首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 952 毫秒
1.
The polychaete Streblospio benedicti is unusual in that several field populations consist of individuals that exhibit either planktotrophic or lecithotrophic larval development. Planktotrophy in this species involves production of many small ova that develop into feeding larvae with a two- to three-week planktonic period. Lecithotrophy involves production of fewer, larger ova that develop into nonfeeding larvae that are brooded longer and have a brief planktonic stage. Reciprocal matings were performed to investigate genetic variance components and the correlation structure of life-history traits associated with planktotrophy and lecithotrophy. Our objective was to better understand persistence of this developmental dichotomy in Streblospio benedicti, and among marine invertebrates in general. Substantial additive genetic variation (75–98% of total) was detected for the following characters at first reproduction: female length; position of the first gametogenic setiger and first brood pouch; ovum diameter; three traits related to fecundity (numbers of ova per ovary, larvae per brood pouch, and larvae per brood); median larval planktonic period and the presence of larval swimming setae; but not for total number of brood pouches; larval length; larval feeding; and larval survivorship. Based on the unusual geographic distribution of development modes in this species, we hypothesize that the developmental traits have evolved in allopatry and have only recently come into contact in North Carolina. The high additive contribution to variance observed for many traits may be inflated due to (a) nonrandom breeding in nature, and (b) examination of only one component of an age-structured population at one time. Nuclear interaction variance and maternal variance accounted for 84% of the total variation in larval survivorship. This observation supports other empirical studies and theoretical predictions that nonadditive components of variance will increase in importance in individual traits that are most closely tied to fitness. A network of life-history trait correlations was observed that defines distinct planktotrophic and lecithotrophic trait complexes. Negative genetic correlations were present between fecundity and egg size, between fecundity and position of the first gametes, and between larval survivorship and median planktonic period. Positive genetic correlations were detected between fecundity and female size at first reproduction and between planktonic period and the presence of swimming setae. Intergenerational product-moment correlations were negative for larval length and fecundity, planktonic period and egg size, female size and larval survivorship, and fecundity and larval survivorship. If the genetic correlation structure observed in the laboratory persists in the field, it may constrain responses of individual characters to directional selection, and indirectly perpetuate the dichotomies associated with planktotrophy and lecithotrophy.  相似文献   

2.
The effects of self-fertilization, within-population crosses (WPC) and between-population crosses (BPC) on progeny fitness were investigated in the greenhouse for Scabiosa columbaria populations of varying size. Plants grown from field collected seeds were hand pollinated to produce selfed, WPC, and BPC progeny. The performance of these progenies was examined throughout the entire life cycle. The different pollination treatments did not significantly affect germination, seedling-to-adult survival, flowering percentage and the number of flower heads. But severe inbreeding depression was demonstrated for biomass production, root development, adult survival, and seed set. Additionally, multiplicative fitness functions were calculated to compare relative fitnesses for progeny. On average, WPC progeny showed a more than 4-fold, and BPC progeny an almost 10-fold, advantage over selfed progeny, indicating that S. columbaria is highly susceptible to inbreeding. No clear relationship was found between population size and level of inbreeding depression, suggesting that the genetic load has not yet been reduced substantially in the small populations. A significant positive correlation was found between plant dry weight and total fitness. In two out of six populations, the differences between the effects of the pollination treatments on dry weight increased significantly when seedlings were grown under competitive conditions. This result is interpreted as an enhancement of inbreeding depression under these conditions. It is argued that improvement of the genetic exchange between populations may lower the probability of population extinction.  相似文献   

