首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The integration of craniofacial elements during developmentin mammals is studiedin a phylogenetic approach. Developmentalseries of four metatherian (marsupial) and five Eutherian (placental)taxa are examined, and the sequence of emergence of major charactersof the central nervous system, the cranial skeleton and thecranial musculature is reconstructed. These sequences are transformedinto a series of characters that are then mapped onto the phylogenyof the taxa. This phylogenetic approach makes it possible todistinguish between characters thatare uniform across all mammals,and those that differentiate marsupials and placentals. Themost significant difference between the two groups involvesthe relative timing of the developmentof the central nervoussystem and the somatic system. The central nervous system differentiatesfar in advance of the bones and muscles of the head in eutherians.In metatherians, somatic elements, particularly of the face,are accelerated. Additional other differences between the twogroups of mammals are discussed. Many elements, however, areunchanged, and develop in a consistent relation despite overallshifts in development. These data are used to test several hypotheseson the ways that cranial development in mammals is integrated.  相似文献   

2.
Heterochrony is most often thought to involve changes in the rate of development or maturation (rate changes). However, heterochrony can also involve changes in the timing of specific developmental events relative to other events (sequence changes). Sequence changes have received much less attention than have changes in developmental rates, in part because few methods exist for comparing developmental sequences. Here, we present two methods to statistically evaluate developmental sequence changes. First, Kendall's coefficient of concordance (W) is used to quantify overall similarity of developmental sequences in two or more groups of organisms, and second, ANOVA is used to identify the individual events that differ most in their relative developmental timing. Computer simulation is used to control for the nonindependence of species. We examine the sequence of developmental events in the craniofacial region of marsupial and placental mammals. We conclude that the most important differences in development in the two clades relate to the relative sequence of development of the central nervous system and somatic elements of the craniofacial region. The rationale behind the methods and their limitations are discussed, and the results from this study are compared with a previous analysis.  相似文献   

3.
4.
Adult neural stem cells: plasticity and developmental potential.   总被引:28,自引:0,他引:28  
Stem cells play an essential role during the processes of embryonic tissue formation and development and in the maintenance of tissue integrity and renewal throughout adulthood. The differentiation potential of stem cells in adult tissues has been thought to be limited to cell lineages present in the organ from which they derive, but there is evidence that somatic stem cells may display a broader differentiation repertoire. This has been documented for bone marrow stem cells (which can give rise to muscle, hepatic and brain cells) and for muscle precursors, which can turn into blood cells. The adult central nervous system (CNS) has long been considered incapable of cell renewal and structural remodeling. Recent findings indicate that, even in postnatal and adult mammals, neurogenesis does occur in different brain regions and that these regions actually contain adult stem cells. These cells can be expanded both in vivo and ex vivo by exposure to different combinations of growth factors and subsequently give rise to a differentiated progeny comprising the major cell types of the CNS. Almost paradoxically, adult neural stem cells display a multipotency much broader than expected, since they can differentiate into non-CNS mesodermal-derivatives, such as blood cells and skeletal muscle cells. We review the recent findings documenting this unforeseen plasticity and unexpected developmental potential of somatic stem cells in general and of neural stem cells in particular. To better introduce these concepts, some basic notions on the functional properties of adult neural stem cells will also be discussed, particularly focusing on the emerging role of the microenvironment in determining and maintaining their peculiar characteristics.  相似文献   

5.
Unlike mammals, fish have the capacity for functional adult CNS regeneration, which is due, in part, to their ability to express axon growth-related genes in response to nerve injury. One such axon growth-associated gene is gap43, which is expressed during periods of developmental and regenerative axon growth, but is not expressed in CNS neurons that do not regenerate in adult mammals. We previously demonstrated that cis-regulatory elements of gap43 that are sufficient for developmental expression are not sufficient for regenerative expression in the zebrafish. Here we have identified a 3.6kb genomic sequence from Fugu rubripes that can promote reporter gene expression in the nervous system during both development and regeneration in zebrafish. This compact sequence is advantageous for functional dissection of regions important for axon growth-associated gene expression during development and/or regeneration. In addition, this sequence will also be useful for targeting gene expression to neurons during periods of growth and plasticity.  相似文献   

