首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
20 KDa homologous restriction factor (HRF20) is a membrane glycoprotein which inhibits formation of membrane attack complexes of homologous complement. Erythrocytes from a patient who is completely deficient in HRF20 were readily hemolyzed by homologous complement activated by sucrose or by acidification as in paroxysmal nocturnal hemoglobinuria (PNH). After incubating PNH erythrocytes (PNH-E) with purified HRF20, the cells were analyzed by flow cytometry using a monoclonal antibody to HRF20 and shown to have the antigen absorbed. These PNH-E acquired resistance to hemolysis by homologous complement suggesting that HRF20 may be successfully used for treatment of these patients.  相似文献   

2.
We previously identified a 20KDa membrane glycoprotein 1F5 antigen which inhibits the assembly of homologous complement membrane attack complexes and we designate it as HRF20 standing for 20KDa homologous restriction factor. The amino acid sequence deduced from its coding base sequence resembles that of T cell activating protein, most conspicuously in cysteine residues, 10 out of 11 of which occupy identical positions in an overall sequence homology of 24.8%. Furthermore, proliferation of human T cells was stimulated by monoclonal antibody to HRF20.  相似文献   

3.
We describe a novel fluorescent dye, 3-(4-aminophenyl)-2H-chromen-2-one (termed case myelin compound or CMC), that can be used for in situ fluorescent imaging of myelin in the vertebrate nervous system. When administered via intravenous injection into the tail vein, CMC selectively stained large bundles of myelinated fibers in both the central nervous system (CNS) and the peripheral nervous system (PNS). In the CNS, CMC readily entered the brain and selectively localized in myelinated regions such as the corpus callosum and cerebellum. CMC also selectively stained myelinated nerves in the PNS. The staining patterns of CMC in a hypermyelinated mouse model were consistent with immunohistochemical staining. Similar to immunohistochemical staining, CMC selectively bound to myelin sheaths present in the white matter tracts. Unlike CMC, conventional antibody staining for myelin basic protein also stained oligodendrocyte cytoplasm in the striatum as well as granule layers in the cerebellum. In vivo application of CMC was also demonstrated by fluorescence imaging of myelinated nerves in the PNS. (J Histochem Cytochem 58:611–621, 2010)  相似文献   

4.
HRF20, a 20 kDa homologous restriction factor, is a membrane glycoprotein anchored via galactosyl phosphatidyl inositol. Its function is to protect cells from attack by homologous complement. Adsorption of purified HRF20 to Raji cells which have little, if any, of this factor increased their resistance to cytolysis by homologous complement. However, the same cells treated with HRF20 remained sensitive to cytotoxic attack by IL-2 activated lymphocytes (lymphokine activated killer cells; LAK cells). Since LAK cells are effector cells which release perforin, HRF20 does not appear to protect cells from the damage caused by perforin.  相似文献   

5.
MEGF9 [multiple EGF (epidermal growth factor)-like-domains 9], a novel transmembrane protein with multiple EGF-like repeats, is predominantly expressed in the developing and adult CNS (central nervous system) and PNS (peripheral nervous system). The domain structure of MEGF9 consists of an N-terminal region with several potential O-glycosylation sites followed by five EGF-like domains, which are highly homologous with the short arms of laminins. Following one single pass transmembrane domain, a highly conserved short intracellular domain with potential phosphorylation sites is present. The protein was recombinantly expressed and characterized as a tissue component. To study the expression pattern further, immunohistochemistry was performed and staining was detected in Purkinje cells of the cerebellum and in glial cells of the PNS. Additional expression was observed in the epidermal layer of skin, papillae of the tongue and the epithelium of the gastrointestinal tract. By immunoelectron microscopy, MEGF9 was detected in glial cells of the sciatic nerve facing the basement membrane. MEGF9 represents a novel putative receptor, expressed in neuronal and non-neuronal tissues, that is regulated during development and could function as a guidance or signalling molecule.  相似文献   

