首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transitions from sexual to asexual reproduction are often coupled with elevations in ploidy. As a consequence, the importance of ploidy per se for the maintenance and spread of asexual populations is unclear. To examine the effects of ploidy and asexual reproduction as independent determinants of the success of asexual lineages, we sampled diploid sexual, diploid asexual, and triploid asexual Eucypris virens ostracods across a European wide range. Applying nuclear and mitochondrial markers, we found that E. virens consists of genetically highly differentiated diploid sexual populations, to the extent that these sexual clades could be considered as cryptic species. All sexual populations were found in southern Europe and North Africa and we found that both diploid asexual and triploid asexual lineages have originated multiple times from several sexual lineages. Therefore, the asexual lineages show a wide variety of genetic backgrounds and very strong population genetic structure across the wide geographic range. Finally, we found that triploid, but not diploid, asexual clones dominate habitats in northern Europe. The limited distribution of diploid asexual lineages, despite their shared ancestry with triploid asexual lineages, strongly suggests that the wider geographic distribution of triploids is due to elevated ploidy rather than to asexuality.  相似文献   

2.
Levels and distribution of genetic variation were studied in central and western European populations of Taraxacum section Ruderalia containing differing mixtures of sexual diploid and asexual triploid plants. All sexual populations were panmictic with their variation partitioned mainly among populations. Genotypic diversity in triploid samples was very high with few clones widespread and many clones restricted to one or a few populations. Extensive amounts of gene (pollen) flow between the diploid and triploid components of a population were inferred from the following data: (1) the two ploidy levels share all major allozyme polymorphisms; (2) the intrapopulational homogeneity in genic variation between diploids and triploids contrasts strongly with the geographic differentiation at each ploidy level separately; (3) population-unique alleles simultaneously occur at the two ploidy levels; (4) not only sexuals but also asexuals generally simulate Hardy-Weinberg expectations. Most likely, intrapopulational gene exchange occurs bidirectionally by mechanisms such as reductional pollen meiosis in apomictic plants, facultative apomixis, and formation of unreduced gametes in sexuals. Thus, diploid and triploid Taraxacum section Ruderalia are less genetically isolated than has previously been supposed and probably form a cohesive evolutionary unit with the level at which gene pools are shared differing by population.  相似文献   

3.
The origin of triploid export banana cultivars was investigated. They all belong to Cavendish and Gros Michel subgroups of triploid clones and have a monospecific Musa acuminata origin. The appearance of these cultivars is thought to be result of hybridization between partially sterile diploid cultivars producing non reduced gametes and fertile diploids producing normal haploid gametes. To trace these diploid ancestors we compared the RFLP patterns, revealed by 36 probe/enzyme combinations, of 176 diploid clones representing the worldwide available variability with that of clones from the Cavendish and Gros Michel subgroups. This lead us to the identification of the common putative diploid ancestor of cultivars from Cavendish and Gros Michel subgroups which contributed to triploid cultivar formation through the production of 2n restitution gametes. For cultivars of Gros Michel subgroup we also propose a normal gamete donor that may have complemented the triploid allele set.  相似文献   

4.
Hybridization between the viviparous fishes Poeciliopsis monacha and P. lucida of northwestern Mexico has resulted in the formation of diploid and triploid all-female ‘species’, P. monacha-lucida and P. monacha-2 lucida. These females reproduce by mating back to P. lucida, and are essentially clonally reproducing sexual parasites superimposed on that species. In a series of behavioural experiments, one diploid clone proved to be significantly more aggressive than one triploid and four other diploid clones. No differences in aggression were exhibited among the other five clones. The aggressiveness of this one clone may explain why only two clones live in the small tributary where it is found but up to 10 diploid and triploid clones occur where it is absent.  相似文献   

