首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sexual reproduction is costly, but it is nearly ubiquitous among plants and animals, whereas obligately asexual taxa are rare and almost always short-lived. The Red Queen hypothesis proposes that sex overcomes its costs by enabling organisms to keep pace with coevolving parasites and pathogens. If so, the few cases of stable long-term asexuality ought to be found in groups whose coevolutionary interactions with parasites are unusually weak. In theory, antagonistic coevolution will be attenuated if hosts disperse among patches within a metapopulation separately from parasites and more rapidly. We examined whether these conditions are met in natural communities of bdelloid rotifers, one of the longest-lived asexual lineages. At any life stage, these microscopic invertebrates can tolerate the complete desiccation of their ephemeral freshwater habitats, surviving as dormant propagules that are readily carried by the wind. In our field experiments, desiccation and wind transport enabled bdelloids to disperse independently of multiple fungal parasites, in both time and space. Surveys of bdelloid communities in unmanipulated moss patches confirmed that fungal parasitism was negatively correlated with extended drought and increasing height (exposure to wind). Bdelloid ecology therefore matches a key condition of models in which asexuals persist through spatio-temporal decoupling from coevolving enemies.  相似文献   

2.
    
Sex and recombination remain one of the biggest riddles of evolutionary biology. One of the most prominent hypotheses, the Red Queen Hypothesis, claims that sex has evolved as a means to efficiently create genotypes that are resistant against coevolving parasites. However, previous models of the Red Queen have assumed that all individuals are equally likely to engage in sexual reproduction, regardless of their infection status, an assumption that may not be true in reality. Here, we consider a population genetic model of a host population coevolving with a parasite population, where the parasites are haploid and the hosts either haploid or diploid. We assume that the probability to engage in sex may be different in infected and uninfected hosts and ascertain the success of different reproductive strategies with a modifier-gene approach. Our model shows that in the large majority of the parameter space, infection-dependent sex is more successful than infection-independent sex. We identify at least two reasons for this: (i) an immediate short-term advantage of breaking-down gene combinations of unfit individuals and (ii) a selfish spread of the condition-dependent modifiers, in analogy to the 'abandon-ship' effect in single species. In diploids, these effects are often powerful enough to overcome the detrimental effects of segregation. These results raise the intriguing question of why infection-induced sex is not more commonly observed in nature.  相似文献   

3.
    
Given the cost of sex, outcrossing populations should be susceptible to invasion and replacement by self‐fertilization or parthenogenesis. However, biparental sex is common in nature, suggesting that cross‐fertilization has substantial short‐term benefits. The Red Queen hypothesis (RQH) suggests that coevolution with parasites can generate persistent selection favoring both recombination and outcrossing in host populations. We tested the prediction that coevolving parasites can constrain the spread of self‐fertilization relative to outcrossing. We introduced wild‐type Caenorhabditis elegans hermaphrodites, capable of both self‐fertilization, and outcrossing, into C. elegans populations that were fixed for a mutant allele conferring obligate outcrossing. Replicate C. elegans populations were exposed to the parasite Serratia marcescens for 33 generations under three treatments: a control (avirulent) parasite treatment, a fixed (nonevolving) parasite treatment, and a copassaged (potentially coevolving) parasite treatment. Self‐fertilization rapidly invaded C. elegans host populations in the control and the fixed‐parasite treatments, but remained rare throughout the entire experiment in the copassaged treatment. Further, the frequency of the wild‐type allele (which permits selfing) was strongly positively correlated with the frequency of self‐fertilization across host populations at the end of the experiment. Hence, consistent with the RQH, coevolving parasites can limit the spread of self‐fertilization in outcrossing populations.  相似文献   

