首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that elevated nitric oxide (NO) reduces adhesion in diatom, bacterial and animal cells. This article reports experiments designed to investigate whether elevated NO reduces the adhesion of zoospores of the green alga Ulva, an important fouling species. Surface-normalised values of NO were measured using the fluorescent indicator DAF-FM DA and parallel hydrodynamic measurements of adhesion strength were made. Elevated levels of NO caused by the addition of the exogenous NO donor SNAP reduced spore settlement by 20% and resulted in lower adhesion strength. Addition of the NO scavenger cPTIO abolished the effects of SNAP on adhesion. The strength of attachment and NO production by spores in response to four coatings (Silastic® T2; Intersleek® 700; Intersleek® 900 and polyurethane) shows that reduced adhesion is correlated with an increase in NO production. It is proposed that in spores of Ulva, NO is used as an intracellular signalling molecule to detect how conducive a surface is for settlement and adhesion. The effect of NO on the adhesion of a range of organisms suggests that NO-releasing coatings could have the potential to control fouling.  相似文献   

2.
Marine substrata possess cues that influence the behavior of fouling organisms. Initial adhesion of fouling algal zoospores to surfaces is also theorized to depend primarily upon interactions between substrata and spore cell bodies and flagellar membranes. In an effort to identify cues and surface characteristics that influence spore settlement and early development, the effects of bioactive echinoderm extracts, surface charge, and surface hydrophobicity were examined individually and in tandem on zoospore settlement and germination in Hincksia irregularis. Experiments utilizing 96-well plastic culture plates confirmed that spore settlement and germination were significantly affected by surface charge and hydrophobicity as well as by echinoderm metabolites, both individually and in tandem. Spore settlement rates in the dark over 30?min were >?400% higher on hydrophobic surfaces than on positively and negatively charged surfaces. Spore germling numbers were >?300% higher on hydrophobic surfaces than on positively and negatively charged surfaces when spores were allowed to settle in the light for 30?min and the settled spores allowed to subsequently germinate for 24?h. Spore germling numbers were consistently >?25% higher on hydrophobic surfaces than on positively and negatively charged surfaces when equal numbers of spores were allowed to completely settle in the light and subsequently germinate for 24?h. H. irregularis germ tube lengths were also significantly longer on positively charged plates than on negatively charged plates. All echinoderm extracts tested had significant effects on germination and settlement at levels below those of estimated ecological concentrations. Short-term (30?min) exposure and subsequent germination experiments indicated that higher concentrations of extracts had rapid toxic effects on algal spores. Synchronous effects of echinoderm extracts and plate charge upon spore settlement varied considerably and did not show a strong dose response relationship. Long-term (24?h) exposure of spores to echinoderm extracts had dosage dependent effects on germination and spore survival. The results of this study indicate that H. irregularis spores possess the capacity for complex responses to their environment, utilizing combined cues of surface charge, surface energy and biochemistry to determine where to settle and germinate. These responses may aid spores in the detection of suitable substrata and conditions for settlement in the marine environment.  相似文献   

3.
Laboratory studies were used to examine how variation in the density of spore settlement influences gametophyte growth, reproduction, and subsequent sporophyte production in the kelps Pterygophora californica Ruprecht and Macrocystis pyrifera (L.) C. Ag. In still (non-aerated) cultures, egg maturation in both species was delayed when spores were seeded at densities 300 · mm?2. Although the density at which this inhibition was first observed was similar for both species, the age at which their eggs matured was not. P. californica females reached sexual maturity an average of 4 days (or ~ 30%) sooner than did M, pyrifera. As observed previously in field experiments, per capita sporophyte production was negatively density dependent for both species when seeded at spore densities of 10 · mm?2. Total sporophyte production (i.e. number · cm?2) for both species, however, was greatest at intermediate densities of spore settlement (~ 50 spores · mm?2). In contrast, total sporophyte production by P. californica steadily increased with increasing spore density in aerated cultures; highest sporophyte density was observed on slides seeded at a density of 1000 spores · mm?2. Preliminary experiments with P. californica involving manipulation of aeration and nutrients indicate that inhibition of gametophyte growth and reproduction at higher densities of spore settlement in non-aerated cultures was probably caused by nutrient limitation.  相似文献   