5.
Vertebrates usually reproduce sexually in which males and females contribute their offspring genome and produce genetically diverse offspring. However, some of them are asexual without genetic contribution from males. The nocturnal gecko, Lepidodactylus lugubris, is all females and reproduces parthenogenetically. This gecko is known to consist of diploid and triploid clones in the tropical and subtropical regions, which can be identified by their dorsal marking patterns, ploidy, and protein polymorphism. This gecko is also distributed in the southern parts of Japan, and several clones have been reported. In this study, we investigated the origins and genetic diversity of Japanese L. lugubris by clonal discrimination using microsatellite and mitochondrial DNA analyses. A total of 748 individuals were collected from 21 islands of five island groups (Ogasawara, Okinawa, Miyako, Yaeyama and Daito Islands) and 17 clones were distinguished genetically. Mitochondrial cyt b sequences of these clones suggested that they were all closely related and differentiated recently. Clonal diversity was much higher (14 clones) in the Daito Islands than in the other island groups in which only one or two clones coexisted. Judging from the dorsal marking patterns and ploidy known so far, six clones were cosmopolitan and may be colonized from the outside of Japan. However, other 11 clones were endemic to the Daito Islands and explained by possible hybridization between the one female diploid clone and one male diploid clone because other 9 clones were triploid and all had the combinations of polymorphic microsatellite alleles of these female and male diploid clones. Although the males have never been recorded in the Daito Islands, males might appear in the past. These findings contribute to understanding of clonal diversity and dynamics of asexually reproducing animals. If diploid parthenogenetic geckos can produce triploid clones by mating with the diploid males, clonal diversity would increase rapidly in a small island, and such newly produced triploid clones would expand widely.  相似文献   

6.
Parthenogenesis in animals is often associated with polyploidy and restriction to extreme habitats or recently deglaciated areas. It has been hypothesized that benefits conferred by asexual reproduction and polyploidy are essential for colonizing these habitats. However, while evolutionary routes to parthenogenesis are manifold, study systems including polyploids are scarce in arthropods. The jumping‐bristletail genus Machilis (Insecta: Archaeognatha) includes both sexual and parthenogenetic species, and recently, the occurrence of polyploidy has been postulated. Here, we applied flow cytometry, karyotyping, and mitochondrial DNA sequencing to three sexual and five putatively parthenogenetic Eastern‐Alpine Machilis species to investigate whether (1) parthenogenesis originated once or multiply and (2) whether parthenogenesis is strictly associated with polyploidy. The mitochondrial phylogeny revealed that parthenogenesis evolved at least five times independently among Eastern‐Alpine representatives of this genus. One parthenogenetic species was exclusively triploid, while a second consisted of both diploid and triploid populations. The three other parthenogenetic species and all sexual species were diploid. Our results thus indicate that polyploidy can co‐occur with parthenogenesis, but that it was not mandatory for the emergence of parthenogenesis in Machilis. Overall, we found a weak negative correlation of monoploid genome size (Cx) and chromosome base number (x), and this connection is stronger among parthenogenetic species alone. Likewise, monoploid genome size decreased with elevation, and we therefore hypothesize that genome downsizing could have been crucial for the persistence of alpine Machilis species. Finally, we discuss the evolutionary consequences of intraspecific chromosomal rearrangements and the presence of B chromosomes. In doing so, we highlight the potential of Alpine Machilis species for research on chromosomal and genome‐size alterations during speciation.  相似文献   

7.
There is a close association between parthenogenesis and polyploidy. For this reason, we undertook a karyological analysis to test whether the parthenogenetic Marmorkrebs, Procambarus fallax forma virginalis, possesses an enlarged set of chromosomes. For this purpose, we karyotyped the Marmorkrebs, the sexual form of Pfallax (together called P. fallax complex), and the closely related species P. alleni. The latter shows 94 chromosomes in the haploid condition. In contrast to this, we found a haploid set of 92 chromosomes in individuals of the P. fallax complex. However, in mitotic metaphases the sexual form shows 184 chromosomes, whereas the Marmorkrebs possesses 276 chromosomes. Hence, the parthenogenetic Marmorkrebs reveals a triple amount of the haploid chromosome number. In addition, we detected a strikingly large subtelocentric chromosome which appears once in haploid and twice in diploid cells of sexual individuals of the Pfallax complex. In the parthenogenetic Marmorkrebs, this prominent chromosome occurs thrice. All this clearly reveals that the Marmorkrebs is a triploid organism. The applicability of the used methods, the significance of polyploidy in evolution of Decapoda, putative pathways to parthenogenetic triploidy, a possible hybrid origin and the scientific and ecological consequences of an increased chromosome set in Marmorkrebs are discussed.  相似文献   

