首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Mitochondrial variation in Plantago lanceolata was used to detect new CMS types. Directional reciprocal crosses were made between plants which differed in mtDNA restriction patterns. Differential segregation of male steriles in reciprocal crosses indicated that the parents differed in CMS type. MtDNA variation revealed nine RFLP patterns, which could be categorised according to the sex phenotype of the plants as MS1 (brown-anther type), MS2 (petaloid flower type) and MS3 (more yellow anthers than MS1). A single mtDNA pattern was found within MS1, six mtDNA patterns were found within the MS2 group, and two mtDNA patterns were found within hermaphrodites which segregated MS3 in the crosses. MS1 and MS2 are known to represent different CMS types, CMSI and CMSII. In reciprocal crosses between plants with different mtDNA patterns within the MS2 group, different ratios of male steriles segregated in the crosses, indicating that the parents differed in CMS type. Within the MS2 group two CMS types were found, designated CMSIIa and b. Finally, the sex phenotype H/MS3 turned out to be a different type. From previous studies it was known that the MS3 phenotype can also occur in CMSI and CMSII types, hence it is unclear whether MS3 is diagnostic for CMSIII. Since the data in this study cannot distinguish between the new type being a fully restored new CMS type or a ‘Normal’ cytoplasm, it was denoted as CMSIII. In total, four CMS types were found in the material studied. CtDNA variation was screened and three chloroplast haplotypes were identified. Two haplotypes were associated with CMSI plants, and one haplotype with the other CMS types. The ctDNA variation indicated that the CMSI type is widespread within the species, due to migration rather than to recurrent mutation. This may lead to the conclusion that only a limited number of CMS types are successful. Received: 9 August 1996 / Accepted: 6 September 1996  相似文献   

2.
To determine the evolutionary importance of parental environmental effects in natural populations, we must begin to measure the magnitude of these effects in the field. For this reason, we conducted a combined growth chamber-field experiment to measure parental temperature effects in Plantago lanceolata. We grew in the field offspring of controlled crosses of chamber-grown parents subjected to six temperature treatments. Each treatment was characterized by a unique combination of maternal prezygotic (prior to fertilization), paternal prezygotic, and postzygotic (during fertilization and seed set) temperatures. Offspring were followed for three years to measure the effects of treatment on several life-history traits and population growth rate, our estimate of fitness. Parental treatment influenced germination, growth, and reproduction of newborns, but not survival or reproduction of offspring at least one year old. High postzygotic temperature significantly increased germination and leaf area at 17 weeks by approximately 35% and 2%, respectively. Probability of flowering and spike production in the newborn age class showed significant parental genotype x parental treatment interactions. High postzygotic temperature increased offspring fitness by approximately 50%. The strongest contributors to fitness were germination and probability of flowering and spike production of newborns. A comparison of our data with previously collected data for chambergrown offspring shows that the influence of parental environment on offspring phenotype is weaker but still biologically meaningful in the field. The results provide evidence that parental environment influences offspring fitness in natural populations of P. lanceolata and does so by affecting the life-history traits most strongly contributing to fitness. The data suggest that from the perspective of offspring fitness, natural selection favors parents that flower later in the flowering season in the North Carolina Piedmont when it is warmer. Genotypic-specific differences in response of offspring reproductive traits to parental environment suggest that parental environmental effects can influence the rate of evolutionary change in P. lanceolata.  相似文献   