4.
Conditioning, ie the adsorption of proteins and other macromolecules, is the first process that occurs in the natural environment once a surface is immersed in seawater, but no information is available either regarding the conditioning of surfaces by artificial seawater or whether conditioning affects data obtained from laboratory assays. A range of self-assembled monolayers (SAMs) with different chemical terminations was used to investigate the time-dependent formation of conditioning layers in commercial and self-prepared artificial seawaters. Subsequently, these results were compared with conditioning by solutions in which zoospores of the green alga Ulva linza had been swimming. Spectral ellipsometry and contact angle measurements as well as infrared reflection absorption spectroscopy (IRRAS) were used to reveal the thickness and chemical composition of the conditioning layers. The extent that surface preconditioning affected the settlement of zoospores of U. linza was also investigated. The results showed that in standard spore settlement bioassays (45–60 min), the influence of a molecular conditioning layer is likely to be small, although more substantial effects are possible at longer settlement times.  相似文献   

5.
Stanley MS  Callow ME  Callow JA 《Planta》1999,210(1):61-71
Zoospores of Enteromorpha compressa (L.) Grev. secrete an adhesive cell coat which is involved in their attachment to various substrata. Two monoclonal antibodies (mAbs), designated Ent 1 and Ent 6, were raised against settled zoospores displaying secreted adhesive. Both antibodies labelled specifically the anterior region of the cell containing putative adhesive vesicles. During settlement the antigens recognised by both mAbs were secreted but whereas Ent 6 recognised a fibrillar material released within a few minutes of settlement, Ent 1 recognised components which were associated predominantly with the developing cell wall at later time points. Both mAbs also labelled a Golgi-rich region of settled spores, suggesting that these antigens are also synthesised after settlement. Both mAbs labelled the cell walls of vegetative tissue. Competitive enzyme-linked immunosorbent assay indicated that the two antibodies recognise separate, but overlapping epitopes. In spore settlement assays the Ent 6 immunoglobulin strongly reduced initial adhesion at low concentration whereas the inhibitory effects of Ent 1 occurred at later time points. On analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, (SDS-PAGE) both MAbs recognised a major buffer- and SDS-soluble, polydisperse 110-kDa antigen. The 110-kDa component was present in extracts of zoospores and sporulating tissue, but absent, in soluble form, from vegetative tissue. Deglycosylation of zoospore extract with anhydrous HF and peptide N-glycosidase digestion, showed that the major 110-kDa antigen is an N-linked glycan, and that the epitope is borne by the protein component. Time-course experiments showed that the Ent 6 antigen became progressively insoluble after zoospore attachment. Taken together, the data indicate that the two antibodies recognise separate but closely related antigens which have distinctive roles in adhesion and cell wall development. Received: 8 February 1999 / Accepted: 26 July 1999  相似文献   

6.
Marine substrata possess cues that influence the behavior of fouling organisms. Initial adhesion of fouling algal zoospores to surfaces is also theorized to depend primarily upon interactions between substrata and spore cell bodies and flagellar membranes. In an effort to identify cues and surface characteristics that influence spore settlement and early development, the effects of bioactive echinoderm extracts, surface charge, and surface hydrophobicity were examined individually and in tandem on zoospore settlement and germination in Hincksia irregularis. Experiments utilizing 96-well plastic culture plates confirmed that spore settlement and germination were significantly affected by surface charge and hydrophobicity as well as by echinoderm metabolites, both individually and in tandem. Spore settlement rates in the dark over 30 min were > 400% higher on hydrophobic surfaces than on positively and negatively charged surfaces. Spore germling numbers were > 300% higher on hydrophobic surfaces than on positively and negatively charged surfaces when spores were allowed to settle in the light for 30 min and the settled spores allowed to subsequently germinate for 24 h. Spore germling numbers were consistently > 25% higher on hydrophobic surfaces than on positively and negatively charged surfaces when equal numbers of spores were allowed to completely settle in the light and subsequently germinate for 24 h. H. irregularis germ tube lengths were also significantly longer on positively charged plates than on negatively charged plates. All echinoderm extracts tested had significant effects on germination and settlement at levels below those of estimated ecological concentrations. Short-term (30 min) exposure and subsequent germination experiments indicated that higher concentrations of extracts had rapid toxic effects on algal spores. Synchronous effects of echinoderm extracts and plate charge upon spore settlement varied considerably and did not show a strong dose response relationship. Long-term (24 h) exposure of spores to echinoderm extracts had dosage dependent effects on germination and spore survival. The results of this study indicate that H. irregularis spores possess the capacity for complex responses to their environment, utilizing combined cues of surface charge, surface energy and biochemistry to determine where to settle and germinate. These responses may aid spores in the detection of suitable substrata and conditions for settlement in the marine environment.  相似文献   