6.
As human E (HuE) treated with neuraminidase (Neu) are resistant to hemolysis by human serum but are readily lysed by heterologous serum via the alternative C pathway, we attempted to produce mAb which might modify Neu-treated HuE (Neu-HuE) so as to render them sensitive to homologous C. A hybridoma, clone -1F5, was obtained by screening for antibody which caused hemolysis of Neu-HuE by human serum via the alternative C pathway. We have shown that this antibody (1F5) of IgG1 isotype blocks the action of a 20-kDa membrane inhibitor capable of interfering with the terminal step in the homologous C cascade. The antigenic molecule can be termed HRF20, which stands for homologous restriction factor (HRF) with m.w. 20,000, because its function is essentially the same as that of HRF (68,000) reported by others.  相似文献   

7.
In the absence of blood brain barrier (BBB) the DNA of peripheral nervous system (PNS) neurons is exposed to a broader spectrum of endogenous and exogenous threats compared to that of the central nervous system (CNS). Hence, while CNS and PNS neurons cope with many similar challenges inherent to their high oxygen consumption and vigorous metabolism, PNS neurons are also exposed to circulating toxins and inflammatory mediators due to relative permeability of PNS blood nerve barrier (BNB). Consequently, genomes of PNS neurons incur greater damage and the question awaiting investigation is whether specialized repair mechanisms for maintenance of DNA integrity have evolved to meet the additional needs of PNS neurons. Here, I review data showing how PNS neurons manage collateral DNA damage incurred in the course of different anti-cancer treatments designed to block DNA replication in proliferating tumor cells. Importantly, while PNS neurotoxicity and concomitant chemotherapy-induced peripheral neuropathy (CIPN) are among major dose limiting barriers in achieving therapy goals, CIPN is partially reversible during post-treatment nerve recovery. Clearly, cell recovery necessitates mobilization of the DNA damage response and underscores the need for systematic investigation of the scope of DNA repair capacities in the PNS to help predict post-treatment risks to recovering neurons.  相似文献   

8.
Targeted disruption of the retinoblastoma gene in mice leads to embryonic lethality in midgestation accompanied by defective erythropoiesis. Rb(-/-) embryos also exhibit inappropriate cell cycle activity and apoptosis in the central nervous system (CNS), peripheral nervous system (PNS), and ocular lens. Loss of p53 can prevent the apoptosis in the CNS and lens; however, the specific signals leading to p53 activation have not been determined. Here we test the hypothesis that hypoxia caused by defective erythropoiesis in Rb-null embryos contributes to p53-dependent apoptosis. We show evidence of hypoxia in CNS tissue from Rb(-/-) embryos. The Cre-loxP system was then used to generate embryos in which Rb was deleted in the CNS, PNS and lens, in the presence of normal erythropoiesis. In contrast to the massive CNS apoptosis in Rb-null embryos at embryonic day 13.5 (E13.5), conditional mutants did not have elevated apoptosis in this tissue. There was still significant apoptosis in the PNS and lens, however. Rb(-/-) cells in the CNS, PNS, and lens underwent inappropriate S-phase entry in the conditional mutants at E13.5. By E18.5, conditional mutants had increased brain size and weight as well as defects in skeletal muscle development. These data support a model in which hypoxia is a necessary cofactor in the death of CNS neurons in the developing Rb mutant embryo.  相似文献   

9.
 To avoid destruction by complement, normal and malignant cells express membrane glycoproteins that restrict complement activity. These include decay-accelerating factor (DAF, CD55), membrane cofactor protein (MCP, CD46) and protectin (CD59), which are all expressed on colonic adenocarcinoma cells in situ. In this study we have characterised the C3/C5 convertase regulators DAF and MCP on the human colonic adenocarcinoma cell line HT29. DAF was found to be a glycosyl-phosphatidylinositol-anchored 70-kDa glycoprotein. Blocking experiments with F(ab′)2 fragments of the anti-DAF monoclonal antibody BRIC 216 showed that DAF modulates the degree of C3 deposition and mediates resistance to complement-mediated killing of the cells. The expression and function of DAF were enhanced by tumour necrosis factor α (TNFα) and interleukin-1β (IL-1β). Cells incubated with interferon γ (IFNγ) did not alter their DAF expression. Two MCP forms were expressed, with molecular masses of approximately 58 kDa and 68 kDa, the lower form predominating. MCP expression was up-regulated by IL-1β, but not by TNFα or IFNγ. Expression of DAF and MCP promotes resistance of colonic adenocarcinoma cells to complement-mediated damage, and represents a possible mechanism of tumour escape. Received: 18 July 1995 / Accepted: 4 January 1996  相似文献   