6.
7.
Vertebrate skeletal differentiation retains elements from simpler phyla, and reflects the differentiation of supporting tissues programmed by primary embryonic development. This developmental scheme is driven by homeotic genes expressed in sequence, with subdivision of skeletal primordia driven by a combination of seven transmembrane‐pass receptors responding to Wnt‐family signals, and by bone morphogenetic family signals that define borders of individual bones. In sea‐dwelling vertebrates, an essentially complete form of the skeleton adapted by the land‐living vertebrates develops in cartilage, based on type II collagen and hydrophilic proteoglycans. In bony fishes, this skeleton is mineralized to form a solid bony skeleton. In the land‐living vertebrates, most of the skeleton is replaced by an advanced vascular mineralized skeleton based on type I collagen, which reduces skeletal mass while facilitating use of skeletal mineral for metabolic homeostasis. Regulation of the mammalian skeleton, in this context, reflects practical adaptations to the needs for life on land that are related to ancestral developmental signals. This regulation includes central nervous system regulation that integrates bone turnover with overall metabolism. Recent work on skeletal development, in addition, demonstrates molecular mechanisms that cause developmental bone diseases.  相似文献   

8.
9.
Morphological integration has the potential to link morphological variation within populations with morphological evolution among species. This study begins to investigate this link by comparing integration among shoulder girdle elements (e.g. scapular blade, glenoid, coracoid, etc.) during the origin and evolution of therian mammals, and within modern bat, opossum and mouse populations. In this study, correlations among skeletal elements and patterns of allometry are used as proxies for integration. Results suggest that shoulder girdle elements tended to vary and evolve independently during the origin of mammals and subsequent radiation of placentals, consistent with the elements’ distinct developmental and evolutionary origins. This finding suggests that skeletal element correlations, and therefore integration, can be conserved over large taxonomic and temporal scales. However, marsupials display a different pattern in which shoulder girdle elements tend to be more integrated, with the exception of the coracoid. This finding is consistent with a shift in the pattern of skeletal element integration coincident with the appearance of the marsupial mode of reproduction. This finding provides further evidence that development can play a significant role in the establishment of patterns of skeletal element correlation and that patterns of skeletal element correlation can themselves evolve when faced with sufficient selective pressures.  相似文献   

10.
Multiple roles of mouse Numb in tuning developmental cell fates.   总被引:8,自引:0,他引:8  
BACKGROUND: Notch signaling regulates multiple differentiation processes and cell fate decisions during both invertebrate and vertebrate development. Numb encodes an intracellular protein that was shown in Drosophila to antagonize Notch signaling at binary cell fate decisions of certain cell lineages. Although overexpression experiments suggested that Numb might also antagonize some Notch activity in vertebrates, the developmental processes in which Numb is involved remained elusive. RESULTS: We generated mice with a homozygous inactivation of Numb. These mice died before embryonic day E11.5, probably because of defects in angiogenic remodeling and placental dysfunction. Mutant embryos had an open anterior neural tube and impaired neuronal differentiation within the developing cranial central nervous system (CNS). In the developing spinal cord, the number of differentiated motoneurons was reduced. Within the peripheral nervous system (PNS), ganglia of cranial sensory neurons were formed. Trunk neural crest cells migrated and differentiated into sympathetic neurons. In contrast, a selective differentiation anomaly was observed in dorsal root ganglia, where neural crest--derived progenitor cells had migrated normally to form ganglionic structures, but failed to differentiate into sensory neurons. CONCLUSIONS: Mouse Numb is involved in multiple developmental processes and required for cell fate tuning in a variety of lineages. In the nervous system, Numb is required for the generation of a large subset of neuronal lineages. The restricted requirement of Numb during neural development in the mouse suggests that in some neuronal lineages, Notch signaling may be regulated independently of Numb.  相似文献   

11.
赤链蛇不同组织Sox基因表达的RT-PCR分析   总被引:1,自引:0,他引:1  
采用RT-PCR技术,研究了赤链蛇不同组织Sox基因的表达。通过PCR产物直接克隆法和SSCP技术筛选阳性克隆,分析了雄性睾丸和雌性卵巢组织中的Sox基因序列。结果显示,在赤链蛇雌雄成体组织中,Sox基因在睾丸、卵巢、脑和脾组织中均有不同程度的表达,而在雌雄成体肌肉组织中均无表达,显示该基因表达有一定的组织特异性。序列分析显示睾丸组织中表达的是DRSox3,卵巢组织中表达的是DRSox22。在Sox家族中,Sox3表达于中枢神经系统和尿生殖嵴的发育过程中;Sox22则表达于多种组织和神经系统中,可横跨CNS和PNS的整个过程。此结果表明Sox基因不仅在性别决定中起作用,还可能在胚胎发育过程中担负重要功能。  相似文献   