7.
The effect of feature size, geometry, and roughness on the settlement of zoospores of the ship fouling alga Ulva was evaluated using engineered microtopographies in polydimethylsiloxane elastomer. The topographies studied were designed at a feature spacing of 2 microm and all significantly reduced spore settlement compared to a smooth surface. An indirect correlation between spore settlement and a newly described engineered roughness index (ERI) was identified. ERI is a dimensionless ratio based on Wenzel's roughness factor, depressed surface fraction, and the degree of freedom of spore movement. Uniform surfaces of either 2 mum diameter circular pillars (ERI=5.0) or 2 microm wide ridges (ERI=6.1) reduced settlement by 36% and 31%, respectively. A novel multi-feature topography consisting of 2 mum diameter circular pillars and 10 microm equilateral triangles (ERI=8.7) reduced spore settlement by 58%. The largest reduction in spore settlement, 77%, was obtained with the Sharklet AF topography (ERI=9.5).  相似文献   

8.
M. A. Steele 《Oecologia》1997,112(1):64-74
 Input of individuals dispersing into open populations can be highly variable, yet the consequences of such variation for subsequent population densities are not well understood. I explored the influence of variable input (”supply”) on subsequent densities of juveniles and adults in open local populations of two temperate reef fishes, the bluebanded goby (Lythrypnus dalli) and the blackeye goby (Coryphopterus nicholsii). Variable recruitment was simulated by stocking a natural range of densities of young fishes on replicate patch reefs. Density and mortality of the stocked cohorts were followed over time, until the fishes reached maturity. Over the first day of the experiments, mortality of both species was significantly density-dependent; however, there was still a very strong relationship between density on day 1 and density on day 0 (i.e., simulated recruitment was still an excellent predictor of population density). At this point in the study, the main effects of density-dependent mortality were to reduce mean densities and variation about the mean. Over the period from the start of the experiments until the time when maturity was reached by each species (about 1 and 3 months for Lythrypnus and Coryphopterus, respectively), mortality was strongly density-dependent. Such strong density-dependent mortality virtually eliminated any linear relationship between adult density and ”recruit” density. However, for both species, the relationship between these two variables was well fit by an asymptotic curve, with the asymptotic density of adults equal to c. 3/m2 for Coryphopterus, and c. 10/m2 for Lythrypnus. Natural recruitment (via settlement of larvae) to the reefs over the period of the study (9 months) was above the asymptotic densities of adults for the two species, even though the study did not encompass the periods of peak annual recruitment of either species. This suggests that adult populations of these two gobies may often be limited, and regulated, by post-settlement processes, rather than by input of settlers. Other studies have shown that mortality of the two species is density-independent, or only weakly density-dependent, on reefs from which predators have been excluded. Hence, it appears that predators cause density-dependent mortality in these fishes. Received: 26 November 1996 / Accepted: 5 April 1997  相似文献   