10.
Morphology and function of the nervous system is maintained via well-coordinated processes both in central and peripheral nervous tissues, which govern the homeostasis of organs/tissues. Impairments of the nervous system induce neuronal disorders such as peripheral neuropathy or cardiac arrhythmia. Although further investigation is warranted to reveal the molecular mechanisms of progression in such diseases, appropriate model systems mimicking the patient-specific communication between neurons and organs are not established yet. In this study, we reconstructed the neuronal network in vitro either between neurons of the human induced pluripotent stem (iPS) cell derived peripheral nervous system (PNS) and central nervous system (CNS), or between PNS neurons and cardiac cells in a morphologically and functionally compartmentalized manner. Networks were constructed in photolithographically microfabricated devices with two culture compartments connected by 20 microtunnels. We confirmed that PNS and CNS neurons connected via synapses and formed a network. Additionally, calcium-imaging experiments showed that the bundles originating from the PNS neurons were functionally active and responded reproducibly to external stimuli. Next, we confirmed that CNS neurons showed an increase in calcium activity during electrical stimulation of networked bundles from PNS neurons in order to demonstrate the formation of functional cell-cell interactions. We also confirmed the formation of synapses between PNS neurons and mature cardiac cells. These results indicate that compartmentalized culture devices are promising tools for reconstructing network-wide connections between PNS neurons and various organs, and might help to understand patient-specific molecular and functional mechanisms under normal and pathological conditions.  相似文献   

11.
Recent immunocytochemical studies indicated that the myelin-associated glycoprotein (MAG) is localized in the periaxonal region of central nervous system (CNS) and peripheral nervous system (PNS) myelin sheaths but previous biochemical studies had not demonstrated the presence of MAG in peripheral nerve. The glycoproteins in rat sciatic nerves were heavily labeled by injection of [3H]fucose in order to re-examine whether MAG could be detected chemically in peripheral nerve. Myelin and a myelin-related fraction, W1, were isolated from the nerves. Labeled glycoproteins in the PNS fractions were extracted by the lithium diiodosalicylate (LIS)-phenol procedure, and the extracts were treated with antiserum prepared to CNS MAG in a double antibody precipitation. This resulted in the immune precipitation of a single [3H]fucose-labeled glycoprotein with electrophoretic mobility very similar to that of [14C]fucose-labeled MAG from rat brain. A sensitive peptide mapping procedure involving iodination with Bolton-Hunter reagent and autoradiography was used to compare the peptide maps generated by limited proteolysis from this PNS component and CNS MAG. The peptide maps produced by three distinct proteases were virtually identical for the two glycoproteins, showing that the PNS glycoprotein is MAG. The MAG in the PNS myelin and W1 fractions was also demonstrated by Coomassie blue and periodic acid-Schiff staining of gels on which the whole LIS-phenol extracts were electrophoresed, and densitometric scanning of the gels indicated that both fractions contained substantially less MAG than purified rat brain myelin. The presence of MAG in the periaxonal region of both peripheral and central myelin sheaths is consistent with a similar involvement of this glycoprotein in axon-sheath cell interactions in the PNS and CNS.  相似文献   

12.
Immunocytochemical localization studies of myelin basic protein   总被引:3,自引:3,他引:0       下载免费PDF全文
The location of myelin encephalitogenic or basic protein (BP) in peripheral nervous system (PNS) and central nervous system (CNS) was investigated by immunofluorescence and horseradish peroxidase (HRP) immunocytochemistry. BP or cross-reacting material could be clearly localized to myelin by immunofluorescence and light microscope HRP immunocytochemistry. Fine structural studies proved to be much more difficult, especially in the CNS, due to problems in tissue fixation and penetration of reagents. Sequential fixation in aldehyde followed by ethanol or methanol provided the best conditions for ultrastructural indirect immunocytochemical studies. In PNS tissue, anti-BP was localized exclusively to the intraperiod line of myelin. Because of limitations in technique, the localization of BP in CNS myelin could not be unequivocally determined. In both PNS and CNS tissue, no anti-BP binding to nonmyelin cellular or membranous elements was detected.  相似文献   

