are difficult to interpret and absolute measures of divergence between populations should be used as well. Although the value of FST in a metapopulation with local extinction depends strongly on the mode of colonization, this has almost no effect on the numerator of the FST ratio, πt – πS, so that FST is influenced mainly by the effect of the colonization mode on the denominator (πt). Our results also indicate that it is inappropriate to use measures of average within-deme diversity in species with population turnover to estimate the scaled mutation rate, θ, because extinction can greatly reduce πS. Finally, we discuss the effect of population turnover on the effective size of a metapopulation.  相似文献   

13.
The relationship between social structure and partitioning of genetic variance was examined in two red howler monkey populations (W and G) in Venezuela, one of which (G) was undergoing rapid growth through colonization by new troops. Rates and patterns of gene flow had been determined through radiotelemetry and direct observation data on solitary migrants, and 10 years of troop censusing. Standard electrophoresis techniques were used to examine 29 loci in blood samples taken from 137 of the study animals. Analysis of genetic variance demonstrated: (1) a significantly high level of genetic variation among troops within populations (FST = 0.225 for W and 0.142 for G), and (2) a significant excess of heterozygosity within troops relative to expected (FIS = -0.136 for W and -0.064 for G), despite relatively high levels of observed and inferred inbreeding in W. Differences between the populations in FST values conformed to those predicted based on differences in colonization rate. Comparison of partitioning of genetic variance among different genealogical subsets of troops demonstrated that the pattern of genetic differentiation observed among troops within populations was promoted by an essentially single-male harem breeding structure, a very low rate of random exchange of breeding males among troops, and a high degree of relatedness among troop females. Between-troop genetic differentiation (FST) was thereby increased relative to that expected from other types of social organization, while the correlation between uniting gametes within troops (FIS) was decreased. Genetic differentiation between populations (2%) corresponded to that predicted from migration rates. Such a mosaic of genetic variation, combined with differences in reproductive success observed among troops and a high troop failure rate, create conditions in which interdemic selection could result in more rapid spread of advantageous gene combinations than would be expected in a panmictic population, particularly in a colonizing situation in which the founder population is small.  相似文献   

14.
The reproductive composition and genetic diversity of populations of the red seaweed Lithothrix aspergillum Gray (O. Corallinales) were studied at three southern California sites (Shaw's Cove and Treasure Island, Laguna Beach; Indian Rock, Santa Catalina Island) and at a fourth site (Bodega Bay) located in northern California. Sexually reproducing populations were confined to southern California. Diploid individuals were numerically dominant over haploid (gametophytic) individuals at all sites. Intertidal and subtidal subpopulations from Shaw's Cove differed in their reproductive profiles. Most intertidal specimens found on emersed surfaces were densely branched, turf-forming, and bore tetrasporangial (68.6%), carposporangial (11.4%), or spermatangial (5.7%) conceptacles, reflecting a sexual life history; none produced asexual bispores. In contrast, 74.3% of the larger, loosely branched subtidal specimens bore bisporangial conceptacles indicative of asexual reproduction. Nearly 70% of the Indian Rock thalli showed no evidence of conceptacle formation. Only asexual, diploid bispore-producing thalli were obtained from the Bodega Bay site. Genetic diversity (mean number of alleles per locus, percent of polymorphic loci, and average expected heterozygosity) of diploid L. aspergillum populations varied with life-history characteristics and geographic location. A total of 30 alleles was inferred from zymograms of 16 loci examined by starch-gel electrophoresis; of these loci, 11 were polymorphic. The genetic diversity of sexual, diploid populations of L. aspergillum (alleles per locus [A/L] = 1.4-1.5; percent polymorphic loci [%P] = 37.5-50.0) was relatively high compared with other red seaweeds. Lowest diversity (A/L = 1.0; %P = 0.0) occurred in the exclusively asexual Bodega Bay population which consisted of genetic clones. All sexual L. aspergillum populations deviated significantly from Hardy-Wein-berg expectations due to lower than expected heterozygosity. Genetic differentiation (Wright's Fstatistic [FST]; Nei's Genetic Distance [D]) among sexually reproducing southern California populations was low (FST= 0.030) on a local scale (ca. 5 km), suggesting high levels of gene flow, but high genetic differention (FST= 0.390 and 0.406) occurred among southern California populations separated by ca. 70 km. Very high genetic differentiation (FST= 0.583–0.683) was obtained between northern and southern California populations separated by 700–760 km. Our genetic and reproductive data suggest that the L. aspergillum population from Bodega Bay is sustained by perennation, vegetative propagation, or asexual reproduction by bispores and may represent an isolated remnant or a population established by a founder event.  相似文献   

15.
Spatial variation in the environment can lead to divergent selection between populations occupying different parts of a species’ range, and ultimately lead to population divergence. The colonization of new areas can thus facilitate divergence in beneficial traits, yet with little differentiation at neutral genetic markers. We investigated genetic and phenotypic patterns of divergence between low‐ and high‐altitude populations of cinnamon teal inhabiting normoxic and hypoxic regions in the Andes and adjacent lowlands of South America. Cinnamon teal showed strong divergence in body size (PC1; PST= 0.56) and exhibited significant frequency differences in a single nonsynonymous α‐hemoglobin amino acid polymorphism (Asn/Ser‐α9; FST= 0.60) between environmental extremes, despite considerable admixture of mtDNA and intron loci (FST= 0.004–0.168). Inferences of strong population segregation were further supported by the observation of few mismatched individuals in either environmental extreme. Coalescent analyses indicated that the highlands were most likely colonized from lowland regions but following divergence, gene flow has been asymmetric from the highlands into the lowlands. Multiple selection pressures associated with high‐altitude habitats, including cold and hypoxia, have likely shaped morphological and genetic divergence within South American cinnamon teal populations.  相似文献   