9.
In view of the relative importance of reproductive cell ultrastructure in phylogenetic and systematic studies of green algae, we investigated the fine structure of germinating zygotes and meiospores of Coleochaete pulvinata Braun. Meiospores have a flagellar apparatus very similar to that of zoospores and spermatozoids of the same species. Meiospores differ from zoospores and spermatozoids of C. pulvinata in having pyramidal body scales similar to those present on zoospores of C. scutata. Meiospores of C. pulvinata had as many as twice the number of spline microtubules as zoospores, and four times the number present in splines of spermatozoids of the same species. Developing meiospores of C.pulvinata, like those of other Coleochaete species, are individually surrounded by chamber walls. These differed from vegetative cell walls in lacking plasmodesmata. Moreover, the chamber walls in germinating zygotes of C.pulvinata stained a cobalt blue color with resorcinal blue, and fluoresced yellow in the presence of aniline blue, thus exhibiting the staining characteristics of callose. In location, morphology and presence of callose, chamberwalls resemble “special walls” of land plants, they may represent a charophycean spore development preadaptation useful in the evolution of walled spores characteristic of land  相似文献   

10.
Significantly higher numbers of zoospores of the fouling, green alga Enteromorpha adhered to silicone elastomers cured by dibutyltin dilaurate (DBTDL) than to identical polymers cured by dibutyltin diacetate (DBTDA). Enhanced zoospore adhesion was shown to be due to the presence of DBTDL and the effect was concentration‐dependent. Further experiments revealed that enhanced zoospore adhesion also occurred to glass coverslips coated with lauric acid (C12) and other saturated fatty acids. The possibility that fatty acids may act as chemical cues (chemoattractants), guiding motile zoospores to the substratum for settlement in the natural environment is discussed. Settlement of other fouling organisms to DBTDL‐cured silicone elastomers is currently being investigated.  相似文献   

11.
Conditioning, ie the adsorption of proteins and other macromolecules, is the first process that occurs in the natural environment once a surface is immersed in seawater, but no information is available either regarding the conditioning of surfaces by artificial seawater or whether conditioning affects data obtained from laboratory assays. A range of self-assembled monolayers (SAMs) with different chemical terminations was used to investigate the time-dependent formation of conditioning layers in commercial and self-prepared artificial seawaters. Subsequently, these results were compared with conditioning by solutions in which zoospores of the green alga Ulva linza had been swimming. Spectral ellipsometry and contact angle measurements as well as infrared reflection absorption spectroscopy (IRRAS) were used to reveal the thickness and chemical composition of the conditioning layers. The extent that surface preconditioning affected the settlement of zoospores of U. linza was also investigated. The results showed that in standard spore settlement bioassays (45-60 min), the influence of a molecular conditioning layer is likely to be small, although more substantial effects are possible at longer settlement times.  相似文献   

12.

The attachment of motile spores of the green alga Enteromorpha to the substratum is an active process involving an irreversible commitment to adhesion and the secretion of an adhesive. This paper provides an overview of the spore adhesion processes and outlines the results of an experimental approach towards the molecular characterisation of the adhesive, based on the use of monoclonal antibody (mAb) technology. Hybridomas were produced to settled spores displaying secreted adhesive. Candidates producing mAbs to putative adhesive were selected using a range of criteria based on cellular localisation, time of secretion and functional inhibition of adhesion. MAb Ent 6 immunolabelled fibrillar material which was secreted during the early stages of adhesion and low (nM) concentrations of this mAb, or its F(ab)2 fragments, strongly inhibited the attachment of zoospores. A related antibody (Ent 1) also labelled the spore adhesive apparatus, but the antigen appeared to be secreted later during the adhesion process and was predominantly associated with the developing cell wall. Ent 1 also inhibited settlement in spore adhesion assays but the effect was most pronounced at later time points which suggests that this antigen does not have a role in the earliest stages of adhesion. Immunolocalisation showed that both antigens were absent from the cytoplasm or organelles of vegetative tissue but labelled the vegetative cell wall, suggesting a relationship between cell wall components and materials involved in primary adhesion. Both mAbs labelled the Golgi region of settled spores, suggesting continued synthesis of both antigens after adhesion. Both mAbs recognised a 110 kDa N‐linked polydisperse and heterogeneous glycoprotein in extracts of swimming spores under denaturing conditions. In native form the antigens behaved as high molecular weight aggregates (Mr>1.3 × 106). The antigens became progressively insoluble after zoospore attachment. Taken together, the data suggest that the two antibodies recognise closely related, polydisperse, self‐aggregating cell wall glycoproteins in which there is some structural variation to suit alternative roles in primary adhesion and cell wall formation. The two mAbs Ent 1 and Ent 6 partially discriminate between these structural and functional variants. A model for zoospore adhesion is discussed in which adhesion is viewed as an extension of cell wall synthesis, with cross‐links between glycoproteins and other cell wall matrix components providing a strong physical continuum between the cell and the adhesive at the substratum interface.  相似文献   

