首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative stress responses were tested in the unicellular cyanobacterium Synechococcus PCC 7942 (R2). Cells were exposed to hydrogen peroxide, cumene hydroperoxide and high light intensities. Activities of ascorbate peroxidase and catalase were correlated with the extent and time-course of oxidative stresses. Ascorbate peroxidase was found to be the major enzyme involved in the removal of hydrogen peroxide under the tested oxidative stresses. Catalase activity was inhibited in cells treated with high H2O2 concentrations, and was not induced under photo-oxidative stress. Regeneration of ascorbate in peroxide-treated cells was found to involve mainly monodehydroascorbate reductase and to a lesser extent dehydroascorbate reductase. The induction of the antioxidative enzymes was dependent on light and was inhibited by chloramphenicol. Peroxide treatment was found to induce the synthesis of eight proteins, four of which were also induced by heat shock.Abbreviations ASC ascorbate - DHA dehydroascorbate - MDA monodehydroascorbate - GSH reduced glutathione - GSSG oxidized glutathione - ASC Per ascorbate peroxidase - DHA red. dehydroascorbate reductase - MDA red. monodehydroascorbate reductase - GSSG red. glutathione reductase - HSP heat shock proteins - PSP peroxide shock proteins - Cm chloramphenicol  相似文献   

2.
Hydrogen peroxide (H2O2) scavenging systems of spruce (Picea abies) needles were investigated in both extracts obtained from the extracellular space and extracts of total needles. As assessed by the lack of activity of symplastic marker enzymes, the extracellular washing fluid was free from intracellular contaminations. In the extracellular washing fluid ascorbate, glutathione, cysteine, and high specific activities of guaiacol peroxidases were observed. Guaiacol peroxidases in the extracellular washing fluid and needle homogenates had the same catalytic properties, i.e. temperature optimum at 50°C, pH optimum in the range of pH 5 to 6 and low affinity for guaiacol (apparent Km = 40 millimolar) and H2O2 (apparent Km = 1-3 millimolar). Needle homogenates contained ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, glutathione reductase, and catalase, but not glutathione peroxidase activity. None of these activities was detected in the extracellular washing fluid. Ascorbate and glutathione related enzymes were freeze sensitive; ascorbate peroxidase was labile in the absence of ascorbate. The significance of extracellular antioxidants for the detoxification of injurious oxygen species is discussed.  相似文献   

3.
All aerobic biological systems, including N2-fixing root nodules, are subject to O2 toxicity that results from the formation of reactive intermediates such as H2O2 and free radicals of O2. H2O2 may be removed from root nodules in a series of enzymic reactions involving ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. We confirm here the presence of these enzymes in root nodules from nine species of legumes and from Alnus rubra. Ascorbate peroxidase from soybean nodules was purified to near homogeneity. This enzyme was found to be a hemeprotein with a molecular weight of 30,000 as determined by sodium dodecyl sulfate gel electrophoresis. KCN, NaN3, CO, and C2H2 were potent inhibitors of activity. Nonphysiological reductants such as guaiacol, o-dianisidine, and pyrogallol functioned as substrates for the enzyme. No activity was detected with NAD(P)H, reduced glutathione, or urate. Ascorbate peroxidation did not follow Michaelis-Menten kinetics. The substrate concentration which resulted in a reaction rate of ½ Vmax was 70 micromolar for ascorbate and 3 micromolar for H2O2. The high affinity of ascorbate peroxidase for H2O2 indicates that this enzyme, rather than catalase, is responsible for most H2O2 removal outside of peroxisomes in root nodules.  相似文献   

4.
The effects of arsenite treatment on generation of reactive oxygen species, induction of oxidative stress, response of antioxidative system, and synthesis of phytochelatins were investigated in two indica rice (Oryza sativa L.) cvs. Malviya-36 and Pant-12 grown in sand cultures for a period of 5–20 days. Arsenite (As2O3; 25 and 50 μM) treatment resulted in increased formation of superoxide anion (O2.−), elevated levels of H2O2 and thiobarbituric acid reactive substances, showing enhanced lipid peroxidation. An enhanced level of ascorbate (AA) and glutathione (GSH) was observed irrespective of the variation in the level of dehydroascorbate (DHA) and oxidized glutathione (GSSG) which in turn influenced redox ratios AA/DHA and GSH/GSSG. With progressive arsenite treatment, synthesis of total acid soluble thiols and phytochelatins (PC) increased in the seedlings. Among antioxidative enzymes, the activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), total ascorbate peroxidase (APX, EC 1.11.1.11), chloroplastic ascorbate peroxidase, guaiacol peroxidase (EC 1.11.1.7), monodehydroascorbate reductase (EC 1.6.5.4), and glutathione reductase (EC 1.6.4.2) increased in arsenite treated seedlings, while dehyroascorbate reductase (EC 1.8.5.1) activity declined initially during 5–10 days and increased thereafter. Results suggest that arsenite treatment causes oxidative stress in rice seedlings, increases the levels of many enzymatic and non-enzymatic antioxidants, and induces synthesis of thiols and PCs, which may serve as important components in mitigating arsenite-induced oxidative damage.  相似文献   