16.
To evaluate the effects of landscape and demographic history on genetic variation in Picea glehnii at a regional scale we have investigated the genetic diversity and genetic differentiation of P. glehnii populations in the Furano region, central Hokkaido, Japan, using seven simple sequence repeat (SSR) markers. We found significant correlations between elevation and genetic diversity parameters. The value of A [46] increased and the value of F IS decreased with increasing elevation, while F IS values were not significantly different from 0 in any of the populations. Significant recent bottlenecks were detected for isolated populations at low-elevation sites and for relatively large populations at moderate- and high-elevation sites. Evolutionary events pre-dating the Holocene should be taken into consideration, as elevational gradients should be with respect to locally adapted traits such as flowering phenology, However, the palynological data from the Holocene in this region suggest that the distribution pattern of genetic diversity of P. glehnii detected here may have been influenced by past demographic history related to the elevation shifts in this species’ distribution associated with climate change during this period. Population differentiation was low, with F ST and GST values of 0.022 and 0.065, respectively. However, genetic boundaries were detected around one swamp population (C13). Therefore, significant isolation by distance (IBD) was not detected when all populations were considered, but there was significant IBD when the C13 population was excluded. Information on genetic diversity and genetic differentiation at the regional scale may be useful for selecting seed sources for afforestation programs for P. glehnii.  相似文献   

17.
Random amplified polymorphic DNA (RAPD) marker variation was analyzed in female gametophytes in natural populations of Gelidium canariense (Grunow) Seoane‐Camba ex Haroun, Gil‐Rodríguez, Diaz de Castro et Prud'Homme van Reine from the Canary Islands to estimate the degree and distribution of genetic variability and differentiation. A total of 190 haploid individuals were analyzed with 60 polymorphic RAPDs bands which produced 190 distinct multilocus genotypes. A high level of polymorphism was detected in all populations analyzed. Within‐population gene diversity ranged from 0.156 to 0.264. The populations on the island of Gran Canaria showed higher genetic variation than the other populations analyzed. The partitioning of molecular variance by analysis of molecular variance showed that most genetic variation resides within populations (68.85%). These results suggest that sexual reproduction is the predominant mode of reproduction for G. canariense gametophytic populations, and the main determinant in reaching high levels of genetic diversity. The Neighbor‐Joining tree and FCA analysis displayed two subclusters that correspond to the populations from the western islands (Tenerife, La Palma, Gomera) and the eastern island (Gran Canaria). In addition, we have detected a significant relationship between FST/(1?FST) and geographical distance consistent with data on water circulation and age of islands. The results obtained agree with an isolation by distance model, with gene flow from eastern to the western islands, and a high level of genetic differentiation between populations (FST=0.311, P<0.001).  相似文献   

18.
The hypothesis that local isolated populations differed in the genetic basis for life-history traits was tested in the salamander Ambystoma talpoideum. Genetic basis was defined as the specific genetic architecture (additive and nonadditive) that contributes, along with maternal and environmental factors, to the phenotype. All crosses within and between three populations were made to produce nine F1 populations. Nine within-population crosses produced the F2 generation. This design does not permit an estimation of the exact nature of the genetic basis (e.g., additive, nonadditive) for any trait within populations. However, hybrid dissimilarity in the F2 generation was taken as evidence of a different genetic basis for a trait in each population. The genetic basis of life-history pathway (metamorphosis vs. paedomorphosis) and per capita fecundity differed between two populations. The genetic basis of life-history pathway, per capita fecundity, survival, and growth rate was similar between the remaining sets of populations. This study and related ones (Semlitsch and Wilbur, 1989; Semlitsch et al., 1990) suggest that a heterochronic shift that causes rapid morphological evolution between metamorphosis and paedomorphosis (a macroevolutionary pattern) can evolve independently and does not require a macromutation or other nonmicroevolutionary mechanisms.  相似文献   

19.
Six south Florida populations of the endangered red-cockaded woodpecker (Picoides borealis) were sampled to examine genetic diversity and population structure in the southernmost portion of the species' range relative to 14 previously sampled populations from throughout the species range. Random amplified polymorphic DNA (RAPD) analyses were used to evaluate the populations (n= 161 individuals, 13 primers, one band/primer). Results suggested that south Florida populations have significant among-population genetic differentiation (FST= 0.17, P < 0.000), although gene flow may be adequate to offset drift (Nm= 1.26). Comparison of Florida populations with others sampled indicated differentiation was less in Florida (FST for all populations = 0.21). Cluster analyses of all 20 populations did not reflect complete geographical predictions, although clustering of distant populations resulted in a significant correlation between genetic distance and geographical distance. Overall, results suggest populations in south Florida, similar to the remainder of the species, have low genetic diversity and high population fragmentation. Exact clustering of distant populations supports the ability of RAPDs to differentiate populations accurately. Our results further support past management recommendations that translocations of birds among geographically proximate populations is preferable to movement of birds between distant populations.  相似文献   

20.
Genetic variation among populations of chewing lice (Geomydoecus actuosi) was examined in relation to chromosomal and electrophoretic variation among populations of their hosts (Thomomys bottae) at a contact zone. Louse demes were characterized by low levels of genetic heterozygosity (H? = 0.039) that may result from founder effects during primary infestation of hosts, compounded by seasonal reductions in louse population size. Louse populations sampled from different hosts showed high levels of genetic structuring both within and among host localities. Microgeographic differentiation of louse populations is high (mean FST = 0.092) suggesting that properties of this host–parasite system promote differentiation of louse populations living on different individual hosts. Among-population differentiation in lice (FST = 0.240) was similar to that measured among host populations (FST = 0.236), suggesting a close association between gene flow in pocket gophers and gene flow in their lice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号