13.
The central nervous system (CNS), unlike the peripheral nervous system (PNS), is an immune-privileged site in which local immune responses are restricted. Whereas immune privilege in the intact CNS has been studied intensively, little is known about its effects after trauma. In this study, we examined the influence of CNS immune privilege on T cell response to central nerve injury. Immunocytochemistry revealed a significantly greater accumulation of endogenous T cells in the injured rat sciatic nerve than in the injured rat optic nerve (representing PNS and CNS white matter trauma, respectively). Use of the in situ terminal deoxytransferase-catalyzed DNA nick end labeling (TUNEL) procedure revealed extensive death of accumulating T cells in injured CNS nerves as well as in CNS nerves of rats with acute experimental autoimmune encephalomyelitis, but not in injured PNS nerves. Although Fas ligand (FasL) protein was expressed in white matter tissue of both systems, it was more pronounced in the CNS. Expression of major histocompatibility complex (MHC) class II antigens was found to be constitutive in the PNS, but in the CNS was induced only after injury. Our findings suggest that the T cell response to central nerve injury is restricted by the reduced expression of MHC class II antigens, the pronounced FasL expression, and the elimination of infiltrating lymphocytes through cell death.  相似文献   

14.
15.
The proteolipid plasmolipin is member of the expanding group of tetraspan (4TM) myelin proteins. Initially, plasmolipin was isolated from kidney plasma membranes, but subsequent northern blot analysis revealed highest expression in the nervous system. To gain more insight into the functional roles of plasmolipin, we have generated a plasmolipin-specific polyclonal antibody. Immunohistochemical staining confirms our previous observation of glial plasmolipin expression and proves plasmolipin localization in the compact myelin of rat peripheral nerve and myelinated tracts of the CNS. Western blot analysis indicates a strong temporal correlation of plasmolipin expression and (re-) myelination in the PNS and CNS. However, following axotomy plasmolipin expression is also recovered in non-regenerating distal nerve stumps. In addition, we detected plasmolipin expression in distinct neuronal subpopulations of the CNS. The observed asymmetric distribution of plasmolipin in compact myelin, as well as in epithelial cells of kidney and stomach, indicates a polarized cellular localization. Therefore, we purified myelin from the CNS and PNS and demonstrated an enrichement of phosphorylated plasmolipin protein in detergent-insoluble lipid raft fractions, suggesting selective targeting of plasmolipin to the myelin membranes. The present data indicate that the proteolipid plasmolipin is a structural component of apical membranes of polarized cells and provides the basis for further functional analysis.  相似文献   

16.
The 65 kDa C8-binding protein or homologous restriction factor (C8bp/HRF) protects cells from complement (C)-mediated lysis by binding to C8 and abrogating lytic channel formation. Human C8bp/HRF is shown here to be immunologically related to human C8 and C9 and to murine lymphocyte poreforming protein (PFP, perforin). Polyclonal antibodies raised against purified C8, C9 and perforin react with C8bp/HRF. The antigenic epitopes shared by these four proteins are limited to cysteine-rich or disultide bridge-masked domains. Only complement proteins or perforin that have been disulfide-reduced elicit the production of cross-reactive antibodies when used as immunogens. Analogously, only C8bp/HRF that has been disulfide-reduced reacts with these antibodies. These results suggest that C8bp/HRF may belong to the complement/perforin supergene family. The function of homologous domains shared by these four proteins remains to be elucidated.  相似文献   

17.
Abstract: Recent immunocytochemical studies indicated that the myelin-associated glycoprotein (MAG) is localized in the periaxonal region of central nervous system (CNS) and peripheral nervous system (PNS) myelin sheaths but previous biochemical studies had not demonstrated the presence of MAG in peripheral nerve. The glycoproteins in rat sciatic nerves were heavily labeled by injection of [3H]fucose in order to re-examine whether MAG could be detected chemically in peripheral nerve. Myelin and a myelin-related fraction, WI, were isolated from the nerves. Labeled glycoproteins in the PNS fractions were extracted by the lithium diiodosalicylate (LIS)-phenol procedure, and the extracts were treated with antiserum prepared to CNS MAG in a double antibody precipitation. This resulted in the immune precipitation of a single [3H]fucose-labeled glycoprotein with electrophoretic mobility very similar to that of [14C]fucose-labeled MAG from rat brain. A sensitive peptide mapping procedure involving iodination with Bolton-Hunter reagent and autoradiography was used to compare the peptide maps generated by limited proteolysis from this PNS component and CNS MAG. The peptide maps produced by three distinct proteases were virtually identical for the two glycoproteins, showing that the PNS glycoprotein is MAG. The MAG in the PNS myelin and Wl fractions was also demonstrated by Coomassie blue and periodic acid-Schiff staining of gels on which the whole US-phenol extracts were electrophoresed, and densitometric scanning of the gels indicated that both fractions contained substantially less MAG than purified rat brain myelin. The presence of MAG in the periaxonal region of both peripheral and central myelin sheaths is consistent with a similar involvement of this glycoprotein in axon-sheath cell interactions in the PNS and CNS.  相似文献   