12.
Vertebrate jaw muscle anatomy is conspicuously diverse but developmental processes that generate such variation remain relatively obscure. To identify mechanisms that produce species-specific jaw muscle pattern we conducted transplant experiments using Japanese quail and White Pekin duck, which exhibit considerably different jaw morphologies in association with their particular modes of feeding. Previous work indicates that cranial muscle formation requires interactions with adjacent skeletal and muscular connective tissues, which arise from neural crest mesenchyme. We transplanted neural crest mesenchyme from quail to duck embryos, to test if quail donor-derived skeletal and muscular connective tissues could confer species-specific identity to duck host jaw muscles. Our results show that duck host jaw muscles acquire quail-like shape and attachment sites due to the presence of quail donor neural crest-derived skeletal and muscular connective tissues. Further, we find that these species-specific transformations are preceded by spatiotemporal changes in expression of genes within skeletal and muscular connective tissues including Sox9, Runx2, Scx, and Tcf4, but not by alterations to histogenic or molecular programs underlying muscle differentiation or specification. Thus, neural crest mesenchyme plays an essential role in generating species-specific jaw muscle pattern and in promoting structural and functional integration of the musculoskeletal system during evolution.  相似文献   

13.
The neural crest (NC) lineage gives rise to a wide array of cell types ranging from neurons and glia of the peripheral nervous system to skeletal elements of the head. The mechanisms regulating NC differentiation into such a large number of cell types remain largely unknown. MicroRNAs (miRNAs) play key roles in regulating developmental events suggesting they may also play a role during NC differentiation. To determine what roles miRNAs play in differentiation of NC-derived tissues, we deleted the miRNA processing gene Dicer in NC cells using the Wnt1-Cre deleter line. We show that deletion of Dicer soon after NC cells have formed does not affect their migration and colonization of their targets in the embryo. However, the post-migratory NC is dependent on Dicer for survival. In the head, loss of Dicer leads to a loss of NC-derived craniofacial bones while in the trunk, cells of the enteric, sensory and sympathetic nervous systems are lost during development. We found that loss of Dicer does not prevent the initial differentiation of NC but as development progresses, NC derivatives are lost due to apoptotic cell death. When Dicer is deleted, both Caspase-dependent and -independent apoptotic pathways are activated in the sensory ganglia but only the Caspase-dependent apoptotic program was activated in the sympathetic nervous system showing that the specific endogenous apoptotic programs are turned on by loss of Dicer. Our results show that Dicer and miRNAs, are required for survival of NC-derived tissues by preventing apoptosis during differentiation.  相似文献   

14.
15.

Enigmatic rod-like skeletal structures that support compliant membranes (patagia) in aerial mammals have been often considered as neomorphic elements or as evolutionary novelties, and their origin has remained poorly understood. A potential source of skeletal plasticity and, probably, of morphofunctional innovations are sesamoids, which were recently demonstrated to have a common cellular origin with bone eminences. In this review, I compile information regarding anatomy, evolution, and development of rod-like skeletal elements in extant gliding and flying mammals and propose a working hypothesis on the origin of these structures. Rod-like skeletal elements, namely, the calcar in bats (Chiroptera), the unciform element in Anomaluridae (Rodentia), and the styliform cartilage in Pteromyini (Rodentia: Sciuridae), would derive from sesamoids, which, in turn, would have the same origin as eminences of long bones (or bones with a long-bone-like growth), i.e., calcaneus, ulna, and pisiform, respectively. Rod-like skeletal elements exhibit several features of sesamoids. However, further developmental data are needed to confirm this hypothesis, particularly whether these structures share a cellular origin and molecular developmental pathways with sesamoids and bone eminences. If this hypothesis were supported, a new role for sesamoids in generating morphofunctional innovations in mammals and, potentially, in other aerial amniotes, would be recognized. Rod-like skeletal elements, which are key in the evolution of aerial locomotion, might constitute an example of pre-existing traits that acquire novel functions through relatively little developmental plasticity.

  相似文献   

16.
TCRμ is an unconventional TCR that was first discovered in marsupials and appears to be absent from placental mammals and nonmammals. In this study, we show that TCRμ is also present in the duckbill platypus, an egg-laying monotreme, consistent with TCRμ being ancient and present in the last common ancestor of all extant mammals. As in marsupials, platypus TCRμ is expressed in a form containing double V domains. These V domains more closely resemble Ab V than that of conventional TCR. Platypus TCRμ differs from its marsupial homolog by requiring two rounds of somatic DNA recombination to assemble both V exons and has a genomic organization resembling the likely ancestral form of the receptor genes. These results demonstrate that the ancestors of placental mammals would have had TCRμ but it has been lost from this lineage.  相似文献   