8.
Understanding the source and diversity of clones is necessary to resolve the complicated issues surrounding the apparent evolutionary stability of sexual reproduction. The source of clones is important because present theory is based on an “all else equal” assumption, which is predicated on the idea that clonal mutants are derived from and compete with local sexual populations. Clonal diversity is important because it reduces the advantage of sexual reproduction under either soft selection (the Tangled Bank Hypothesis) or under strict frequency-dependent selection (the Red Queen Hypothesis). In the present study, protein electrophoresis was used to determine the source and diversity of clones in a freshwater snail (Potamopyrgus antipodarum) in four glacial lakes in which sexual and clonal females were thought to coexist. The results showed (1) that the populations were mixtures of diploid sexual and triploid asexual individuals, (2) that genotypic diversity of clonal populations is very high in all four lakes (but lower than in the sympatric sexual populations), and (3) that the clones are polyphyletically derived from their sympatric sexual populations. Consequently, repeated mutation to parthenogenetic reproduction since the Pleistocene has introduced a different and diverse set of clones in all four lakes. Such diversity may provide a challenge for the ecological theories of sex that rely on frequency-dependent selection.  相似文献   

9.
Using two nuclear (ITS1 and Na+/K+ ATPase) and three mitochondrial (COI, 16S and 12S) markers, we determined the genetic variation and evolutionary relationship of parthenogenetic and bisexual Artemia. Our analyses revealed that mitochondrial genes had higher genetic variation than nuclear genes and that the 16S showed more variety than the other mitochondrial genes in parthenogenetic populations. Triploid parthenogens showed lower genetic variation than diploid ones, whereas the tetra‐ and pentaploids had greater genetic distance than diploid parthenogens. No shared haplotype was found between individuals of parthenogenetic populations and Asian bisexual species with the exception of Na+/K+ ATPase (Artemia tibetiana). Only mitochondrial markers can demonstrate phylogenetic relationships, and showed that the parthenogenetic Artemia is a polyphyletic group in which the diploid lineages share a common ancestor with Artemia urmiana while tetraploids are closely related to Artemia sinica. The triploid and pentaploid linages are likely to be directly derived from diploid and tetraploid parthenogens, respectively. Subsequently, west Asia is origin for di‐/triploids, and tetra‐/pentaploids rose from East Asia.  相似文献   

10.
Functional males that are produced occasionally in some asexual taxa – called ‘rare males’ – raise considerable evolutionary interest, as they might be involved in the origin of new parthenogenetic lineages. Diploid parthenogenetic Artemia produce rare males, which may retain the ability to mate with females of related sexual lineages. Here, we (i) describe the frequency of male progeny in populations of diploid parthenogenetic Artemia, (ii) characterize rare males morphologically, (iii) assess their reproductive role, using cross‐mating experiments with sexual females of related species from Central Asia and characterize the F1 hybrid offspring viability and (iv) confirm genetically both the identity and functionality of rare males using DNA barcoding and microsatellite loci. Our result suggests that these males may have an evolutionary role through genetic exchange with related sexual species and that diploid parthenogenetic Artemia is a good model system to investigate the evolutionary transitions between sexual species and parthenogenetic strains.  相似文献   