3.
Wound healing requires cells that increase both collagen production as a result of inflammatory events and regeneration of epithelial tissue. The Plantago species of herbs have been used in traditional treatment of skin disorders and infectious diseases, and digestive, respiratory, reproductive and circulatory conditions. We investigated the efficacy of different concentrations of Plantago lanceolata L. extract (PLE) for wound healing owing to its anti-inflammatory, anti-bacterial, anti-fungal, anti-oxidant, anti-ulcerative, analgesic and immunomodulatory properties. We used 72 mice in four groups of 18. An excisional 1 cm wound was created in the skin on the back of the mice in all groups. An ointment containing 10% PLE was applied to the wound in group 1, an ointment containing 20% PLE was applied in group 2 and vaseline was applied in group 3. In group 4, no treatment was applied to the wound. On days 7, 14, and 21 of the experiment, six animals in each group were sacrificed after the wounds were photographed and specimens from the wound sites were examined. On day 14, epithelialization was more prominent in group 2, while vascularization and collagen deposition was more advanced in groups 1 and 2 compared to the other groups. Immunohistochemical examination revealed that TGF-β1 expression was elevated on day 14 in all groups; however, this elevation was more limited in groups 1 and 2 than in groups 3 and 4. Although ANGPT-2 expression increased in groups 1 and 4 on day 14, it decreased significantly in groups 2 and 3. We found that different concentrations of PLE exhibited positive effects on wound healing. Application of 10% PLE ointment may be a useful strategy for wound healing.  相似文献   

4.
5.
6.
Gynodioecy, the coexistence of hermaphrodites and male steriles, is frequent in populations of Plantago lanceolata L. A condition for the maintenance of gynodioecy in an obligatory outbreeding species like this is an increase in female fitness in male steriles compared with hermaphrodites. One of the possible underlying mechanisms, a lower cyanide-resistant respiration in male steriles, which could lead to a higher metabolic efficiency, was investigated. For the experiments adult plants were used, because the effects which compensate for male sterility have been found in characters like seed production and longevity. No general correlation between sex phenotype and cyanide-resistant respiration capacity, or with any other respiration component, was found. Only in a single cross a strong correlation between cyanide-resistant respiration activity and sex phenotype was established, male steriles possessing the higher activity. The conclusion from these experiments is that there is no pleiotropic relationship between respiration levels and sex phenotype. The strongly significant correlation mentioned is ascribed to chromosomal linkage.  相似文献   

7.
Gynodioecy is a breeding system in which hermaphrodites coexist with male steriles. Theoretical models predict that without any compensation in female fitness male steriles will disappear from a population due to their reproductive disadvantage. In the present study I investigated whether male-sterile (MS), partially male-sterile (IN), and hermaphroditic (H) plants of Plantago lanceolata differed in reproductive growth and allocation. Offspring of three interpopulation crosses segregating all three sex morphs were grown under nitrogen-limited conditions in a growth chamber. Independent of the genetic background MS plants attained a higher vegetative and reproductive dry mass and a higher reproductive output than H plants, whereas IN plants had intermediate values. When corrected for the mass of the pollen, the dry mass differences between the sex morphs were much reduced but still present. However, when whole-plant allocation was expressed on the basis of nitrogen, the differences between the sex morphs disappeared. Thus the sex morphs took up similar amounts of nitrogen but distributed them differently. The MS and IN plants used the nitrogen saved by not producing pollen for additional vegetative as well as reproductive growth. The data presented in this study suggest that resource compensation is one of the main mechanisms responsible for the maintenance of MS and IN plants in gynodioecious P. lanceolata.  相似文献   

8.
Summary Morphological variability was analysed in an F2-generation derived from crosses between two ecotypes of Plantago lanceolata L. Six allozyme loci, localised in five linkage groups, were used as markers. For two marker loci, Got-2 and Gpi-1, segregations did not fit monogenic ratios. In the linkage groups to which these two loci belonged, male sterility genes appeared to be present. In these crosses, male sterility (type 3, as described by Van Damme 1983) may be determined by two recessive loci located in the linkage groups of Got-2 and of Gpi-1. Many correlations of morphological and life history characters with allozyme markers were observed. The quantitative trait loci did not appear to be concentrated in major gene complexes. Often many loci were involved, sometimes with effects opposite to those expected from the population values. Main effects of the linkage groups appeared to be more important than interaction effects in determining variability. It also appeared that there is a positive correlation between the number of heterozygous allozyme loci and generative growth.Grassland Species Research Group Publication No. 115  相似文献   