5.
In order to characterise the sensitivity of antioxidative systems to temperature-induced oxidative stress, two species (Coleus blumei and Fagus sylvatica, L.) representative of environments with contrasting temperature characteristics have been exposed to low or high temperatures of 10 or 35 °C, respectively. Beech leaves were harvested in light and darkness. Coleus leaves were separated into green and white leaf tissue. The thermal dependencies of the activities of protective enzymes and chlorophyll fluorescence over a temperature range from 10 to 35 °C were determined. Ascorbate peroxidase activities were activated at low temperatures in vitro and, thereby, may provide an instantaneous protection against H2O2 accumulation which is faster than de novo synthesis. Monodehydroascorbate radical reductase was apparently not involved in short-term acclimation to low or high temperature. After short-term acclimation to low temperature, glutathione reductase and glutathione were more diminished in Coleus than in beech. Both species contained higher concentrations of ascorbate and glutathione at high temperatures than at low temperatures whereas glutathione reductase activity increased. Ascorbate peroxidase activity from Coleus leaves, though detectable under standard assay conditions (25 °C), failed at 35 °C in vitro. The results suggest that the higher temperature susceptibility of Coleus than that of beech was associated with a differential loss in glutathione reductase/glutathione at low temperature and an inhibition of ascorbate peroxidase at high temperature. Since the thermal dependencies of antioxidative enzymes were significantly affected by the preceding environmental conditions, the relative enzymatic activities determined under standard assay conditions may not be representative of enzymatic activities in foliage exposed to varying environmental temperatures.  相似文献   

6.
Andrea Polle 《Planta》1996,198(2):253-262
It is generally believed that a restricted export of carbohydrates from source leaves causes oxidative stress because of an enhanced utilisation of O2 instead of NADP+ as electron acceptor in photosynthesis. To test this hypothesis, developmental changes of antioxidative systems were investigated in wild-type and transgenic tobacco (Nicotiana tabacum L.) suffering from disturbed sink-source relations by expression of yeast invertase in the apoplastic space. Young expanding leaves of the wild type contained higher activities of Superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11), catalase (EC 1.11.1.6), dehydroascorbate reductase (EC 1.8.5.1), glutathione reductase (EC 1.6.4.2) and a higher glutathione content than mature source leaves. The activity of monodehydroascorbate-radical reductase (EC 1.1.5.4) and the ascorbate content remained unaffected by the developmental stage in the wild type. In young expanding leaves of the transgenic plants the capacity of the antioxidative systems was similar to or higher than in corresponding leaves from the wild type. Source leaves of transgenic tobacco with an increased carbohydrate content showed a small chlorophyll loss, an increased malondialdehyde content, a selective loss of the activities of Cu/Zn-superoxide dismutase isoenzymes and a fourfold decrease in ascorbate compared with the wild type. There was no evidence that the protection from H2O2 was insufficient since source leaves of transgenic tobacco contained increased activities of catalase, ascorbate peroxidase, and monodehydroascorbate-radical reductase and an increased ascorbate-to-dehydroascorbate ratio compared with source leaves of the wild type. In severely chlorotic leaf sections of the transgenic plants, most components of the antioxidative system were lower than in green leaf sections, but the ascorbate-to-dehydroascorbate ratio was increased. These results suggest that carbohydrate-accumulating cells have an increased availability of reductant, which can increase the degree of reduction of the ascorbate system via glutathione-related systems or via the activity of monodehydroascorbate-radical reductase. At the same time, transgenic tobacco leaves seem to suffer from an increased oxidative stress, presumably as a result of a decreased consumption of O 2 .- by Cu/Zn-superoxide dismutases in the chloroplasts. There was no evidence that carbohydrate-accumulating leaves acclimated to enhanced O 2 .- production rates in the chloroplasts.  相似文献   