11.
A diploid parthenogenetic strain of Drosophila mercatorum was outcrossed to produce genetic variance among the impaternate female offspring. Selection experiments were carried out for reluctance of the parthenogenetic females to mate.After only two cycles of selection, a parthenogenetic strain which is significantly less receptive to males from three different bisexual strains was obtained. It was also found that there is some degree of sexual isolation among the three bisexual strains used. The results support the idea that selection can render a newly produced diploid parthenogenetic strain behaviorally different from its bisexual ancestor. This appears to provide a framework which can explain the natural coexistence of diploid bisexual and diploid parthenogenetic biotypes in some species of insects.  相似文献   

12.
 Gametophytic apomixis in Kentucky bluegrass (Poa pratensis L.) involves the parthenogenetic development of unreduced eggs from aposporic embryo sacs. Attempts to transfer the apomictic trait beyond natural sexual barriers require further elucidation of its inheritance. Controlled crosses were made between sexual clones and apomictic genotypes, and the parthenogenetic capacity of (poly)diploid hybrids was ascertained by the auxin test. A bulked segregant analysis with RAPD and AFLP markers was then used to identify a genetic linkage group related to the apomictic mode of reproduction. This approach enabled us to detect both an AFLP marker located 6.6 cM from the gene that putatively controls parthenogenesis and a 15.4-cM genomic window surrounding the target locus. A map of the P. pratensis chromosome region carrying the gene of interest was constructed using additional RAPD and AFLP markers that co-segregated with the parthenogenesis locus. Highly significant linkage between parthenogenesis and a number of AFLP markers that also appeared to belong to a tight linkage block strengthens the hypothesis of monogenic inheritance of this trait. If a single gene is assumed, apomictic polyploid types of P. pratensis would be simplex for a dominant allele that confers parthenogenesis, and this genetic model would be further supported by the bimodal distribution of the degree of parthenogenesis exhibited in the (poly)diploid progenies from sexual x apomictic matings. The molecular tagging of apomixis in P. pratensis is an essential step towards marker-assisted breeding and map-based cloning strategies aimed at investigating and manipulating its mode of reproduction. Received: 13 January 1998 / Accepted: 19 January 1998  相似文献   

13.
The parthenogenetic lizard species Cnemidophorus tesselatus is composed of diploid populations formed by hybridization of the bisexual species C. tigris and C. septemvittatus, and of triploid populations derived from a cross between diploid tesselatus and a third bisexual species, C. sexlineatus. An analysis of allozymic variation in proteins encoded by 21 loci revealed that, primarily because of hybrid origin, individual heterozygosity in tesselatus is much higher (0.560 in diploids and 0.714 in triploids) than in the parental bisexual species (mean, 0.059). All triploid individuals apparently represent a single clone, but 12 diploid clones were identified on the basis of genotypic diversity occurring at six loci. From one to four clones were recorded in each population sampled. Three possible sources of clonal diversity in the diploid parthenogens were identified: mutation at three loci has produced three clones, each confined to a single locality; genotypic diversity at two loci apparently caused by multiple hybridization of the bisexual species accounts for four clones; and the remaining five clones apparently have arisen through recombination at three loci. The relatively limited clonal diversity of tesselatus suggests a recent origin. The evolutionary potential of tesselatus and of parthenogenetic forms in general may be less severely limited than has generally been supposed.  相似文献   

14.
Variation in PGM (phosphoglucomutase) and MDH (malate dehydrogenase) allozymes and in mitochondrial and nuclear (ribosomal) DNA gives evidence of at least three independent origins of triploid Trichoniscus pusillus pusillus. Much of the genetic variation found may reflect variation within the parental diploid population(s), but it is argued that some of the variation in PGM allozymes have accumulated within the parthenogenetic lines. Based upon the variation at this locus, 15 genetically distinct clones are distinguished.  相似文献   