9.
Plantago lanceolata L. (ribwort plantain) produces two costly terpenoid secondary plant compounds, the iridoid glycosides aucubin and catalpol. We performed an artificial selection experiment to investigate direct and correlated responses to selection on the constitutive level of iridoid glycosides in the leaves for four generations. Estimated realized heritabilities (±SE) were 0.23 ± 0.07 and 0.23 ± 0.04 for upward and downward selection, respectively. The response to upward selection was caused by selection for a developmental pattern characterized by the production of fewer leaves that on average contain more iridoids, and by selection for a development‐independent increase in the level of these compounds. Significant correlated responses were observed for plant growth form. Upward selection resulted in plants with larger sized, but fewer leaves, fewer side rosettes, and fewer spikes, corresponding to a previously distinguished ‘hayfield’ ecotype, whereas downward selection produced the opposite pattern, corresponding to a ‘pasture’ ecotype. This indicates that the level of iridoid glycosides is genetically correlated with morphological traits in P. lanceolata, and is part of the complex of genetically correlated traits underlying the two ecotypes. The genetic association between iridoid level and growth forms suggests that there may be constraints to the simultaneous evolution of resistance to generalist insects (by iridoid glycosides) and to larger grazers (by a high production rate of prostrate leaves and inflorescences) in open grazed habitats where the ‘pasture’ ecotype is found.  相似文献   

10.
Fitness costs of defense are often invoked to explain the maintenance of genetic variation in levels of chemical defense compounds in natural plant populations. We investigated fitness costs of iridoid glycosides (IGs), terpenoid compounds that strongly deter generalist insect herbivores, in ribwort plantain (Plantago lanceolata L.) using lines that had been artificially selected for high and low leaf IG concentrations for four generations. Twelve maternal half-sib families from each selection line were grown in four environments, consisting of two nutrient and two competition treatments. We tested whether: (1) in the absence of herbivores and pathogens, plants from lines selected for high IG levels have a lower fitness than plants selected for low IG levels; and (2) costs of chemical defense increase with environmental stress. Vegetative biomass did not differ between selection lines, but plants selected for high IG levels produced fewer inflorescences and had a significantly lower reproductive dry weight than plants selected for low IG levels, indicating a fitness cost of IG production. Line-by-nutrient and line-by-competition interactions were not significant for any of the fitness-related traits. Hence, there was no evidence that fitness costs increased with environmental stress. Two factors may have contributed to the absence of higher costs under environmental stress. First, IGs are carbon-based chemicals. Under nutrient limitation, the relative carbon excess may result in the production of IGs without imposing a further constraint on growth and reproduction. Second, correlated responses to selection on IG levels indicate the existence of a positive genetic association between IG level and cotyledon size. At low nutrient level, a path analysis based on family means revealed that in the presence of competitors, the negative direct effect of a high IG level on aboveground plant dry weight was partly offset by a positive direct effect of the associated larger cotyledon size. This indicates that fitness costs of defense may be modulated by environment-specific fitness effects of genetically associated traits.  相似文献   

11.
The effects of different ratios of red to far-red light (R/FR-ratio) and of exogenously applied growth regulators on the morphology of plants from sun and shade populations were studied. Large differences in growth form were found between populations adapted to either sun or shaded habitats. Low R/FR-ratios, simulating vegetation shade, induced a growth form similar to that of plants from the shade population. High R/FR-ratios, simulating sunlight, had the opposite effect. Most morphological differences between shade and sun populations and effects of low R/FR-ratios on growth form could be mimicked by exogenously applied gibberellin (GA3). In contrast, application of a gibberellin inhibitor (CCC) induced a growth form similar to that of the sun population and of plants grown under a high R/FR-ratio. Interactions between genetic background, the R/FR-ratio, and hormone treatment, were small and the factors exerted their action independently. The results are discussed in relation to the influence of developmental constraints on the evolvability of optimal phenotypes and the plastic responses therein.  相似文献   