13.
Previous studies have shown that the rate of settlement of zoospores of the green alga Enteromorpha is stimulated by mixed microbial biofilms and that the number of zoospores settling is positively correlated with the number of bacteria in the biofilm. In the present study the specificity of this relationship has been investigated. Ninety-nine strains of marine bacteria were isolated from natural biofilms on rocks and the surface of Enteromorpha plants. Isolates were screened by denaturing gradient gel electrophoresis (DGGE) to eliminate replicates and 16S rDNA sequencing identified a total of 37 unique strains. Phylogenetic analysis revealed that the isolated bacterial strains belonged to three groups gamma-Proteobacteria (28 strains), Cytophaga-Flavobacteria-Bacteroid (CFB) group (six strains) and alpha-Proteobacteria (one strain). Two strains were unassigned, showing < 93% sequence similarity with the CFB group. The main genera of gamma-Proteobacteria were Pseudoalteromonas (14 strains), Vibrio (five strains), Shewanella (five strains), Halomonas (three strains) and Pseudomonas (one strain). Spore settlement experiments were conducted on single-species biofilms, developed for different times on glass slides. The effect of correcting spore settlement values for biofilm density was evaluated. Results showed that the effect of bacterial strains on spore settlement was strain- but not taxon-specific and activity varied with the age of the biofilm. However, most of the strains belonging to genera Vibrio and Shewanella showed stimulation. Pseudoalteromonas strains showed a range of effects including settlement-inhibiting, paralysing and lysing activities. Spatial analysis of bacterial density in the presence and absence of spores revealed a range of different types of association between spores and bacteria. Overall, the spatial association between spores and bacteria appears to be independent of the overall quantitative influence of bacterial cells on spore settlement.  相似文献   

14.
Callow ME  Callow JA 《Biofouling》2000,15(1-3):49-56
The green alga Enteromorpha is the most important macroalga that fouls ships, submarines and underwater structures. Major factors in its success in colonising new substrata are the production of enormous numbers of swimming spores and their ability to locate surfaces on which to settle. Factors facilitating the settlement and adhesion of asexual zoospores are examined in this article. Settlement and adhesion may be regulated by topographical, biological, chemical and physico-chemical cues, all of which are modified by the presence of microbial biofilm. The level of gregarious zoospore settlement is related to spore density and may be mediated by a number of external cues including fatty acids and 'detritus'.  相似文献   

15.
R. G. Creese 《Oecologia》1980,45(2):252-260
Summary Notoacmea petterdi occurs only on vertical surfaces at the highest levels on the shore. On a given surface, density of limpets decreases with increasing height. Mean and maximum sizes of limpets increase with increasing height, due to faster rates of growth at higher levels where densities are lower. Rates of mortality are also negatively correlated with height on the shore, and are therefore generally less at higher levels. Both adult and juvenile limpets exhibit well-developed homing behaviour. There is no evidence of seasonal migrations, density-dependent migrations, nor gradual upward migrations as limpets grow older.Hypotheses are formed on the basis of these preliminary observations and measurements. Results of subsequent experimental manipulations of densities support the hypothesis that density-dependent mortality, due to intraspecific competition, plays a major role in regulating population densities of this limpet. It is also suggested that the pattern of settlement of juvenile limpets is the major factor that determines the limits to the vertical distribution of this species.  相似文献   

