首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
Hybridization between Artemisia tridentata ssp. tridentata and A. t. ssp. vaseyana occurs in a narrow elevational zone along the west face and canyons of the Wasatch Mountains of Utah. Two sites in central Utah (Orem and Salt Creek) were examined. The parental taxa differ in anatomy, morphology, flavonoid and coumarin content, as well as various growth parameters. Hybrids are intermediate for the majority of traits examined, including flavonoid and coumarin composition. Multivariate statistics show that these taxa can be unambiguously identified using simple field measures of morphology. A hybrid index was constructed using principal component analyses on morphological variables.  相似文献   

2.
We performed transplant experiments with Louisiana irises to test the assumptions of three models of hybrid zone structure: the bounded hybrid superiority model, the mosaic model, and the tension zone model. Rhizomes of Iris fulva, I. hexagona, and F1 and F2 hybrids were planted at four sites in southeastern Louisiana in 1994. Wild irises grew at all four sites, but differed in genotypic composition among sites. The sites were characterized by (1) pure I. fulva plants; (2) I. fulva-like hybrids; (3) I. hexagona-like hybrids; and (4) pure I. hexagona plants. The sites differed significantly in light availability, soil moisture and chemical composition, and vegetation. Survival of transplants was high in all sites and did not differ significantly among plant classes. Iris hexagona produced significantly more leaf material than I. fulva at the I. hexagona and I. hexagona hybrid sites. The two species did not differ in leaf production at the I. fulva and I. fulva hybrid sites. Leaf production by both classes of hybrid was as great as, or significantly greater than, both parental classes in all sites. Iris hexagona rhizomes gained mass in the I. hexagona and I. hexagona hybrid sites, but lost mass in the I. fulva and I. fulva hybrid sites. Iris fulva rhizomes lost mass in all sites. There were no significant differences in rhizome growth among classes at the I. fulva site. At all other sites, F1 rhizomes grew significantly more than all other classes except for I. hexagona at the I. hexagona hybrid site. There were no significant differences among classes in the production of new ramets. Overall blooming frequencies were 30% for I. fulva, 10% for F1s, 3% for F2s, and 0.7% for I. hexagona. Blooming frequency did not differ among sites for I. fulva, but significantly more F1s bloomed at the I. hexagona site than at the I. fulva site. These results are inconsistent with all three models of hybrid zone structure. They suggest that once rhizomes become established, hybrids can reproduce by clonal growth as successfully as parents in all habitats, and can outperform them in some habitats. Clonal reproduction may ensure the long-term survival of early generation hybrids and allow the establishment of introgressed populations, despite the fact that F1 hybrids are rarely produced in nature.  相似文献   

3.
The concentrations of selected elements and their biological absorption coefficients were determined for leaves from plants in native stands and reciprocal transplant gardens to determine whether niche differentiation occurs among the parental taxa and their hybrids in the big sagebrush hybrid zone in Utah. The bounded hybrid superiority model predicts such niche differentiation, while the ecologically neutral dynamic equilibrium model predicts complete niche overlap, at least in the vicinity of the hybrid zone. The concentrations of elements in the leaves of site-indigenous sagebrush and the biological absorption coefficients differed significantly between the subspecies and between either parental taxon and hybrids. Within reciprocal transplant gardens, both the elemental concentrations and the biological absorption coefficients differed among the gardens and taxa. Significant genotype-by-environment interactions were observed for several essential elements. Niche differentiation was evident as correspondence analyses ordinated the parental taxa and hybrids into separate groups even when raised in the same garden. These findings support the ecologically based bounded hybrid superiority model and suggest that the big sagebrush parental taxa and their hybrids have adapted to their respective unique habitats.  相似文献   

4.
Individuals of the F5 and FM2 cytotypes of the Sceloporus grammicus complex form a narrow zone of parapatric hybridization near Tulancingo, Hidalgo, Mexico. Reproductive parameters were examined among chromosomally parental and hybrid females to assess the degree to which reduced clutch size is correlated with the level of chromosomal heterozygosity. Although clutch size in the two parental groups was highly correlated with female body size, this was not the case for females with intermediate karyotypes. These females displayed increased levels of infertility manifested as smaller clutches and as inviable embryos. F1 females produced the smallest average clutches and suffered the most precipitous fecundity loss (up to 75%). The number of heterozygous marker chromosomes and heterozygosity at chromosome 2 had significant effects on the number of viable embryos. Analysis of embryo karyotypes revealed the production of triploid offspring and an excess number of embryos heterozygous at chromosome 1. Differences in viability, among females heterozygous for the same number of chromosomes, suggest that genetic background of the female and/or sire may be an important factor in determining reproductive success.  相似文献   