4.
  总被引:1,自引:0,他引:1  
Abstract. Here I present a deterministic model of the coevolution of parasites with the acquired immunity of their hosts, a system in which coevolutionary oscillations can be maintained. These dynamics can confer an advantage to sexual reproduction within the parasite population, but the effect is not strong enough to outweigh the twofold cost of sex. The advantage arises primarily because sexual reproduction impedes the response to fluctuating epistasis and not because it facilitates the response to directional selection—in fact, sexual reproduction often slows the response to directional selection. Where the cost of sexual reproduction is small, a polymorphism can be maintained between the sexuals and the asexuals. A polymorphism is maintained in which the advantage gained due to recombination is balanced by the cost of sex. At much higher costs of sex, a polymorphism between the asexual and sexual populations can still be maintained if the asexuals do not have a full complement of genotypes available to them, because the asexuals only outcompete those sexuals with which they share the same selected alleles. However, over time we might expect the asexuals to amass the full array of genotypes, thus permanently eliminating sexuals from the population. The sexuals may avoid this fate if the parasite population is finite. Although the model presented here describes the coevolution of parasites with the acquired immune responses of their hosts, it can be compared with other host-parasite models that have more traditionally been used to investigate Red Queen theories of the evolution of sex.  相似文献   

5.
It has been suggested that sexual reproduction in parasites may be advantageous because it helps evade genotype‐specific host immune responses. Indirect support for this hypothesis has recently come from work on Strongyloides ratti, a parasitic nematode of rats that develops and reproduces sexually or asexually. In this species, host immune responses against S. ratti lead to a higher proportion of individuals reproducing sexually. However, an alternative explanation for these results is that sex is favoured by general environmental stress, including host responses against antigen sources other than S. ratti. Here we test this hypothesis, by determining how host immunity against two other parasitic nematode species (Nippostrongylus brasiliensis & Strongyloides venezuelensis) and commonly used mammalian antigens (sheep red blood cells) affects the likelihood of S. ratti larvae developing sexually. Our results show that increased levels of sex occur in response to immune responses generated against these other species, and not just host immunity elicited by S. ratti. This is consistent with the idea that sex is favoured under stressful conditions, and does not support the immune evasion hypothesis.  相似文献   

6.
    
Evolutionary biology has yet to reconcile the ubiquity of sex with its costs relative to asexual reproduction. Here, we test the hypothesis that coevolving parasites maintain sex in their hosts. Specifically, we examined the distributions of sexual reproduction and susceptibility to local parasites within a single population of freshwater snails (Potamopyrgus antipodarum). Susceptibility to local trematode parasites (Microphallus sp.) is a relative measure of the strength of coevolutionary selection in this system. Thus, if coevolving parasites maintain sex, sexual snails should be common where susceptibility is high. We tested this prediction in a mixed population of sexual and asexual snails by measuring the susceptibility of snails from multiple sites in a lake. Consistent with the prediction, the frequency of sexual snails was tightly and positively correlated with susceptibility to local parasites. Strikingly, in just two years, asexual females increased in frequency at sites where susceptibility declined. We also found that the frequency of sexual females covaries more strongly with susceptibility than with the prevalence of Microphallus infection in the field. In linking susceptibility to the frequency of sexual hosts, our results directly implicate spatial variation in coevolutionary selection in driving the geographic mosaic of sex.  相似文献   

7.
    
Antagonistic coevolution between hosts and parasites is thought to drive a range of biological phenomena including the maintenance of sexual reproduction. Of particular interest are conditions that produce persistent fluctuations in the frequencies of genes governing host–parasite specificity (coevolutionary cycling), as sex may be more beneficial than asexual reproduction in a constantly changing environment. Although many studies have shown that coevolutionary cycling can lead to the maintenance of sex, the effects of ecological feedbacks on the persistence of these fluctuations in gene frequencies are not well understood. Here, we use a simple deterministic model that incorporates ecological feedbacks to explore how parasitic reductions in host fecundity affect the maintenance of coevolutionary cycling. We demonstrate that parasitic castration is inherently destabilizing and may be necessary for coevolutionary cycling to persist indefinitely, but also reduces the likelihood that sexually reproducing individuals will find a fertile partner, which may select against sex. These findings suggest that castrators can play an important role in shaping host evolution and are likely to be good targets for observing fluctuations in gene frequencies that govern specificity in host–parasite interactions.  相似文献   