3.
The extent of host-specific genetic variation for two life-history traits, egg to adult developmental time and viability, and one morphological trait closely tied to fitness, adult thorax size, was exposed by employing a nested half-sib/full-sib breeding design with Baja and mainland populations of Drosophila mojavensis recently extracted from nature. This study was motivated by the presence of substantial variation in life histories among populations of D. mojavensis that use the fermenting tissues of particular species of columnar cacti for feeding and breeding in the Sonoran Desert. Full-sib progeny from all sire-dam crosses were split into cultures of agria cactus, Stenocereus gummosus, and organ pipe cactus, S. thurberi, to examine patterns of genotype-by-environment interaction for these fitness components. Baja flies expressed shorter egg-to-adult developmental times, higher viabilities, and smaller body sizes than mainland flies consistent with previous studies. Significant sire and dam components of variance were exposed for developmental time and thorax size. Genotype-by-environment interactions were significant at the level of dams for developmental time and nearly significant for viability (P = 0.09). Narrow- and broad-sense heritabilities were influenced by host cactus, sex, and population. No strong pattern of genetic correlation emerged among fitness components suggesting that host-range expansion has not been accompanied by formation of coadapted life histories, yet the ability to estimate genetic correlations and their standard errors was compromised by the unbalanced nature of the data set. Genetic correlations in performance across cacti were slightly positive, evidence for ecological generalism among populations explaining the observed pattern of multiple host cactus use within the species range of D. mojavensis.  相似文献   

4.
Zhong D  Pai A  Yan G 《Genetics》2005,169(4):2127-2135
Information on the molecular basis of resistance and the evolution of resistance is crucial to an understanding of the appearance, spread, and distribution of resistance genes and of the mechanisms of host adaptation in natural populations. One potential important genetic constraint for the evolution of resistance is fitness cost associated with resistance. To determine whether host resistance to parasite infection is associated with fitness costs, we conducted simultaneous quantitative trait loci (QTL) mapping of resistance to parasite infection and fitness traits using the red flour beetle (Tribolium castaneum) and the tapeworm parasite (Hymenolepis diminuta) system in two independent segregating populations. A genome-wide QTL scan using amplified fragment length polymorphism (AFLP) markers revealed three QTL for beetle resistance to tapeworm infection. These three QTL account for 44-58% variance in beetle infection intensity. We identified five QTL for fecundity and five QTL for egg-to-adult viability, which accounted for 36-57% and 36-49%, respectively, of the phenotypic variance in fecundity and egg-to-adult viability. The three QTL conferring resistance were colocalized with the QTL affecting beetle fitness. The genome regions that contain the QTL for parasite resistance explained the majority of the variance in fecundity and egg-to-adult viability in the mapping populations. Colocalization of QTL conferring resistance to parasite infection and beetle fitness may result from the pleiotropic effects of the resistance genes on host fitness or from tight linkages between resistance genes and adverse deleterious mutations. Therefore, our results provide evidence that the genome regions conferring resistance to tapeworm infection are partially responsible for fitness costs in the resistant beetle populations.  相似文献   

5.
It has been hypothesized that natural selection reduces the “genetic load” of deleterious alleles from populations that inbreed during bottlenecks, thereby ameliorating impacts of future inbreeding. We tested the efficiency with which natural selection purges deleterious alleles from three subspecies of Peromyscus polionotus during 10 generations of laboratory inbreeding by monitoring pairing success, litter size, viability, and growth in 3604 litters produced from 3058 pairs. In P. p. subgriseus, there was no reduction across generations in inbreeding depression in any of the fitness components. Strongly deleterious recessive alleles may have been removed previously during episodes of local inbreeding in the wild, and the residual genetic load in this population was not further reduced by selection in the lab. In P. p. rhoadsi, four of seven fitness components did show a reduction of the genetic load with continued inbreeding. The average reduction in the genetic load was as expected if inbreeding depression in this population is caused by highly deleterious recessive alleles that are efficiently removed by selection. For P. p. leucocephalus a population that experiences periodic bottlenecks in the wild, the effect of further inbreeding in the laboratory was to exacerbate rather than reduce the genetic load. Recessive deleterious alleles may have been removed from this population during repeated bottlenecks in the wild; the population may be close to a threshold level of heterozygosity below which fitness declines rapidly. Thus, the effects of selection on inbreeding depression varied substantially among populations, perhaps due to different histories of inbreeding and selection.  相似文献   