12.
Summary Morphological variability was studied in two populations of Plantago lanceolata using diallel analysis. In each population, reciprocal crosses between all possible pairs of ten plants were made. In the greenhouse, six members of each family were grown and many characters were measured. Using the model of Cockerham and Weir, the contributions of the different genetic variance components were calculated. From earlier papers it was postulated in advance to what extent and by which effect the characters in both populations were genetically determined. The populations had been differentiated for life history and morphological characters, and varied also in the relative contribution of genetic components to variability. In the Merrevliet (Me) population, where strong biotic selection was assumed, low levels of additive-genetic variability were present and the relative dominance appeared to be high. The contrasting population, Westduinen (Wd), which is abiotically controlled and shows strong environmental variability, possessed higher levels of additive-genetic variability and lower levels of relative dominance. It is possible that differential natural selection has diminished additive-genetic variability to different extents in both populations: plasticity and environmental heterogeneity prevented the loss of additive-genetic variability in Wd, whereas in the stable population, Me, natural selection had the opportunity of not only changing the means of the characters but also of diminishing additive-genetic variability to a great extent.Grassland Species Research Group Publication No. 146  相似文献   

13.
Plantago lanceolata is a gynodioecious species: In natural populations male steriles (MS) coexist with hermaphrodites (H). Since male steriles have a reproductive disadvantage, without any compensation for their loss in male function by an increase in female function, they are expected to disappear from the population. In this study we investigated the possibility that differences in ecologically important photosynthetic characteristics, between MS and H lines of P. lanceolata. play a role in maintaining gynodioecy. One MS line and two H lines were grown under conditions of high N and light availability, as well as under either N limitation or light limitation, to investigate whether the sex types respond differently to environmental constraints. Photosynthetic light-response and CO2-response curves were made, together with leaf organic N and chlorophyll determinations. There were only few small differences between the lines and since the MS line did not differ in any of the determined photosynthetic characteristics from either H line, it is unlikely that these differences are involved in maintaining male sterility in populations of P. lanceolata. The low-light-grown plants showed a high degree of acclimation as shown by a two-fold higher leaf area to leaf weight ratio (SLA), a two-fold higher investment of N in light harvesting, and higher net photosynthetic rates under low-light conditions, as compared to the high-light-grown plants. The low-N-grown plants used their organic N more efficiently in photosynthesis compared to plants grown at an optimal N supply. This was mainly due to the N-limited plants having leaves with a lower organic N content and thus lower photosynthetic capacities. To a lesser extent it was due to the higher value for the curvature factor of the light-response curves of the N-limited plants, to their decreased rates of photorespiration and possibly to their relatively higher allocation of organic N to photosynthetic functions.  相似文献   

14.
Detailed pollen analytical investigations at a Neolithic lake dwelling site on Lake Chalain, Jura, France, show very characteristic variation in the Plantago lanceolata and P. major/media pollen curves in the period during which settlements are recorded (3030–2630 cal. B.C.). At first, P. lanceolata is the more important taxon but P. major/media representation gradually rises, to become the more important taxon in the uppermost settlement phase. After considering the present day ecology and phytosociology of the Plantago species in question, i.e. P. lanceolata, P. major and P. media, and the available archaeozoological and archaeological information, it is suggested that the changes in the representation of these two pollen taxa are the result of a change in the farming economy, at ca. 2800 cal. B.C., which involved a substantial rise in the numbers of domesticated grazing animals and more intensive land use.  相似文献   

