首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine the molecular phylogenic location of Plagiorchis muris, 28S D1 ribosomal DNA (rDNA) and mitochondrial cytochrome C oxidase subunit I (mtCOI) were sequenced and compared with other trematodes in the family Plagiorchiidae. The 28S D1 tree of P. muris was found to be closely related to those of P. elegans and other Plagiorchis species. And, the mtCOI tree also showed that P. muris is in a separate clade with genus Glypthelmins. These results support a phylogenic relationship between members of the Plagiorchiidae, as suggested by morphologic features.  相似文献   

2.
    
North America and Eurasia share several closely related taxa that diverged either from the breakup of the Laurasian supercontinent or later closures of land bridges. Their modern population structures were shaped in Pleistocene glacial refugia and via later expansion patterns, which are continuing. The pikeperch genus Sander contains five species – two in North America (S. canadensis and S. vitreus) and three in Eurasia (S. lucioperca, S. marinus, and S. volgensis) – whose evolutionary relationships and relative genetic diversities were previously unresolved, despite their fishery importance. This is the first analysis to include the enigmatic and rare sea pikeperch S. marinus, nuclear DNA sequences, and multiple mitochondrial DNA regions. Bayesian and maximum‐likelihood trees from three mitochondrial and three nuclear gene regions support the hypothesis that Sander diverged from its sister group Romanichthys/Zingel ~24.6 Mya. North American and Eurasian Sander then differentiated ~20.8 Mya, with the former diverging ~15.4 Mya, congruent with North American fossils dating to ~16.3–13.6 Mya. Modern Eurasian species date to ~13.8 Mya, with S. volgensis being basal and comprising the sister group to S. lucioperca and S. marinus, which diverged ~9.1 Mya. Genetic diversities of the North American species are higher than those in Eurasia, suggesting fewer Pleistocene glaciation bottlenecks. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 156–179.  相似文献   

3.
    
We constructed a phylogeny of the ground beetle subgenus Nialoe ( s. lat. ), genus Pterostichus (Coleoptera: Carabidae) based on two mitochondrial (cytochrome oxidase I and 16S ribosomal DNA) and one nuclear (28S ribosomal DNA) gene sequences. Thirty-three representative species of the group and three outgroup species were analyzed. The resultant trees (maximum parsimonious, maximum likelihood and Bayesian trees of the combined data of the three gene sequences) indicated that there are two large and three small lineages in the group, some of which were supported by a previous morphology-based phylogeny. In all the analyses, the small lineage composed of two Korean species is sister to the rest of the subgenus, but relationships of other four lineages differed among the analyses and remained unresolved. The implications of the present results are discussed in terms of taxonomy and biogeography of the group.  相似文献   

4.
    
Phylogenetic relationships of 18 Thlaspi s.l. species were inferred from nuclear ribosomal internal transcribed spacer (ITS) sequence data. These species represent all sections of the basic classification system of Schulz primarily based on fruit characters. The molecular phylogeny supported six clades that are largely congruent with species groups recognized by Meyer on the basis of differences in seed coat anatomy, i.e. Thlaspi s. s., Thlaspkeras, Moccaea {Raparia included), Microthhspi, Vania and Neurotropy. Some of these lineages include species which are morphologically diverse in fruit shape (e.g. Thlaspi s. s.: T. arvense - fruits broadly winged, T. ceratocarpum - fruits with prominent horns at apex, T. alliaceum - fruits very narrowly winged). Furthermore, the same fruit shape type is distributed among different clades. For instance, fruits with prominent horns at apex are found in Thlaspi s. s. ( T. ceratocarpum) and Thlaspiceras (T oxyceras). These results clearly indicate convergence in fruit characters previously used for sectional classification in Thlaspi s. l.  相似文献   

5.
    