6.
Many natural populations experience inbreeding and genetic drift as a consequence of nonrandom mating or low population size. Furthermore, they face environmental challenges that may interact synergistically with deleterious consequences of increased homozygosity and further decrease fitness. Most studies on inbreeding–environment (I-E) interactions use one or two stress levels, whereby the resolution of the possible stress and inbreeding depression interaction is low. Here we produced Drosophila melanogaster replicate populations, maintained at three different population sizes (10, 50 and a control size of 500) for 25 generations. A nutritional stress gradient was imposed on the replicate populations by exposing them to 11 different concentrations of yeast in the developmental medium. We assessed the consequences of nutritional stress by scoring egg-to-adult viability and body mass of emerged flies. We found: (1) unequivocal evidence for I-E interactions in egg-to-adult viability and to a lesser extent in dry body mass, with inbreeding depression being more severe under higher levels of nutritional stress; (2) a steeper increase in inbreeding depression for replicate populations of size 10 with increasing nutritional stress than for replicate populations of size 50; (3) a nonlinear norm of reaction between inbreeding depression and nutritional stress; and (4) a faster increase in number of lethal equivalents in replicate populations of size 10 compared with replicate populations of size 50 with increasing nutritional stress levels. Our data provide novel and strong evidence that deleterious fitness consequences of I-E interactions are more pronounced at higher nutritional stress and at higher inbreeding levels.  相似文献   

7.
Inbreeding depression varies among species and among populations within a species. Few studies, however, have considered the extent to which inbreeding depression varies within a single population. We report on two experiments to provide evidence that inbreeding depression is genetically variable, such that within a single population some lineages suffer severe inbreeding depression, others suffer only mild inbreeding depression, and some lineages actually increase in phenotypic value at higher levels of inbreeding. We examine the effects of population structure on inbreeding depression for two traits in the first experiment (adult dry weight and female relative fitness), and for seven traits in the second experiment (female and male adult dry weight, female and male relative fitness, female and male developmental time, and egg-to-adult viability). In the first experiment, we collected data from 4 families within each of 38 lineages derived from a single ancestral stock population and maintained for four generations of full-sib mating. Both traits demonstrate significant inbreeding depression and provide evidence that even within a single lineage there is significant genetic variability in inbreeding depression. In the second experiment, we collected data from 5 replicates for each of 15 lineages derived from the same ancestral population used in the first experiment; these lineages were maintained for four generations of full-sib mating. We also collected data on outbred control beetles in each generation and incorporated these data into the analyses to account for environmental effects in an unbiased manner. All traits except female and male developmental time show significant inbreeding depression. All traits showing inbreeding depression are genetically variable in inbreeding depression, as is evident from a significant linear lineage-×-f component. For both experiments, the effect of population structure on inbreeding depression is further evident from the increasing amount of variation that can be explained by the models used to measure inbreeding depression when additional levels of population structure are included. Genetic variation in inbreeding depression has important implications for conservation biology and may be an important factor in mating-system evolution.  相似文献   

8.
Genetic variation for seedling and adult fitness components was measured under natural conditions to determine the relative importance of the seedling stage for lifetime fitness in Erigeron annuus. Variation in lifetime reproductive success can result from both the persistent effects of genetic variation expressed among seedlings and from variation in adult fitness components. Analysis of covariance was used to separate the stage specific from the cumulative effects of genetic variance expressed earlier in the life cycle. E. annuus produces seeds through apomixis, which allowed measurement of the fitness of replicate genotypes from germination through the entire life cycle. There were significant differences among genotypes for date of emergence, seedling size, survivorship and fecundity, but heritabilities were low, indicating slow response to selection. For all characters, environmental components of variance were one to two orders of magnitude larger than genetic variance components, resulting in broad sense heritabilities less than 0.1. For seedling size and fecundity, all of the genetic variance was in the form of genotype-environment interactions, often with large negative genetic correlations across environments. In contrast, genotypes differed in mean survivorship through one year, but there were no genotype-environment interactions for viability. Genetic differences in viability were primarily expressed as differences in overwinter survivorship. Genotype × environment interactions among sites and blocks were generated early in the life cycle while the genotype × environment interactions in response to competitive environment (open, annual cover, perennial cover) first appeared in adult fecundity. Genetic variation in lifetime fitness was not significant, despite a fourfold difference in mean fitness among genotypes.  相似文献   