15.
In Morocco, Clonopsis stick insects showed tangled reproductive interactions actually resulting into a network of phylogenetic relationships known as ‘reticulate evolution’. Peculiar to parthenogenetic C. gallica and C. soumiae (54 and 72 chromosomes, respectively) – closely related to the bisexual C. felicitatis (2n = 36) – is the finding of numerically polyploid karyotypes with a diploid structure. Androgenesis appeared to be the most parsimonious explanation accounting for both the low mitochondrial differentiation and the quick onset of those polyploids with structurally diploid karyotypes, paired with neat nuclear differentiations. According to a proposed model, hybrid triploid females would segregate balanced haploid and diploid 2nd oocytes immediately producing all kinds of parthenogens and androgens. Owing to these peculiar reproductive issues, we felt useful searching for stronger evidence by deeply analysing the mitochondrial genome. This new analysis showed a neat separation of sexual Tetouan haplotypes from the parthenogenetic and androgenetic ones, which are grouped in two slightly overlapping groups by network analysis: Moroccan parthenogens and androgens vs European C. gallica. It could be also envisaged that C. gallica has multiple origins, being a complex of parthenogenetic strains originated through independent hybridizations. The straightforward mechanism originating both triploid and tetraploid parthenogens well fits with both their widely ascertained low mitochondrial differentiation and the geographical closeness of the most similar samples, independently from their specific karyotype. Combining the outcomes of the hybridization events and androgenesis, which completely substitutes hybrid genomes with those of a related paternal species, would conceivably realize the observed picture of species structure and distribution. Owing to the reinforced data set, it now appears much more sensible to support androgenesis as a quick pathway to originate polyploids with numerically and genetically sharply differing chromosome sets, while maintaining, at the same time, high mitochondrial similarity.  相似文献   

16.
The scarcity of parthenogenetic vertebrates is often attributed to their ‘inferior’ mode of clonal reproduction, which restricts them to self‐reproduce their own genotype lineage and leaves little evolutionary potential with regard to speciation and evolution of sexual reproduction. Here, we show that for some taxa, such uniformity does not hold. Using hybridogenetic water frogs (Pelophylax esculentus) as a model system, we demonstrate that triploid hybrid males from two geographic regions exhibit very different reproductive modes. With an integrative data set combining field studies, crossing experiments, flow cytometry and microsatellite analyses, we found that triploid hybrids from Central Europe are rare, occur in male sex only and form diploid gametes of a single clonal lineage. In contrast, triploid hybrids from north‐western Europe are widespread, occur in both sexes and produce recombined haploid gametes. These differences translate into contrasting reproductive roles between regions. In Central Europe, triploid hybrid males sexually parasitize diploid hybrids and just perpetuate their own genotype – which is the usual pattern in parthenogens. In north‐western Europe, on the other hand, the triploid males are gamete donors for diploid hybrids, thereby stabilizing the mixed 2n‐3n hybrid populations. By demonstrating these contrasting roles in male reproduction, we draw attention to a new significant evolutionary potential for animals with nonsexual reproduction, namely reproductive plasticity.  相似文献   

17.
The mode of reproduction may influence the spread of invasive species by affecting evolutionary potential and dispersal ability. We sampled 51 introduced North American populations of the clonal aquatic plant Butomus umbellatus L. (flowering rush) and found extreme variation in sexual fertility caused by polyploidy. Populations consisted of diploids that produced thousands of viable seeds or of sexually sterile triploids. Although a trade-off between sexual and clonal reproduction predicts that the sexual sterility of triploids would be compensated for by greater clonal reproduction, a greenhouse experiment involving eight diploid and 10 triploid populations showed that diploid plants not only invest substantially in sexual structures but also make hundreds of tiny clonal bulbils on both rhizomes and inflorescences. In contrast, triploids do not make bulbils and have very limited scope for clonal multiplication and dispersal. Diploid populations were more frequent than triploid populations, especially in the Great Lakes region. This is probably because of the difference between cytotypes in clonal rather than sexual reproduction, as genetic analyses indicate a general lack of sexual recruitment in North America. Although triploids were less common, they have a wider geographical distribution. This could be due to a greater ecological tolerance resulting from polyploidy. However, genetic evidence suggests that triploids have become widespread via their use in and escape from horticulture. North America is being colonized by two distinct forms of B. umbellatus that differ strongly in reproductive strategy as well as the vectors and pathways of invasion.  相似文献   