18.
The central nervous system (CNS) and the peripheral nervous system (PNS) are targets for steroid hormones where they regulate important neuronal functions. Some steroid hormones are synthesized within the nervous system, either de novo from cholesterol, or by the metabolism of precursors originating from the circulation, and they were termed ‘neurosteroids'. The sex steroid progesterone can also be considered as a neurosteroid since its synthesis was demonstrated in rat glial cell cultures of the CNS (oligodendrocytes and astrocytes) and of the PNS (Schwann cells). Both types of glial cells express steroid hormone receptors, ER, GR and PR. As in target tissue, e.g. the uterus, PR is estrogen-inducible in brain glial cell cultures. In the PNS, similar PR-induction could not be seen in pure Schwann cells derived from sciatic nerves. However, a significant PR-induction by estradiol was demonstrated in Schwann cells cocultured with dorsal root ganglia (DRG), and we will present evidence that neuronal signal(s) are required for this estrogen-mediated PR-induction. Progesterone has multiple effects on glial cells, it influences growth, differentiation and increases the expression of myelin-specific proteins in oligodendrocytes, and potentiates the formation of new myelin sheaths by Schwann cells in vivo. Progesterone and progesterone analogues also promotes myelination of DRG-Neurites in tissue culture, strongly suggesting a role for this neurosteroid in myelinating processes in the CNS and in the PNS.  相似文献   

19.
Abstract: On gel electrophoresis in dodecyl sulphate solutions shark CNS myelin showed four bands close in mobility to the proteolipid protein of bovine CNS myelin. They had apparent molecular weights of 21,000, 26,000, 27,000, and 31,500. Unlike bovine proteolipid protein, all of these shark proteins were shown to be glycosylated by staining gels with the periodate-Schiff reagent. Amino acid analyses of the polypeptides eluted from polyacrylamide gels indicated a high content of apolar amino acids and a composition approximating that of the Po protein of bovine peripheral nervous system (PNS) myelin, rather than that of the CNS proteolipid protein. The shark poly-peptide of apparent molecular weight 31,500 was obtained by elution from dodecyl sulphate gels and antibodies raised against it in rabbits. By probing of electroblots with this antiserum the four shark CNS bands were shown to share common determinants with each other, with a major shark PNS protein and with sheep and chicken major PNS glycoproteins (Po). The binding of antibody was unaffected by deglycosylation of the shark CNS polypeptides with anhydrous hydrogen fluoride. Together, these results appeared to establish that shark CNS myelin contains four proteins that are closely related to a major shark PNS protein and to the Po protein of higher species.  相似文献   

20.
Studies on the replication of herpes simplex virus in organized cultures of rat central nervous system (CNS) and peripheral nervous system (PNS) tissue demonstrated synthesis of intra- and extracellular virus, as determined by plaque assay on HEp-2 cells. Newly synthesized intracellular virus appeared 12 to 14 hr after inoculation of CNS, followed 10 hr later by the appearance of extracellular virus. In PNS cultures, where higher inputs of virus were introduced, intracellular virus appeared 6 to 8 hr after inoculation, followed by extracellular virus 12 hr later. Polykaryocyte formation was observed in CNS and PNS tissue involving neuroglial, meningeal, or Schwann cells. Neuron somas did not participate in polykaryocyte formation, but they underwent progressive morphological changes starting with increased cytoplasmic granularity followed by nucleolar distortions and disintegration, margination of nuclear chromatin, and the appearance of intranuclear inclusions. Finally, all recognizable cellular detail was lost. Immune serum globulin failed to inhibit both the progressive nature of the cytopathic effect and the synthesis of intracellular virus. These findings are discussed in relation to other in vitro systems, as well as to disease processes in man and animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号