A new genus belonging to the braconid wasp subfamily Doryctinae, Kauriphanes n. gen. (type species K. khalaimi n. sp.), is described from New Zealand. This genus is placed within the doryctine subtribe Caenophanina. The extent of this subtribe is discussed and the phylogenetic relationships of three of its genera were investigated using one mitochondrial and one nuclear DNA sequence markers. Similar to previous studies, the Bayesian analyses performed significantly support a clade with the included members of Caenophanina as a sister group of a clade with the examined species of Spathiini sensu stricto. The placement of the Caenophanini within Doryctini, however, is left pendant to further exhaustive phylogenetic studies. A key to genera and subgenera belonging to Caenophanina is given.  相似文献   

6.
DNA sequence analysis confirms the distinction between Parablennius ruber and Parablennius gattorugine , simultaneously validating the presence of the former species in Western Europe where it has been reported for >150 years. A possible scenario involving speciation of P. ruber at the Azores and subsequent transport of larvae to Europe, a process that may be still occurring nowadays, could explain this pattern of occurrence.  相似文献   

7.
    
Genome skimming (shallow whole-genome sequencing) offers time- and cost-efficient production of large amounts of DNA data that can be used to address unsolved evolutionary questions. Here we address phylogenetic relationships and topological incongruence in the tribe Anthospermeae (Rubiaceae), using phylogenomic data from the mitochondrion, the nuclear ribosomal cistron, and the plastome. All three genomic compartments resolve relationships in the Anthospermeae; the tribe is monophyletic and consists of three major subclades. Carpacoce Sond. is sister to the remaining clade, which comprises an African subclade and a Pacific subclade. Most results, from all three genomic compartments, are statistically well supported; however, not fully consistent. Intergenomic topological incongruence is most notable in the Pacific subclade but present also in the African subclade. Hybridization and introgression followed by organelle capture may explain these conflicts but other processes, such as incomplete lineage sorting (ILS), can yield similar patterns and cannot be ruled out based on the results. Whereas the null hypothesis of congruence among all sequenced loci in the individual genomes could not be rejected for nuclear and mitochondrial data, it was rejected for plastid data. Phylogenetic analyses of three subsets of plastid loci identified using the hierarchical likelihood ratio test demonstrated statistically supported intragenomic topological incongruence. Given that plastid genes are thought to be fully linked, this result is surprising and may suggest modeling or sampling error. However, biological processes such as biparental inheritance and inter-plastome recombination have been reported and may be responsible for the observed intragenomic incongruence. Mitochondrial insertions into the plastome are rarely documented in angiosperms. Our results indicate that a mitochondrial insertion event in the plastid trnSGGA – rps4 IGS region occurred in the common ancestor of the Pacific clade of Anthospermeae. Exclusion/inclusion of this locus in phylogenetic analyses had a strong impact on topological results in the Pacific clade.  相似文献   

8.
    
Surveys of genetic variation in natural populations represent a valuable and often irreplaceable resource. It may be desirable to reanalyze data as new methods are developed for comparisons with other populations or for comparisons with the same populations at different times. We evaluated existing mechanisms of data preservation in a survey of 627 published surveys of mitochondrial DNA variation in animal and found that over half of the datasets (56%) contained insufficient information for reanalysis. In many cases, publication of complete data would not have added excessively to the length of the publication. Because at present, publications represent the main archive of population genetic data, we offer recommendations for how the essential data from mtDNA surveys can be presented in a form that is complete and concise.  相似文献   

9.
王金凤  张亚平  于黎 《遗传》2012,34(11):1365-1378
猫科动物(Felidae)是食肉目中肉食性最强的一科, 其中许多成员是人们最熟悉、最引人注目的动物, 也是各地的顶级食肉动物。目前37个现存猫科物种中有36个已经被列为濒危和稀有对象。食肉目猫科物种的进化历史是一个快速辐射和较近时期发生的物种形成事件, 使得猫科物种之间系统发育关系的重建非常困难, 一直处于广泛争论的状态。构建可靠的猫科系统发育关系, 具有重要的进化理论意义和保护生物学价值。文章对猫科物种的系统发育学研究进展, 包括来自于形态学特征、细胞学和分子生物学方面的证据做简要概述, 并提出目前研究中存在的问题。以期对今后猫科物种的系统发育方面的进一步研究工作具有指导意义, 并为该类群的生物多样性资源保护提供科学依据。  相似文献   