18.
We examined clonal diversity and the distribution of both clonal and sexual genotypes in a single population of freshwater snails (Potamopyrgus antipodarum) in which diploid sexual individuals and triploid parthenogens coexist. A genetic analysis of individuals from three habitat zones in Lake Alexandrina, New Zealand revealed extremely high clonal diversity: 165 genotypes among 605 clonal individuals. The frequency of triploid clonal individuals increased with increasing depth in the lake, and most of the individual clones were habitat specific, suggesting that differences among habitats are important in structuring the clonal subpopulation. There were also high levels of clonal diversity within habitats, suggesting frequent origins of habitat-specific clones. In contrast, diploid sexual individuals were proportionately more common in the shallow regions of the lake (where infection by trematode larvae is highest), and there was no significant spatial structure in the sexual subpopulation. We suggest that habitat specialization by clones, as well as parasite-mediated selection against common clones, are important factors affecting the structure of this mixed population of sexual and clonal snails.  相似文献   

19.
Natural populations of triploid females resembling the gynogenetic teleost, Poecilia formosa (Girard), occur in northeastern Mexico where they intermingle with diploid populations of this species and the members of congeneric bisexual species such as P. mexicana or P. latipinna. Mitotic configurations from gill epithelial cells show 46 chromosomes for the diploid fishes, but 69 chromosomes for members of the triploid clones associated with P. formosa. Triploid females have erythrocytes that are significantly larger than those from diploid specimens and also show a roughly 50% elevation in the average DNA content of their somatic nuclei. Similar analyses of two functionally incompetent males of P. formosa, of a number of bisexual F1 and F2 hybrid offpsring from P. latipinna x P. mexicana, and of females from several other poeciliid species consistently show only diploid DNA levels and somatic chromosome complements where 22N=46. Demonstration of cytogenetic criteria by which females from triploid clones may be clearly distinguished from sympatric diploid specimens of P. formosa or P. mexicana leaves unresolved, for the present, problems of an appropriate systematic designation for natural populations of triploid gynogenetic fishes. The role of sympatric speciation in the evolution of poeciliid genomes is discussed in terms of alternative mechanisms to account for the persistence in nature of a vertebrate triploid of hybrid origin.This work was supported by grants from the National Science Foundation (GB 7393) and from the U.S. Public Health Service (GM 14644).Recipient of a Research Career Development Award from the U.S. Public Health Service (1 K3 GM 3455).  相似文献   

20.
The chromosome numbers of Dugesia japonica Ichikawa et Kawakatsu, 1964, are n = 8, 2x = 16 and 3x = 24; those of Dugesia ryukyuensis Kawakatsu, 1976, are n = 7, 2x = 14 and 3x = 21. The karyotypes of both species include diploid, triploid and mixoploid; aneuploidic and mixoaneuploidic karyotypes may occur. In 785 specimens studied of D. japonica, the occurrence rates of specimens having each karyotype are substantially the same (29–37%). Diploid sexual specimens represented nearly 10% of the total and virtually no triploid or mixoploid sexual specimens were found. The diploid karyotype can be inherited by both sexual and asexual reproduction; the triploid and mixoploid karyotypes will be inherited only by asexual reproduction. In 51 specimens studied of D. ryukyuensis, the different karyotypes are diploid (ca 39%), triploid (ca 57%) and mixoploid (ca 4%). Diploid sexual specimens represented nearly 25% of the total; sexual specimens with tripooidic karyotypes made up nearly 27%. The diploid, triploid and mixoploid karyotypes were also found in juveniles hatched from cocoons. The diploid karytyype is inherited by both sexual and asexual reproductions; the other karyotypes may be inherited by parthenogenesis or self-fertilization (including pseudogamy) and asexual reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号