9.
We established replicated experimental populations of the annual plant Clarkia pulchella to evaluate the existence of a causal relationship between loss of genetic variation and population survival probability. Two treatments differing in the relatedness of the founders, and thus in the genetic effective population size (Ne), were maintained as isolated populations in a natural environment. After three generations, the low Ne treatment had significantly lower germination and survival rates than did the high Ne treatment. These lower germination and survival rates led to decreased mean fitness in the low Ne populations: estimated mean fitness in the low Ne populations was only 21% of the estimated mean fitness in the high Ne populations. This inbreeding depression led to a reduction in population survival: at the conclusion of the experiment, 75% of the high Ne populations were still extant, whereas only 31% of the low Ne populations had survived. Decreased genetic effective population size, which leads to both inbreeding and the loss of alleles by genetic drift, increased the probability of population extinction over that expected from demographic and environmental stochasticity alone. This demonstrates that the genetic effective population size can strongly affect the probability of population persistence.  相似文献   

10.
In a replicated, laboratory, natural selection experiment Drosophila melanogaster populations were maintained for 20 generations either on unpolluted medium or on polluted medium containing cadmium chloride at a concentration of 80 μg/ml. Lines maintained on polluted medium evolved resistance. In comparison with unpolluted lines, their juvenile survivorship increased from 35% to 46%, developmental period decreased from 13.7 days to 13.0 days, and fecundity increased from 3 to 29 eggs per two-day period. Emergence weights, however, did not change. By contrast the “environmental” effect of moving susceptible flies onto polluted medium was that after two generations survivorship fell 62%, developmental period increased 40%, and fecundity fell 97%. Emergence weights fell 31% in females and 28% in males. Resistant lines paid a fitness cost in unpolluted environments, with fecundity being reduced by 44% and emergence weights being reduced by 4% in females and 6% in males. Developmental period, however, was unaffected. Analyses of crosses and backcrosses between the lines suggested that the evolved cadmium resistance was due to a single sex-linked gene. Levels of dominance were calculated, and in each life-history character the resistant allele was found to be completely dominant. Because the life-history effects appear to be produced by a single gene, it is probable that they all depend on the same metabolic pathway. Metallothionein production is a likely candidate because this is known to be controlled by genes on the X-chromosome. The study adds to a small number of examples of single or closely linked genes with large antagonistic pleiotropic effects on life histories. The result here is a between-environment trade-off, allowing animals increased fitness in polluted environments, but only at the cost of reduced growth and reproduction in unpolluted environments.  相似文献   

11.
Developmental time is a trait of great relevance to fitness in all organisms. In holometabolous species that occupy ephemeral habitat, like Drosophila melanogaster, the impact of developmental time upon fitness is further exaggerated. We explored the trade-offs surrounding developmental time by selecting 10 independent populations from two distantly related selection treatments (CB1-5 and CO1-5) for faster development. After 125 generations, the resulting accelerated populations (ACB1-5 and ACO1-5) displayed net selection responses for development time of -33.4 hours (or 15%) for ACB and -38.6 hours (or 17%) for ACO. Since most of the change in egg-to-adult developmental time was accounted for by changes in larval duration, the “accelerated” larvae were estimated to develop 25-30% faster than their control/ancestor populations. The responses of ACB and ACO lines were remarkably parallel, despite being founded from populations evolved independently for more than 300 generations. On average, these “A” populations developed from egg to adult in less than eight days and produced fertile eggs less than 24 hours after emerging. Accelerated populations showed no change in larval feeding rate, but a reduction in pupation height, the latter being a trait relating to larval energetic expenditure in wandering prior to pupation. This experiment demonstrates the existence of a negative evolutionary correlation between preadult developmental time and viability, as accelerated populations experienced a severe cost in preadult survivorship. In the final assay generation, viability of accelerated treatments had declined by more than 10%, on average. A diallel cross demonstrated that the loss of viability in the ACO lines was not due to inbreeding depression. These results suggest the existence of a rapid development syndrome, in which the fitness benefits of fast development are balanced by fitness costs resulting from reduced preadult survivorship, marginal larval storage of metabolites, and reduced adult size.  相似文献   