8.
  总被引:2,自引:0,他引:2  
The Red Queen hypothesis proposes that sex is maintained through selection pressure imposed by coevolving parasites: susceptible hosts are able to escape parasite pressure by recombining their genome to create resistant offspring. However, previous theoretical studies have shown that the Red Queen typically selects against sex unless selection is strong, arguing that high rates of recombination cannot evolve when parasites are of low virulence. Here we show that under the biologically plausible assumption of a severe fitness cost for parasites that fail to infect, the Red Queen can cause selection for high recombination rates, and that the strength of virulence is largely irrelevant to the direction of selection for increased recombination rates. Strong selection on parasites and short generation times make parasites usually better adapted to their hosts than vice versa and can thus favor higher recombination rates in hosts. By demonstrating the importance of host-imposed selection on parasites, our findings resolve previously reported conflicting results.  相似文献   

9.
What are the causes of natural selection? Over 40 years ago, Van Valen proposed the Red Queen hypothesis, which emphasized the primacy of biotic conflict over abiotic forces in driving selection. Species must continually evolve to survive in the face of their evolving enemies, yet on average their fitness remains unchanged. We define three modes of Red Queen coevolution to unify both fluctuating and directional selection within the Red Queen framework. Empirical evidence from natural interspecific antagonisms provides support for each of these modes of coevolution and suggests that they often operate simultaneously. We argue that understanding the evolutionary forces associated with interspecific interactions requires incorporation of a community framework, in which new interactions occur frequently. During their early phases, these newly established interactions are likely to drive fast evolution of both parties. We further argue that a more complete synthesis of Red Queen forces requires incorporation of the evolutionary conflicts within species that arise from sexual reproduction. Reciprocally, taking the Red Queen''s perspective advances our understanding of the evolution of these intraspecific conflicts.  相似文献   

10.
    
The Red Queen hypothesis argues that parasites generate selection for genetic mixing (sex and recombination) in their hosts. A number of recent papers have examined this hypothesis using models with haploid hosts. In these haploid models, sex and recombination are selectively equivalent. However, sex and recombination are not equivalent in diploids because selection on sex depends on the consequences of segregation as well as recombination. Here I compare how parasites select on modifiers of sexual reproduction and modifiers of recombination rate. Across a wide set of parameters, parasites tend to select against both sex and recombination, though recombination is favored more often than is sex. There is little correspondence between the conditions favoring sex and those favoring recombination, indicating that the direction of selection on sex is often determined by the effects of segregation, not recombination. Moreover, when sex was favored it is usually due to a long-term advantage whereas short-term effects are often responsible for selection favoring recombination. These results strongly indicate that Red Queen models focusing exclusively on the effects of recombination cannot be used to infer the type of selection on sex that is generated by parasites on diploid hosts.  相似文献   

11.
Host-parasite coevolution can lead to a variety of outcomes, but whereas experimental studies on clonal populations have taken prominence over the last years, experimental studies on obligately out-crossing organisms are virtually absent so far. Therefore, we set up a coevolution experiment using four genetically distinct lines of Tribolium castaneum and its natural obligately killing microsporidian parasite, Nosema whitei. After 13 generations of experimental coevolution, we employed a time-shift experiment infecting hosts from the current generation with parasites from nine different time points in coevolutionary history. Although initially parasite-induced mortality showed synchronized fluctuations across lines, a general decrease over time was observed, potentially reflecting evolution towards optimal levels of virulence or a failure to adapt to coevolving sexual hosts.  相似文献   

12.
Both deleterious mutations and parasites have been acknowledged as potential selective forces responsible for the evolutionary maintenance of sexual reproduction. The pluralist approach to sex proposes that these two factors may have to interact synergistically in order to stabilize sex, and one of the simplest ways this could occur is if parasites are capable of causing synergistic epistasis between mutations in their hosts. However, the effects of both deleterious mutations and parasitism are known to be influenced by a range of environmental factors, so the nature of the interaction may depend upon the organisms' environment. Using chemically mutated Daphnia magna lines, we examined the effects of mutation and parasitism under a range of temperature and food regimes. We found that although parasites were capable of causing synergistic epistasis between mutations in their hosts, these effects were dependent upon an interaction between parasite genotype and temperature.  相似文献   

13.
The Red Queen hypothesis posits a promising way to explain the widespread existence of sexual reproduction despite the cost of producing males. The essence of the hypothesis is that coevolutionary interactions between hosts and parasites select for the genetic diversification of offspring via cross‐fertilization. Here, I relax a common assumption of many Red Queen models that each host is exposed to one parasite. Instead, I assume that the number of propagules encountered by each host depends on the number of infected hosts in the previous generation, which leads to additional complexities. The results suggest that epidemiological feedbacks, combined with frequency‐dependent selection, could lead to the long‐term persistence of sex under biologically reasonable conditions.  相似文献   

14.
    