5.
6.
The water stricter species Limnoporus dissortis and L. notabilis hybridize across a broad zone in western Canada. Body length and alleles at four allozyme loci show a steep cline along the east slope of the Rocky Mountains in western Alberta, while in central British Columbia the parental phenotypes coexist without merging fully. One sex-linked locus shows little introgression, while there is apparently considerable gene flow at three autosomal loci. Although the hybrid zone has characteristics of a broad tension zone, the spatial distribution of introgression suggests that habitat patchiness and differential habitat associations of the two species also contribute to the pattern of hybridization. Asymmetry in interspecific mating success and incompatibilities of sex chromosomes with each other or with cytoplasmic factors appear to account for the occurrence of L. dissortis genotypes within the range of L. notabilis, and the lack of L. notabilis genotypes within the range of L. dissortis. The genetic structure of this hybrid zone supports the importance of sex-linked traits in maintaining the integrity of species, while its spatial structure suggests that extrinsic habitat features can combine with intrinsic genetic incompatibilities to produce complex hybrid interactions.  相似文献   

7.
The F5 (2n = 34) and FM2 (2n = 44–46) chromosome races of the Sceloporus grammicus complex form a parapatric hybrid zone in the Mexican state of Hidalgo, characterized by steep concordant clines among three diagnostic chromosome markers across a straight-line distance of about 2 km. Here, we show that this zone is actually structured into local patches in which hybridization extends over an extremely irregular front. The distribution of hybrid-index (HI) scores across the transect reveals some hybridization at almost all localities mapped in a central 7 km × 3 km area. Pooling the central samples produces both a strong heterozygote deficit for all diagnostic markers and strong linkage disequilibria between all pairwise combinations of these (unlinked) markers. Moreover, a highly significant association exists between the habitat on which each individual was caught and its karyotype (F5 chromosomes are more likely to be found on oak). Analysis of genotype frequencies over a range of spatial scales shows that there is no significant heterozygote deficit or habitat association within local areas of less than about 200 m; however, there is significant linkage disequilibrium over the smallest scales (R = D (pquv)1/2 = 0.29, support limits, 0.18–0.36) over 100 m. These patterns suggest that lizards mate and choose habitats randomly within local patches. This conclusion is supported by mark-recapture estimates of dispersal (≈ 80 m in a generation) and by inference of matings from embryo and maternal karyotypes. Closer examination of the two-dimensional pattern reveals a convoluted cline for all three markers, with a width of 830 m (support limits 770 m–930 m). This cline width, combined with the strength of local linkage disequilibrium, implies a dispersal rate of σ = 160 m in a generation and an effective selection pressure of 30% on each chromosome marker. The proportion of inviable embryos is greater in females from the center of the hybrid zone; this is caused by effects associated with both karyotype and location. The hybrid zone is likely to be maintained by selection against chromosomal heterozygotes, by other kinds of selection against hybrids, and by selection adapting the chromosome races to different habitats. The structure of the contact may be caused by both random drift and by selection in relation to habitat.  相似文献   

8.
Two models developed to discern the mode of selection in hybrid zones differ in some predictions. The tension-zone model predicts that selection acts against hybrids and independently of the environment (endogenous selection) and that selection is invariant throughout the hybrid zone. The ecological selection-gradient, or ecotone, model maintains that fitness of different genotypes varies in response to environmental variation (exogenous selection) and thus, that in a region of the zone, fitness of hybrids is at least equal to that of the parental species. Therefore, to assess the predominant mode of selection operating in a hybrid zone, it is fundamental to evaluate whether selection is acting specifically against hybrid individuals, that is, whether hybridity alone is the basis for deficiencies of hybrids, and to evaluate whether the relative fitness of hybrids versus that of pure species varies across the zone. In a hardclam (genus Mercenaria) hybrid zone located in a polyhaline lagoon in east-central Florida, we used age-specific and location-specific analyses to determine that a hybrid deficit occurrs, that the deficit seems to be due to selection against hybrids, and that selection varies across the zone. Various measures of deviation from Hardy-Weinberg equilibrium, linkage disequilibrium analyses, and shifts in allele frequencies at semidiagnostic loci support the idea that selection is strongest in the northern region of the lagoon, the zone of sympatry and hybridization. Southward, into the range of M. mercenaria (the numerically predominant species), the percentage of hybrids remains relatively high and selection against hybrids decreases. For some genetic linkage groups, selection for M. mercenaria alleles seems to be occurring, but selection seems to be acting principally against alleles characteristic of M. mercenaria and, to a lesser degree, for alleles characteristic of M. campechiensis (the rarer species). These findings and others from previous analyses we have done on this hybrid zone demonstrate that selection in the zone is complex, and that characteristics of both the tension-zone and ecotone models are present. Supporting the tension-zone model, selection against hybrids per se clearly occurs, but specific genotypes seem to be at a selective disadvantage, whereas others have a selective advantage, and selection operates differentially on the two parental species within the zone. Supporting the ecotone model, the strength of overall selection varies throughout the zone, and environmentally mediated selection in which each species and hybrids have an advantage in specific habitats occurs, but some selection against hybrids is invariant throughout the zone. Thus, the structure and genetic architecture of this hybrid zone appear to be products of a complicated interaction between both types of selective forces cited in the two competing models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号