12.
If, because of genetic erosion, the level of homozygosity in small populations is high, additional selfing will result in small reductions of fitness. In addition, in small populations with a long inbreeding history selection may have purged the population of its genetic load. Therefore, a positive relationship between population size (or level of genetic variation) and level of additional inbreeding depression, here referred to as inbreeding load, may be expected. In a previous study on the rare and threatened perennial Salvia pratensis, a positive correlation between population size and level of allozyme variation has been demonstrated. In the present study, the inbreeding load in six populations of varying size and allozyme variation was investigated. In the greenhouse, significant inbreeding load in mean seed weight, proportion of germination, plant size, regenerative capacity, and survival was demonstrated. In a field experiment with the two largest and the two smallest populations, survival of selfed progeny was 16% to 63% lower than survival of outcrossed progeny. In addition, survival of outcrossed progeny was, with the exception of the largest population, lower (16% to 37%) than of hybrid progeny, resulting from crosses between populations. Effects on plant size were qualitatively similar to the effects on survival, but these effects were variable in time because of differential survival of larger individuals. In all populations the total inbreeding load, that is, the effects on size and survival multiplicated, increased in time. It was demonstrated that inbreeding load in different characters may be independent. At no time and for no character was inbreeding load or the heterosis effect correlated to the mean number of alleles per locus, indicating that allozyme variation is not representative for variation at fitness loci in these populations. Combined with results of previous investigations, these results suggest that the small populations are in an early phase of the genetic erosion process. In this phase, allozyme variation, which is supposed to be (nearly) neutral, has been affected by genetic erosion but the selectively nonneutral variation is only slightly affected. These results stress the need for detailed information about the inbreeding history of small populations. The relative performance of selfed progeny was lowest in all populations, in the greenhouse as well as in the field, and inbreeding depression could still influence the extinction probabilities of the small populations.  相似文献   

13.
The evolutionary theory of senescence predicts that high extrinsic mortality in natural populations should select for accelerated reproductive investment and shortened life span. Here, we test the theory with natural populations of the Daphnia pulex-pulicaria species complex, a group of freshwater zooplankton that spans an environmental gradient of habitat permanence. We document substantial genetic variation in demographic life-history traits among parent and hybrid populations of this complex. Populations from temporary ponds have shorter life spans, earlier and faster increases of intrinsic mortality risk, and earlier and steeper declines in fecundity than populations from permanent lakes. We also examine the age-specific contribution to fitness, measured by reproductive value, and to expected lifetime reproduction; these traits decline faster in populations from temporary ponds. Despite having more rapid senescence, pond Daphnia exhibit faster juvenile growth and higher early fitness, measured as population growth rate (r). Among populations within this species complex we observed negative genetic correlations between r and indices of life-history timing, suggesting trade-offs between early- and late-life performance. Our results cannot be explained by a trade-off between survival and fecundity or by nonevolutionary theories of senescence. Instead, our data are consistent with the evolutionary theory of senescence because the genetic variation in life histories we observed is roughly congruent with the temporal scale of environmental change in the field.  相似文献   