7.
When segments of rye leaves (Secale cereale L.) grown at 90 μmol m?2 s?1 PAR were incubated at a higher photon flux of 400–500 μ mol m?2 s?1 PAR in the presence of 0.2-0.6 M NaCl, a preferential loss of catalase activity was induced. The extent of this decline increased with the concentration of NaCl. In addition, the accumulation of alternative antioxidative components, such as ascorbate, glutathione, glutathione reductase, or peroxidase, was inhibited. The total content of H2O2 was, however, lower in catalase-depleted than in untreated control leaves. The occurrence of strong oxidative stress in NaCl-treated leaves was indicated by marked declines in the ratios of reduced to oxidized ascorbate and glutathione and by the degradation of chlorophyll in light. The specific elimination of catalase activity by the inhibitor aminotriazole was also accompanied by a rapid decline in the ratio of reduced to oxidized glutathione but other symptoms of oxidative stress were much less severe than in the presence of NaCl. However, all symptoms of photooxidative damage seen in NaCl-treated leaves were closely mimicked by treatment with the translation inhibitor, cycloheximlde, in light. The results suggest that NaCl-induced oxidative damage in light was predominantly mediated by the inhibition of protein synthesis. By this inhibition the resynthesis of catalase, which has a high turnover in light, was blocked and the leaves were thus depleted of catalase activity and, in addition, the intensification of alternative antioxidative systems was also prevented.  相似文献   

8.
Indian mustard (Brassica juncea L. cv. Vitasso) plants exposed to 10, 30, 50 and 100 μM of Cd for 5 d in hydroponic culture were analysed with reference to the distribution of Cd2+, the accumulation of biomass and antioxidants and antioxidative enzymes in leaves. Cd induced a decrease in plant biomass. The maximum accumulation of Cd occurred in roots followed by stems and leaves. Cd induced a decrease in catalase (CAT) and guiacol peroxidase (GPX) activities but an increase in ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) activities. Enhancement in dehydroascorbate reductase (DHAR) activity was also at 10 μM Cd. Glutathione reductase (GR) activity showed pronounced stimulation after all treatments, but glutathione S-transferase (GST) and glutathione peroxidase (GPOX) activities decreased. The effectiveness of ascorbate-glutathione cycle (AGC) was determined by the ratio of ascorbate to H2O2. This ratio decreased in the Cd-treated leaves which indicated that the cycle was disordered.  相似文献   

9.
An ascorbate-deficient semi-dwarf mutant asfL-1 was detected in 250 Gy γ-ray treated grass pea (Lathyrus sativus L.) cv. BioR-231. The mutant contained only 42 % of leaf and 20 % of root ascorbate content of mother control (MC). I investigated the possible causes of ascorbate deficiency and its effect on growth and antioxidant defense in control and 150 mM NaCl-treated seedling after 60 d growth period. Ascorbate deficiency was due to significant reduction in activities of monodehydroascorbate reductase and dehydroascorbate reductase as well as increase in ascorbate oxidase, leading to considerable decrease in redox state. Despite low ascorbate pool and decrease in ascorbate peroxidase activity, shoot and root biomass production in asfL-1 mutant were similar to MC plants, even at NaCl treatment. High accumulation of glutathione (GSH) coupled with high activities of GSH reductase, catalase, GSH peroxidase and peroxidase in both tissues of the mutant permitted efficient recycling of GSH and scavenging of H2O2 through well integrated catalase/peroxidase system, despite high superoxide dismutase activity under NaCl treatment. The collapse of this system led to inhibition of growth in NaCl-treated mother plants. Together, the results suggested that asfL-1 plants undertook a major reshuffle in its antioxidant defense machinery, which effectively counterbalanced the negative impact of ascorbate deficiency and remained unperturbed by NaCl treatment to maintain normal growth and biomass production.  相似文献   

10.
In the present study, we have investigated the effects of nitric oxide (NO) on alleviating manganese (Mn)-induced oxidative stress in rice leaves. Exogenous MnCl2 treatment to excised rice leaves for 24 and 48 h resulted in increased production of H2O2 and lipid peroxides, decline in the levels of antioxidants, glutathione and ascorbic acid, and increased activities of antioxidative enzymes, superoxide dismutase, guaiacol peroxidase, catalase, ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. Treatment of rice leaves with 100 μM sodium nitroprusside (SNP), a NO donor, was effective in reducing Mn-induced increased levels of H2O2, lipid peroxides and increased activities of antioxidative enzymes. The levels of reduced ascorbate and glutathione were considerably recovered due to SNP treatment. The effect of SNP was reversed by the addition of NO scavenger, 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (c-PTIO) suggesting that ameliorating effect of SNP is due to release of NO. The results indicate that MnCl2 induces oxidative stress in excised rice leaves, lowers the levels of reduced ascorbate and glutathione, and elevates activities of the key antioxidative enzymes. NO appears to provide a protection to the rice leaves against Mn-induced oxidative stress and that exogenous NO application could be advantageous in combating the deleterious effects of Mn-toxicity in rice plants.  相似文献   