17.
The Australasian and South American marsupial mammals, such as kangaroos and opossums, are the closest living relatives to placental mammals, having shared a common ancestor around 130 million years ago. The evolutionary relationships among the seven marsupial orders have, however, so far eluded resolution. In particular, the relationships between the four Australasian and three South American marsupial orders have been intensively debated since the South American order Microbiotheria was taxonomically moved into the group Australidelphia. Australidelphia is significantly supported by both molecular and morphological data and comprises the four Australasian marsupial orders and the South American order Microbiotheria, indicating a complex, ancient, biogeographic history of marsupials. However, the exact phylogenetic position of Microbiotheria within Australidelphia has yet to be resolved using either sequence or morphological data analysis. Here, we provide evidence from newly established and virtually homoplasy-free retroposon insertion markers for the basal relationships among marsupial orders. Fifty-three phylogenetically informative markers were retrieved after in silico and experimental screening of ∼217,000 retroposon-containing loci from opossum and kangaroo. The four Australasian orders share a single origin with Microbiotheria as their closest sister group, supporting a clear divergence between South American and Australasian marsupials. In addition, the new data place the South American opossums (Didelphimorphia) as the first branch of the marsupial tree. The exhaustive computational and experimental evidence provides important insight into the evolution of retroposable elements in the marsupial genome. Placing the retroposon insertion pattern in a paleobiogeographic context indicates a single marsupial migration from South America to Australia. The now firmly established phylogeny can be used to determine the direction of genomic changes and morphological transitions within marsupials.  相似文献   

18.
Consensus on placental mammal phylogeny is fairly recent compared to that for vertebrates as a whole. A stable phylogenetic hypothesis enables investigation into the possibility that placental clades differ from one another in terms of their development. Here, we focus on the sequence of skeletal ossification as a possible source of developmental distinctiveness in “northern” (Laurasiatheria and Euarchontoglires) versus “southern” (Afrotheria and Xenarthra) placental clades. We contribute data on cranial and postcranial ossification events during growth in Afrotheria, including elephants, hyraxes, golden moles, tenrecs, sengis, and aardvarks. We use three different techniques to quantify sequence heterochrony: continuous method, sequence‐ANOVA (analysis of variance) and event‐paring/Parsimov. We show that afrotherians significantly differ from other placentals by an early ossification of the orbitosphenoid and caudal vertebrae. Our analysis also suggests that both southern placental groups show a greater degree of developmental variability; however, they rarely seem to vary in the same direction, especially regarding the shifts that differ statistically. The latter observation is inconsistent with the Atlantogenata hypothesis in which afrotherians are considered as the sister clade of xenarthrans. Interestingly, ancestral nodes for Laurasiatheria and Euarchontoglires show very similar trends and our results suggest that developmental homogeneity in some ossification sequences may be restricted to northern placental mammals (Boreoeutheria).  相似文献   

19.
Postcranial ossification sequences in 24 therian mammals and three outgroup taxa were obtained using clear staining and computed tomography to test the hypothesis that the marsupial forelimb is developmentally accelerated, and to assess patterns of therian postcranial ossification. Sequence rank variation of individual bones, phylogenetic analysis, and algorithm-based heterochrony optimization using event pairs were employed. Phylogenetic analysis only recovers Marsupialia, Australidelphia, and Eulipotyphla. Little heterochrony is found within marsupials and placentals. However, heterochrony was observed between marsupials and placentals, relating to late ossification in hind limb long bones and early ossification of the anterior axial skeleton. Also, ossification rank position of marsupial forelimb and shoulder girdle elements is more conservative than that of placentals; in placentals the hind limb area is more conservative. The differing ossification patterns in marsupials can be explained with a combination of muscular strain and energy allocation constraints, both resulting from the requirement of active movement of the altricial marsupial neonates toward the teat. Peramelemorphs, which are comparatively passive at birth and include species with relatively derived forelimbs, differ little from other marsupials in ossification sequence. This suggests that ossification heterochrony in marsupials is not directly related to diversity constraints on the marsupial forelimb and shoulder girdle.  相似文献   

20.
钟原  成仿云  秦磊 《植物学通报》2011,46(3):350-360
分生结节是植物组织离体发育的一种特殊状态,也是一种有价值的植株再生途径。它的外观与体细胞胚有相似之处,但其结构和发育过程上有明显区别。分生结节可以通过液体培养实现高效增殖,并能在长期增殖后保持遗传稳定性和分化能力,在植物微繁殖、次生代谢物生产、植物生长发育的机制等研究领域具有重要的理论和应用价值。该文结合国内外最新研究结果,综合论述了分生结节发生和植株再生的过程及其影响因素,并通过与体细胞胚等其它植株再生途径相比较,分析了分生结节的独特之处及其广阔的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号