14.
The changes in mdg-1 mobile element polymorphism that followed artificial selection for either high or low egg-to-adult viability in a Drosophila melanogaster population were investigated. The two selected subpopulations were thus characterized for fecundity, wing length, and number and location of the mdg-1 mobile element by in situ hybridization of the biotinylated-DNA on salivary gland chromosomes. The selected populations that differed greatly in egg-to-adult viability showed the same mean fecundity and identical values for intra and inter components of variances, intraclass correlation coefficient, and fluctuating asymmetry estimated on the wing length measurement. This indicates a non-correlated effect between deleterious mutations affecting viability and other fitness components. However, the two selected populations differed in their pattern of mdg-1 location, although the mean number of insertions per genome was not different from that of the initial population hence, the number of insertions of the mdg-1 mobile element was independent of the effective population size. These results suggest that the mdg-1 copy number was regulated, and that during the selection process, drift and inbreeding made up new insertion patterns of the mdg-1 element in the selected populations. The results are discussed in the light of some recent theoretical models of the population dynamics of transposable elements.  相似文献   

15.
One potential strategy for the control of malaria and other vector-borne diseases is the introduction into wild vector populations of genetic constructs that reduce vectorial capacity. An important caveat of this approach is that the genetic construct should have minimal fitness cost to the transformed vector. Previously, we produced transgenic Anopheles stephensi expressing either of two effector genes, a tetramer of the SM1 dodecapeptide or the phospholipase A2 gene (PLA2) from honeybee venom. Mosquitoes carrying either of these transgenes were impaired for Plasmodium berghei transmission. We have investigated the role of two effector genes for malaria parasite blockage in terms of the fitness imposed to the mosquito vector that expresses either molecule. By measuring mosquito survival, fecundity, fertility, and by running population cage experiments, we found that mosquitoes transformed with the SM1 construct showed no significant reduction in these fitness parameters relative to nontransgenic controls. The PLA2 transgenics, however, had reduced fitness that seemed to be independent of the insertion site of the transgene. We conclude that the fitness load imposed by refractory gene(s)-expressing mosquitoes depends on the effect of the transgenic protein produced in that mosquito. These results have important implications for implementation of malaria control via genetic modification of mosquitoes.  相似文献   

16.
The role of nuclear genes in local adaptation has been well documented. However, the role of maternally inherited cytoplasmic genes to the evolution of natural populations has been relatively unstudied. To evaluate the contribution of cytoplasmic and nuclear genomes and their interactions to local adaptation we created second-generation backcross hybrids between a Maryland and an Illinois population of the annual legume Chamaecrista fasciculata. Backcross progeny were planted in the sites native to each population for two years and we quantified germination, survivorship, fruit production, vegetative biomass, and cumulative fitness. We found limited evidence for the contribution of either cytoplasmic or nuclear genes to local adaptation. In Maryland plants had greater survivorship, biomass, fruit production, and cumulative fitness if their nuclear genome was composed predominately of native Maryland genes; cytoplasmic genes did not affect fitness. In Illinois local cytoplasm marginally enhanced fitness, whereas Maryland nuclear genes outperformed local nuclear genes. Interactions between cytoplasmic and nuclear genes influenced seed weight, vegetative biomass, and fitness and therefore may affect evolution of these characters. Genetic effects were stronger acting through seed size than directly on characters. However, seed size differences between the two populations were largely genetic and therefore selection on fitness components is likely to result in evolutionary change. The contribution of nuclear and cytoplasmic genes to fitness components varied across sites and years, suggesting that experiments should be replicated and conducted under natural conditions to understand the influence of these genomes and their interactions to population differentiation.  相似文献   

17.
There have been few field tests of the hypothesis that homozygous populations are prone to high levels of disease. I tested for a negative correlation between genetic diversity and parasitism by estimating the allozyme heterozygosity, population density, and proportion of individuals infected by Capillaria hepatica (Nematoda) in nine Michigan populations of deer mice (Peromyscus maniculatus). Parasite prevalence was correlated negatively with heterozygosity when the effects of density were held constant, but was not correlated with population density after controlling for the effects of genetic diversity. These data support the prediction that inbred populations will be more susceptible to parasite infestations.  相似文献   