11.
Hydroperoxide metabolism in cyanobacteria   总被引:9,自引:0,他引:9  
The enzymes involved in antioxidative activity and the cellular content of the antioxidants glutathione and ascorbate in the cyanobacteria Nostoc muscorum 7119 and Synechococcus 6311 have been examined for their roles in hydroperoxide removal. High activities of ascorbate peroxidase and catalase were found in vegetative cells of both species and in the heterocysts of N. muscorum. The affinity of ascorbate peroxidase for H2O2 was 15- to 25-fold higher than that of catalase. Increased activity of ascorbate peroxidase was observed in N. muscorum when H2O2 production was enhanced by photorespiration. Catalase activity was decreased in dilute cultures whereas ascorbate peroxidase activity increased. Ascorbate peroxidase activity also increased when the CO2 concentration was reduced. Ascorbate peroxidase appears to be a key enzyme in a cascade of reactions regenerating antioxidants. Dehydroascorbate reductase was found to regenerate ascorbate, and glutathione reductase recycled glutathione. In vegetative cells glutathione was present in high amounts (2-4 mM) whereas the ascorbate content was almost 100-fold lower (20-100 microM). Glutathione peroxidase was not detected in either cyanobacterium. It is concluded from the high activity of ascorbate peroxidase activity and the levels of antioxidants found that this enzyme can effectively remove low concentrations of peroxides. Catalase may remove H2O2 produced under photooxidative conditions where the peroxide concentration is higher.  相似文献   

12.
Hydrogen peroxide is an important signalling molecule, involved in regulation of numerous metabolic processes in plants. The most important sources of H2O2 in photosynthetically active cells are chloroplasts and peroxisomes. Here we employed variegated Pelargonium zonale to characterise and compare enzymatic and non‐enzymatic components of the antioxidative system in autotrophic and heterotrophic leaf tissues at (sub)cellular level under optimal growth conditions. The results revealed that both leaf tissues had specific strategies to regulate H2O2 levels. In photosynthetic cells, the redox regulatory system was based on ascorbate, and on the activities of thylakoid‐bound ascorbate peroxidase (tAPX) and catalase. In this leaf tissue, ascorbate was predominantly localised in the nucleus, peroxisomes, plastids and mitochondria. On the other hand, non‐photosynthetic cells contained higher glutathione content, mostly located in mitochondria. The enzymatic antioxidative system in non‐photosynthetic cells relied on the ascorbate–glutathione cycle and both Mn and Cu/Zn superoxide dismutase. Interestingly, higher content of ascorbate and glutathione, and higher activities of APX in the cytosol of non‐photosynthetic leaf cells compared to the photosynthetic ones, suggest the importance of this compartment in H2O2 regulation. Together, these results imply different regulation of processes linked with H2O2 signalling at subcellular level. Thus, we propose green‐white variegated leaves as an excellent system for examination of redox signal transduction and redox communication between two cell types, autotrophic and heterotrophic, within the same organ.  相似文献   

13.
When rice seedlings grown for 10 and 20 days were subjected to in vitro drought stress of −0.5 and −2.0 MPa for 24 h, an increase in the concentration of superoxide anion (O2.−), increased level of lipid peroxidation and a decrease in the concentration of total soluble protein and thiols was observed in stressed seedlings compared to controls. The concentration of H2O2 as well as ascorbic acid declined with imposition of drought stress, however glutathione (GSH) concentration declined only under severe drought stress. The activities of total superoxide dismutases (SODs) as well as ascorbate peroxidase (APX) showed consistent increases with increasing levels of drought stress, however catalase activity declined. Mild drought stressed plants had higher guaiacol peroxidase (GPX) and chloroplastic ascorbate peroxidase (c-APX) activity than control grown plants but the activity declined at the higher level of drought stress. The activities of enzymes involved in regeneration of ascorbate i.e. monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) were higher in drought stressed plants compared to controls. Results suggest that drought stress induces oxidative stress in rice plants and that besides SOD, the enzymes of ascorbate-glutathione cycle, which have not been studied in detail earlier under stressful conditions, appear to function as important component of antioxidative defense system under drought stress.  相似文献   