Although it is well established theoretically that selective interference among mutations (Hill–Robertson interference) favours meiotic recombination, genomewide mean rates of mutation and strengths of selection appear too low to support this as the mechanism favouring recombination in nature. A possible solution to this discrepancy between theory and observation is that selection is at least intermittently very strong due to the antagonistic coevolution between a host and its parasites. The Red Queen theory posits that such coevolution generates fitness epistasis among loci, which generates negative linkage disequilibrium among beneficial mutations, which in turn favours recombination. This theory has received only limited support. However, Red Queen dynamics without epistasis may provide the ecological conditions that maintain strong and frequent selective interference in finite populations that indirectly selects for recombination. This hypothesis is developed here through the simulation of Red Queen dynamics. This approach required the development of a method to calculate the exact frequencies of multilocus haplotypes after recombination. Simulations show that recombination is favoured by the moderately weak selection of many loci involved in the interaction between a host and its parasites, which results in substitution rates that are compatible with empirical estimates. The model also reproduces the previously reported rapid increase in the rate of outcrossing in Caenorhabditis elegans coevolving with a bacterial pathogen.  相似文献   

15.
    
Asexuality has major theoretical advantages over sexual reproduction. Nevertheless, obligately asexual metazoan lineages seldom endure over evolutionary time. The Red Queen hypothesis posits that their limited capacity to generate genetic novelty leads to extermination by rapidly evolving parasites and pathogens. At first glance, rotifers of the class Bdelloidea appear to contradict this view: they have reproduced asexually for over 30 Myr without being overwhelmed by parasites. However, there are special ecological conditions under which Red Queen models can accommodate this unusual outcome. If hosts disperse rapidly within a structured metapopulation during a parasite‐free life stage, then in principle they can become spatiotemporally decoupled from coevolving antagonists, and persist without sex. Intriguingly, bdelloid rotifers form dormant propagules when desiccated, which disperse easily by wind. In previous experiments, 7 days of desiccation and wind dispersal removed a fungal parasite from populations of one bdelloid species, allowing them to disperse independently. Here, I extend this finding to two additional bdelloid species and five more fungal parasites, and demonstrate its robustness under various desiccation regimes, and in the presence of multiple parasites. Results support the hypothesis that the unusual physiology of anciently asexual bdelloid rotifers helps them escape fungal parasites in space and time. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 564–574.  相似文献   

16.
  总被引:3,自引:0,他引:3  
Sexual reproduction within natural populations of most plants and animals continues to remain an enigma in evolutionary biology. That the enigma persists is not for lack of testable hypotheses but rather because of the lack of suitable study systems in which sexual and asexual females coexist. Here we review our studies on one such organism, the freshwater snail Potamopyrgus antipodarum (Gray). We also present new data that bear on hypotheses for the maintenance of sex and its relationship to clonal diversity. We have found that sexual populations of the snail are composed of diploid females and males, while clonal populations are composed of a high diversity of triploid apomictic females. Sexual and asexual individuals coexist in stable frequencies in many ‘mixed’ populations; genetic data indicate that clones from these mixed populations originated from the local population of sexual individuals without interspecific hybridization. Field data show that clonal and sexual snails have completely overlapping life histories, but individual clonal genotypes are less variable than individuals from the sympatric sexual population. Field data also show segregation of clones among depth‐specific habitat zones within a lake, but clonal diversity remains high even within habitats. A new laboratory experiment revealed extensive clonal variation in reproductive rate, a result which suggests that clonal diversity would be low in nature without some form of frequency‐dependent selection. New results from a long‐term field study of a natural, asexual population reveal that clonal diversity remained nearly constant over a 10‐year period. Nonetheless, clonal turnover occurs, and it occurs in a manner that is consistent with parasite‐mediated, frequency‐dependent selection. Reciprocal cross‐infection experiments have further shown that parasites are more infective to sympatric host snails than to allopatric snails, and that they are also more infective to common clones than rare clones within asexual host populations. Hence we suggest that sexual reproduction in these snails may be maintained, at least in part, by locally adapted parasites. Parasite‐mediated selection possibly also contributes to the maintenance of local clonal diversity within habitats, while clonal selection may be responsible for the distribution of clones among habitats. © 2003 The Linnean Society of London. Biological Journal of the Linnean Society 2003, 79 , 165–181.  相似文献   