18.
The effect of predation by the aquatic dipteran larva Chaoborus americanus on genetic diversity and life-history evolution in the cladoceran Daphnia pulex was investigated in large replicate laboratory populations. Instantaneous daily loss rates of clonal diversity and genetic variance for fitness indicate that 93–99% of initial genetic diversity can be removed from populations during the 8–12 generations of clonal reproduction that occur each year in natural populations. In the absence of predation, the principal evolved changes in mean population life history were smaller immature body size and increased and earlier fecundity. In the presence of size-selective Chaoborus predation, populations evolved toward larger body size and increased and earlier reproduction. The difference between these two trajectories is an estimate of the direct additive effect of Chaoborus predation. This effect was manifested as evolution toward larger body size with a trend toward earlier and increased reproduction.  相似文献   

19.
The evolution of separate sexes as a means of avoiding self-fertilization requires the controversial coexistence of large inbreeding depression and high selfing rate in the ancestral hermaphrodite population. Fitness components of adult females and hermaphrodites in nature, of their open-pollinated progeny, and of experimental selfs and outcrosses onto hermaphrodites were compared in endemic Hawaiian Bidens sandvicensis, all of whose known populations are gynodioecious, consisting of a mixture of females and hermaphrodites. Multilocus selfing rates of hermaphrodites were also estimated, and sex morph ratio monitored over four seasons in three populations of B. sandvicensis and one population of gynodioecious B. cervicata. Total mean inbreeding depression in seed set (in the glasshouse), germination rate (in an open-air nursery on Kauai), and first year survivorship and fecundity in the field were estimated as 0.94 (SE 0.04), and occurred primarily in drought months. Lower survivorship and fecundity of selfs were partially explained by their consistently smaller size. Open-pollinated seed of females had significantly lower germination rate, proportion flowering, and fecundity than outcrossed progeny of hermaphrodites, suggesting moderate biparental inbreeding in females and a lack of any non-outcrossing advantage to progeny of females. In all fitness components, open-pollinated progeny of hermaphrodites were inferior to those of females and to outcrosses, and in most components were superior to selfs. Total performance of open-pollinated progeny of females relative to those of hermaphrodites was calculated as 2.3 (SE = 0.4), but since inflorescences of females also set 20% to 50% more seed than those of hermaphrodites, their total relative ovule success was estimated as 3.2 (SE = 0.5). If inheritance of male sterility is nuclear, this superiority is sufficient to maintain females in frequencies over 20% in populations, whose actual frequencies ranged from 14% to 33%. In four populations, selfing rates of hermaphrodites, assayed in seedlings, were 0.50, 0.45, 0.25, and 0.30, but since substantial inbreeding depression occurred prior to germination, the mean selfing rate of hermaphrodite ovules exceeded 0.57. Female frequencies were significantly higher in the two populations with higher hermaphrodite selfing rate. These results suggest that inbreeding depression can exert a profound influence on the mating system of self-compatible plants on Hawaii and perhaps other oceanic islands, and can be sufficiently strong to electively favor the elimination of the male function.  相似文献   

20.
Cultural hitchhiking is the process by which cultural selection reduces the diversity of genes that are being transmitted in parallel to selective cultural traits. I use simulation models to investigate cultural hitchhiking in geographically unstructured populations of culturally homogeneous tribes. Substantial reduction of genetic diversity required: a reasonably low mutation rate; that tribes split fairly frequently when they constitute a substantial part of the population; a fairly low migration rate (<∼10 migrants per tribe per generation); only a low rate of cultural evolution (mean culturally determined fitness change >∼0.005%/ generation); and that cultural assimilation from other tribes change the fitness of a tribe less than cultural innovation within it. Cultural hitchhiking tends to increase mean tribe size. Measures of genetic and cultural variation among tribes poorly indicate past cultural hitchhiking. Demographic effects, in which tribal fitness varies but is not heritable, can also reduce a population's genetic diversity if the fitness varies very considerably, or tribal extirpation is added. In such cases populations frequently become extinct. Four species of matrilineal whales have remarkably low mitochondrial DNA diversity. Knowledge of the population and social structure of these species is consistent with the conditions for cultural hitchhiking. However, there remain important information gaps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号