10.
Ongoing genetic transfer from mitochondria and plastids into the nucleus is a well‐documented fact. While in metazoan molecular ecology the need for surveillance against pseudogene‐mediated artefacts when analysing mtDNA sequences is commonly accepted, no comparable measurements have been established for plastid‐based studies. We highlight the impact and management of nuclear mitochondrial insertions, argue that nuclear plastid sequences represent an underestimated but major factor in plant molecular ecology, and discuss potential avenues of remedy in chloroplast studies.  相似文献   

11.
    
The concept of species flocks has been central to previous interpretations of patterns and processes of explosive species radiations within several groups of freshwater fishes. Here, molecular phytogenies of species-rich Sebastes rockfishes from the northeastern Pacific Ocean were used to test predictions of null theoretical models that assume random temporal placements of phylogenetic nodes. Similar appraisals were conducted using molecular data previously published for particular cichlid fishes in Africa that epitomize, by virtue of a rapid and recent radiation of species, the traditional concept of an intralacustrine “species flock.” As gauged by the magnitudes of genetic divergence in cytochrome b sequences from mitochondrial DNA, as well as in allozymes, most speciation events in the Sebastes complex were far more ancient than those in the cichlids. However, statistical tests of the nodal placements in the Sebastes phylogeny suggest that speciation events in the rockfishes were temporally nonrandom, with significant clustering of cladogenetic events in time. Similar conclusions also apply to an ancient complex of icefishes (within the Notothenioidei) analyzed in the same fashion. Thus, the rockfishes (and icefishes) may be interpreted as ancient species flocks in the marine realm. The analyses exemplified in this report introduce a conceptual and operational approach for extending the concept of species flocks to additional environmental settings and evolutionary timescales.  相似文献   

12.
    
The Hawaiian archipelago is often cited as the premier setting to study biological diversification, yet the evolution and phylogeography of much of its biota remain poorly understood. We investigated crab spiders (Thomisidae, Mecaphesa ) that demonstrate contradictory tendencies: (i) dramatic ecological diversity within the Hawaiian Islands, and (ii) accompanying widespread distribution of many species across the archipelago. We used mitochondrial and nuclear genetic data sampled across six islands to generate phylogenetic hypotheses for Mecaphesa species and populations, and included penalized likelihood molecular clock analyses to estimate arrival times on the different islands. We found that 17 of 18 Hawaiian Mecaphesa species were monophyletic and most closely related to thomisids from the Marquesas and Society Islands. Our results indicate that the Hawaiian species evolved from either one or two colonization events to the archipelago. Estimated divergence dates suggested that thomisids may have colonized the Hawaiian Islands as early as ~10 million years ago, but biogeographic analyses implied that the initial diversification of this group was restricted to the younger island of Oahu, followed by back-colonizations to older islands. Within the Hawaiian radiation, our data revealed several well-supported genetically distinct terminal clades corresponding to species previously delimited by morphological taxonomy. Many of these species are codistributed across multiple Hawaiian Islands and some exhibit genetic structure consistent with stepwise colonization of islands following their formation. These results indicate that dispersal has been sufficiently limited to allow extensive ecological diversification, yet frequent enough that interisland migration is more common than speciation.  相似文献   

13.
    
Phylogenetic relationships within the European Monochamus (Coleoptera: Cerambycidae) remain understudied despite their increasing importance in the Pine Wood Nematode spread in Europe. To clarify the delimitation and the evolutionary history of the two main European Monochamus species, Monochamus galloprovincialis and Monochamus sutor, as well as their sub‐species, a comparative study using morphological, molecular, and biogeographical criterions was conducted. Four morphological characters, including a newly‐described morphological character on the male genitalia, separated the two species. Additionally, molecular data revealed twelve and two single nucleotide polymorphisms in cytochrome oxidase c subunit I and 28S, respectively, supporting species segregation. By contrast, incongruence between morphological and genetic results did not allow discriminating the sub‐species of M. galloprovincialis and M. sutor, even though mitochondrial DNA revealed intraspecific differentiation, mostly consenting to a multiple refugia origin. Within‐species variability was explained to a large extent by biogeography (i.e. altitude, climate). These different ecological adaptations within beetle species, together with potential climate change impact, increase the risk of spreading the nematode across Europe to novel conifer hosts and challenge the European biosecurity. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 354–376.  相似文献   