17.
    
Genetically specific interactions between hosts and parasites can lead to coevolutionary fluctuations in their genotype frequencies over time. Such fluctuating selection dynamics are, however, expected to occur only under specific circumstances (e.g., high fitness costs of infection to the hosts). The outcomes of host–parasite interactions are typically affected by environmental/ecological factors, which could modify coevolutionary dynamics. For instance, individual hosts are often infected with more than one parasite species and interactions between them can alter host and parasite performance. We examined the potential effects of coinfections by genetically specific (i.e., coevolving) and nonspecific (i.e., generalist) parasite species on fluctuating selection dynamics using numerical simulations. We modeled coevolution (a) when hosts are exposed to a single parasite species that must genetically match the host to infect, (b) when hosts are also exposed to a generalist parasite that increases fitness costs to the hosts, and (c) when coinfecting parasites compete for the shared host resources. Our results show that coinfections can enhance fluctuating selection dynamics when they increase fitness costs to the hosts. Under resource competition, coinfections can either enhance or suppress fluctuating selection dynamics, depending on the characteristics (i.e., fecundity, fitness costs induced to the hosts) of the interacting parasites.  相似文献   

18.
The Red Queen hypothesis is based on the assumption that parasites must genetically match their hosts to infect them successfully. If the parasites fail, they are assumed to be killed by the host's immune system. Here, we tested this using sympatric (mostly susceptible) and allopatric (mostly resistant) populations of a freshwater snail and its trematode parasite. We determined whether parasites which do not infect are either killed or passed through the host's digestive tract and remain infectious. Our results show that parasites do not get a second chance: they either infect or are killed by the host. The results suggest strong selection against parasites that are not adapted to local host genotypes.  相似文献   

19.
    
Although numerous hypotheses exist to explain the overwhelming presence of sexual reproduction across the tree of life, we still cannot explain its prevalence when considering all inherent costs involved. The Red Queen hypothesis states that sex is maintained because it can create novel genotypes with a selective advantage. This occurs when the interactions between species induce frequent environmental change. Here, we investigate whether coevolution and eco‐evolutionary feedback dynamics in a predator‐prey system allows for indirect selection and maintenance of sexual reproduction in the predator. Combining models and chemostat experiments of a rotifer‐algae system we show a continuous feedback between population and trait change along with recurrent shifts from selection by predation and competition for a limited resource. We found that a high propensity for sex was indirectly selected and was maintained in rotifer populations within environments containing these eco‐evolutionary dynamics; whereas within environments under constant conditions, predators evolved rapidly to lower levels of sex. Thus, our results indicate that the influence of eco‐evolutionary feedback dynamics on the overall evolutionary change has been underestimated.  相似文献   

20.
    
The Red Queen hypothesis (RQH) predicts that parasite‐mediated selection will maintain sexual individuals in the face of competition from asexual lineages. The prediction is that sexual individuals will be difficult targets for coevolving parasites if they give rise to more genetically diverse offspring than asexual lineages. However, increasing host genetic diversity is known to suppress parasite spread, which could provide a short‐term advantage to clonal lineages and lead to the extinction of sex. We test these ideas using a stochastic individual‐based model. We find that if parasites are readily transmissible, then sex is most likely to be maintained when host diversity is high, in agreement with the RQH. If transmission rates are lower, however, we find that sexual populations are most likely to persist for intermediate levels of diversity. Our findings thus highlight the importance of genetic diversity and its impact on epidemiological dynamics for the maintenance of sex by parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号