16.
Interaction of zoospores of Ulva linza with cationic, arginine-rich oligopeptide self-assembled monolayers (SAMs) is characterized by rapid settlement. Some spores settle (ie permanently attach) in a ‘normal’ manner involving the secretion of a permanent adhesive, retraction of the flagella and cell wall formation, whilst others undergo ‘pseudosettlement’ whereby motile spores are trapped (attached) on the SAM surface without undergoing the normal metamorphosis into a settled spore. Holographic microscopy was used to record videos of swimming zoospores in the vicinity of surfaces with different cationic oligopeptide concentrations to provide time-resolved insights into processes associated with attachment of spores. The data reveal that spore attachment rate increases with increasing cationic peptide content. Accordingly, the decrease in swimming activity in the volume of seawater above the surface accelerated with increasing surface charge. Three-dimensional trajectories of individual swimming spores showed a ‘hit and stick’ motion pattern, exclusively observed for the arginine-rich peptide SAMs, whereby spores were immediately trapped upon contact with the surface.  相似文献   

17.
One of the most significant processes in the life history of an alga is the colonization of a new substratum. In the present study, we evaluate whether different organic compounds, such as agar, gelatine, chicken albumin, glycerine and polylysine, promote zoospore recruitment and germination in a periphytic, fresh-water green microalga of the genus Pseudulvella(Chlorophyta). Given the low adhesion capacity of its zoospores a series of experiments were conducted in order to find a substance and its optimal concentration that increases zoospore recruitment and allows us to follow the processes of settlement, attachment and germination of zoospores. Polylysine significantly increased the number of zoospores attached with no significant effect on the germination rate. The minimum effective concentration of polylysine for improving zoospore settlement was 0.1%. %  相似文献   

18.
An algorithm was developed and implemented to map the locations of attached spores of Ulva linza on patterned surfaces. Using this mapping algorithm, spore preference among regions within a pattern can be detected and quantified. Settlement maps of spores on patterned topographies from several assays showed clear preferences in spore settlement. Over 94% of the spores attached within the depressed regions on the surfaces, including a surface containing pits instead of protruding features. The spores attached primarily at the intersections of several features, with over half and up to 96% of spores settling in these regions. The highest spore densities occurred at intersections where the features were most dissimilar. In contrast, the location of attached beads on the surfaces was nearly uniform across the surface. Identification of preferential attachment locations allows for the study of localized properties that influence cell behavior and aids in the development of new surfaces to control cell–surface interactions.  相似文献   

19.
《Experimental mycology》1991,15(3):206-214
Electron microscopic studies of nematodes infected with the chytridiomycetous fungusCatenaria anguillulae indicated that zoospores of the fungus adhered to the cuticle of nematodes by a layer of extracellular polymers. The chemical composition of the adhesive polymers and their interaction with a solid surface were examined with Fourier transform infrared spectroscopy, using an attenuated total reflectance cell. On-line monitoring of the adhesion of zoospores to a germanium crystal with this technique showed that the adhesive polymers consisted of a protein(s) containing amide I and II bands. The adsorption of these proteins, measured as the increase in the amide II band, had a rapid initial phase of ca. 20 minutes, followed by a slower increase during the course of incubation. Fluorescein isothiocyanate staining of the attached cells at the end of the experiment showed that the adhesion of the zoospores occurred before the formation of the cyst wall.  相似文献   

20.
Novel, non-toxic antifouling technologies are focused on the manipulation of surface topography to deter settlement of the dispersal stages of fouling organisms. This study investigated the effect of the aspect ratio (feature height/feature width) of topographical features engineered in polydimethylsiloxane, on the settlement of cyprids of Balanus amphitrite and zoospores of Ulva linza. The correlation of relative aspect ratios to antifouling efficacy was proven to be significant. An increase in aspect ratio resulted in an increase of fouling deterrence for both zoospores and cyprids. The spore density of Ulva was reduced 42% with each unit increase in aspect ratio of the Ulva-specific Sharklet AF topography. Similarly, the number of settled cyprids was reduced 45% with each unit increase in aspect ratio. The newly described barnacle-specific Sharklet AF topography (40 microm feature height, aspect ratio of 2) reduced cyprid settled by 97%. Techniques have been developed to superimpose the smaller Ulva-specific topographies onto the barnacle-specific surfaces into a hierarchical structure to repel both organisms simultaneously. The results for spore settlement on first-generation hierarchical surfaces provide insight for the efficacious design of such structures when targeting multiple settling species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号