14.
The distribution of a 330 bp cpDNA insertion was reexamined in British material of Senecio cambrensis (2n = 6x = 60), its two putative parental taxa, S. squalidus (2n = 2x = 20) and S. vulgaris (2n = 4x = 40), and the closely related Canary Islands' endemic S. teneriffae (2n = 6x = 60). This formed part of a test of the hypothesis that the Welsh form of S. cambrensis is derived from introduced S. teneriffae rather than having originated in Wales via allopolyploidy as previously supposed. It was established that the 330 bp insertion was carried by all plants of Welsh S. cambrensis and also S. teneriffae, but was absent from the cpDNA of Edinburgh S. cambrensis and all plants of British S. squalidus and S. vulgaris var. vulgaris surveyed. However, two of 19 individuals tested of S. vulgaris var. hibernicus also possessed the cpDNA insertion, indicating that it is present in British material of S. vulgaris, although at low frequency. The close similarity between S. teneriffae and S. cambrensis, especially the Welsh form of S. cambrensis, was confirmed by the results of a restriction analysis of rDNA, and also morphometric and crossing studies. However, isozyme analysis showed that S. teneriffae is monomorphic for βEST-3 and ACO-1 phenotypes that are not present in Welsh and Edinburgh S. cambrensis, nor in S. squalidus and S. vulgaris material surveyed. It is concluded that S. teneriffae and S. cambrensis are two closely related allohexaploid taxa that have very similar, but different origins. It is postulated that whereas S. cambrensis (in Wales and Edinburgh) is the allohexaploid of S. vulgaris and S. squalidus, S. teneriffae is possibly the allohexaploid of S. vulgaris and S. glaucus, the latter being a diploid species closely related to S. squalidus.  相似文献   

15.
  总被引:5,自引:1,他引:5  
Phylogeography has grown explosively in the two decades since the word was coined and the discipline was outlined in 1987. Here I summarize the many achievements and novel perspectives that phylogeography has brought to population genetics, phylogenetic biology and biogeography. I also address future directions for the field. From the introduction of mitochondrial DNA assays in the late 1970s, to the key distinction between gene trees and species phylogenies, to the ongoing era of multi-locus coalescent theory, phylogeographic perspectives have consistently challenged conventional genetic and evolutionary paradigms, and they have forged empirical and conceptual bridges between the formerly separate disciplines of population genetics (microevolutionary analysis) and phylogenetic biology (in macroevolution).  相似文献   

16.
Geographic patterns of genetic variation (mitochondrial DNA [mtDNA] and allozymes) were used to examine effects of intrinsic characteristics (e.g., vagility, habitat specificity, and reproductive behaviors) and extrinsic factors (e.g., climatic and geological history) on population fragmentation. The three species of cyprinid fishes examined (Tiaroga cobitis, Meda fulgida, and Agosia chrysogaster) occupied similar historical ranges within the lower Colorado River drainage, but differ in intrinsic characteristics conducive to population fragmentation. Relationships among populations were similar across species, reflecting common historical influences, but results indicate the distribution of variation among species is strongly affected by intrinsic characteristics. Variation within two species (T. cobitis and M. fulgida) is subdivided among populations, suggesting little gene flow among rivers. In contrast, similarity of A. chrysogaster populations throughout the Gila River drainage supports the hypothesis that levels of gene flow are high for this species. Levels of mtDNA divergence were much higher than expected for both T. cobitis and A. chrysogaster suggesting long-term isolation of geographic regions. These results indicate that both long-term and short-term extrinsic factors have shaped basic patterns of variation within these fishes; however, the intrinsic characteristics of each species have strongly affected the population genetic structure of these fishes.  相似文献   

17.
    