15.
Roots of Plantago lanceolata L. showed an iron stress-induced increase in the rates of electron transport to the extracytoplasmatic acceptors FeEDTA and ferricyanide. No significant changes in the reduction of hexachloroiridate were observed with respect to the iron-nutritional status of the plants. The reduction activity of iron-deficient roots was inhibited by the translation inhibitor cycloheximide (CHM) and the amino acid analog p-fluorophenylalanine (FPA). In both cases, the reduction of FeEDTA and ferricyanide was affected to a different extent, providing evidence for enzyme heterogeneity. Resupply of FeEDTA to iron-deficient plants resulted in a qualitatively similar pattern of decrease in FeEDTA and ferricyanide reduction rates, although a longer time period was required for the decrease of the redox activity by iron resupply compared to the effect of inhibitors of protein synthesis.Inhibitors of the plasma membrane (PM)-bound H+-ATPase decreased the FeEDTA reduction activity of iron-deficient plants. In contrast, the reduction of ferricyanide and hexachloroiridate was not inhibited. Oxidation of ferrocyanide occurs in both iron-deficient and iron-sufficient plants at comparable rates. The reaction was decreased by the H+-ATPase inhibitor orthovanadate.The results are interpreted in terms of a simultaneous action of distinct redox systems in iron-deficient roots. The role of proton extrusion in the regulation of iron stress-induced electron transport is discussed.  相似文献   

16.
17.
杉楠混交与人工杉木林自养机制的恢复   总被引:10,自引:3,他引:10  
自养机制的形成是人工林可持续经营的目标之一。本研究通过混交模拟杉木人工林不同恢复阶段林分,观察比较发现从退化的杉木林阶段到地带性树种比例较低的混交林、地带性树种比例较高的混交林和地带性树种纯林阶段凋落量、N、P、K、Ca和Mg5种元素的归还量逐渐增加,特别是5种养分元素的循环速率也不断增大,其中N、Mg的循环速率由杉木纯林的0.1左右增大到火力楠纯林的0.5以上,与此同时林分土壤有机质含量和养分含  相似文献   

18.
甘蓝型油菜CMS微粉活力研究及其对杂交制种纯度的影响   总被引:1,自引:0,他引:1  
通过对微粉和正常花粉在不同和同一雌蕊上的结实力比较和结实竞争研究,表明微粉虽能够授粉结实,但活力低、萌发慢、持续时间短、受精结实能力差,与正常花粉的竞争力弱,授微粉后间隔3-72h,再授恢复系花粉,其结实表现仍可达到或超过单独授恢复系花粉的结实率,最高的还超过了只授恢复系花粉结实率的9.57%;授微粉后间隔0-48h再授恢复系花粉仍可获得70.35%-91.00%的异交率,说明微粉对油菜杂交制种过  相似文献   

19.
Soil samples (0 to 5?cm) from 30 locations in the Celje region, Slovenia, an area that has been subjected to severe industrial emissions of Pb and Zn, were analyzed for selected soil properties and subjected to a six-step sequential extraction of Pb and Zn. Phyto-available forms of heavy metals: soluble in soil solution and exchangeable from soil colloids to soil solution together accounted for 0 to 1.68% of Pb and 0 to 40.8% of total soil Zn. Most of the Pb and Zn was found to reside in less labile forms bound to carbonate (2.04 to 43.5% Pb, 3.9 to 35.1% Zn), bound to Fe and Mn oxides (0 to 16.1% Pb, 1.4 to 25.4% Zn), bound to organic matter (35.8 to 71.1% Pb, 14.8 to 56.2% Zn), and in the residual fraction (10.4 to 53.4% Pb, 14.2 to 75.3% Zn). Factor analysis and stepwise multiple regression revealed that the concentration of Pb in the proposed indicator plant, narrow leaf plantain (Plantago lanceolata) did not correlate with the measured soil properties, Pb fractionation in soil, and total soil Pb. Plant uptake of Zn, however, significantly correlated with soil pH and with the share of phyto-available forms of Zn in the soil (R2 = 86.9). A statistically significant correlation (P<0.01) was found between the fractions of Pb and Zn carbonates and soil organic matter content (R2 = 90.6 and 90.9, respectively); the fraction of Pb bound to organic matter and soil organic matter content (R2 = 90.6); the residual fraction of Pb and total Pb content in soil (R2 = 95.7); the fraction of Zn bound to Fe an Mn oxides, the fraction of Zn bound to organic matter, the residual fraction of Zn and total Zn content in soil (R2 = 75.9, 93.2, and 87.4, respectively). Soil texture, pH, and cation exchange capacity did not affect the relative proportions of Pb and Zn forms in soil.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号