The use of DNA sequence data often leads to the recognition of cryptic species within putatively well‐known taxa. The opposite case, detecting less diversity than originally described, has, however, far more rarely been documented. Maniola jurtina, the Meadow Brown butterfly, occurs all over Europe, whereas all other six species in the genus Maniola are restricted to the Mediterranean area. Among them, three are island endemics on Sardinia, Cyprus, and Chios, respectively. Maniola species are almost indistinguishable morphologically, and hybridization seems to occur occasionally. To clarify species boundaries and diversification history of the genus, we reconstructed the phylogeography and phylogeny of all seven species within Maniola analyzing 138 individuals from across its range using mitochondrial and nuclear genetic markers. Examination of variation in mitochondrial and nuclear DNA surprisingly revealed a case of taxonomic “oversplitting”. The topology of the recovered phylogenetic tree is not consistent with accepted taxonomy, but rather reveals haplotype clades that are incongruent with nominal species boundaries: instead of seven species, we recognized only two major, yet incompletely segregated, lineages. Our results are consistent with the hypothesis that Maniola originated in Africa. We suggest that one lineage dispersed over the Strait of Gibraltar and the Iberian Peninsula to the west of Europe, while the other lineage spreads eastward through Asia Minor and over the Bosporus to Eastern Europe.  相似文献   

18.
19.
  总被引:1,自引:0,他引:1  
Abstract.— The Pleistocene Epoch has been frequently cited as a period of intense speciation for a significant portion of temperate continental biotas. To critically assess the role of Pleistocene glaciations on the evolution of the freshwater fish clade Micropterus , we use a phylogenetic analysis of complete gene sequences from two mitochondrial genes (cytochrome b and ND2), and a fossil calibration of the molecular clock to estimate ages of speciation events and rates of diversification. The absence of substantial morphological and ecological divergence together with endemism of five of the eight species in North American tributaries of the Gulf of Mexico may be interpreted as the result of a recent Pleistocene origin for these species. Speciation dates in Micropterus range from 1.01 ± 0.32 to 11.17 ± 1.02 million years ago. Only one speciation event is dated to the Pleistocene, and rates of diversification are not significantly variable in Micropterus. The premise that the Pleistocene was an exceptional period of speciation in Micropterus is not supported. Instead, a Gulf Coast allopatric speciation model is proposed, and predicts periods of dynamic speciation driven by sea level fluctuations in the Late Miocene and Pliocene. The Pleistocene, however, was a period of significant intraspecific mitochondrial lineage diversification. The application of the Gulf Coast allopatric speciation model to the remaining aquatic fauna of the Gulf of Mexico coast in North America will rely on robust phylogenetic hypotheses and accurate age estimations of speciation events.  相似文献   

20.
An altered pattern of epigenetic modifications, such as DNA methylation and histone modification, is critical to many common human diseases, including cancer. Recently, mitochondrial DNA (mtDNA) was reported to be associated with tumorigenesis through epigenetic regulation of methylation patterns. One of the promising approaches to study DNA methylation and CpG islands (CGIs) is sequencing and analysis of clones derived from the physical library generated by methyl-CpG-binding domain proteins and restriction enzyme MseI. In this study, we observed that the most redundant sequences of 349 clones in a human CGI library were all generated from the human mitochondrial genome. Further analysis indicated that there was a 5,845-bp DNA transfer from mtDNA to chromosome 1, and all the clones should be the products of a 510-hp MseI fragment, which contained a putative CGI of 270 bp. The 510-bp fragment was annotated as part of cytochrome c oxidase subunit Ⅱ (COXⅡ), and phylogenetic analysis of homologous sequences containing COXII showed three DNA transfer events from mtDNA to nuclear genome, one of which underwent secondary transfer events between different chromosomes. These results may further our understanding of how the mtDNA regulates DNA methylation in the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号