14.
We compare cadmium and copper induced oxidative stress in tomato leaves and the antioxidative enzyme response during a time course of 96 h. Plants were subjected to 25 μM of CdCl2 or CuSO4 and malondialdehyde (MDA) level and activity of guaiacol peroxidase, superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase were determined. The results showed that there was an early increase in the MDA level and in the guaiacol peroxidase activity more pronounced with copper exposure during almost all the time course of the experiment. The activity of superoxide dismutase and catalase was induced very early after cadmium and copper treatment, reached a maximal value after 12 h and then declined but it remained always slightly higher than the control at the end of the experiment. Ascorbate peroxidase activity pathway was similar to superoxide dismutase or catalase with a maximal activity after 48 h of heavy metal exposure. Induction of glutathione reductase activity observed only under copper exposure is maintained during almost all the experimental time. The antioxidative activity developed by tomato leaves is more induced by copper treatment. This can be related to the ability of this metal to induce more than cadmium an accumulation of reactive oxygen species (ROS) at the cellular level. Decline in the antioxidative enzymes activity at the end of the experiment can be a consequence of cadmium- and copper-inducing a further ROS formation that might affect enzymes activity.  相似文献   

15.
The effect of 100 μM cobalt (Co) on plant growth and on biochemical parameters indicative of oxidative stress was investigated in a hydroponic experiment. The responses of antioxidant enzymes and compounds of the ascorbate–glutathione (AsA–GSH) cycle were also assessed on the hyperaccumulating plant, Indian mustard (Brasssica juncea L.). The effect of excess Co was associated with a significant increase in the levels of proline, carbonylated protein, malondialdehyde, superoxide anion (O 2 ·? ), and hydrogen peroxide (H2O2), and resulted in the accumulation of Co. Co toxicity was associated with an increase in the volume of palisade and spongy cells, and a reduction in the number of chloroplasts per cell. Co-induced cell death was characterized by DNA fragmentation and a 36 kDa DNase activity. Despite decreased catalase activity, peroxidase, superoxide dismutase, and AsA–GSH cycle-related enzymes including monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase exhibited remarkable induction under Co stress. Furthermore, the contents of reduced and oxidized forms of ascorbate and glutathione were significantly increased with Co supplementation. Co treatment led to the activation of 44 and 46 kDa mitogen-activated protein kinase (MAPK) and indicated the role of the MAPK cascade in transducing Co-mediated signals. The present results suggest that excess Co reduces seedling growth by inducing oxidative stress related to lipid peroxidation and overproduction of O 2 ·? and H2O2. The stimulated activities of antioxidative enzymes and induction of MAPKs did not reverse the oxidative stress caused by Co-induced reactive oxygen species generation in Indian mustard seedlings.  相似文献   

16.
《Free radical research》2013,47(3):154-163
Abstract

Pharmacological ascorbate, via its oxidation, has been proposed as a pro-drug for the delivery of H2O2 to tumors. Pharmacological ascorbate decreases clonogenic survival of pancreatic cancer cells, which can be reversed by treatment with scavengers of H2O2. The goal of this study was to determine if inhibitors of intracellular hydroperoxide detoxification could enhance the cytotoxic effects of ascorbate. Human pancreatic cancer cells were treated with ascorbate alone or in combination with inhibitors of hydroperoxide removal including the glutathione disulfide reductase inhibitor 1,3 bis (2-chloroethyl)-1-nitrosurea (BCNU), siRNA targeted to glutathione disulfide reductase (siGR), and 2-deoxy-D-glucose (2DG), which inhibits glucose metabolism. Changes in the intracellular concentration of H2O2 were determined by analysis of the rate of aminotriazole-mediated inactivation of endogenous catalase activity. Pharmacological ascorbate increased intracellular H2O2 and depleted intracellular glutathione. When inhibitors of H2O2 metabolism were combined with pharmacological ascorbate the increase in intracellular H2O2 was amplified and cytotoxicity was enhanced. We conclude that inclusion of agents that inhibit cellular peroxide removal produced by pharmacological ascorbate leads to changes in the intracellular redox state resulting in enhanced cytotoxicity.  相似文献   

17.
The potential involvement of activated oxygen species by submergence stress was studied in two Malaysian rice cultivars, MR219-4 and MR219-9, and cultivar FR13A that is known to be tolerant to submergence. Seedlings of these three rice cultivars were subjected to different submergence periods (4, 8, and 12 days). Under 8 days of complete submergence, FR13A cultivar showed higher lipid peroxidation in terms of malondialdehyde level and activities of antioxidative enzymes, superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) when compared to the MR219-4 and MR219-9 cultivars. MR219-9 showed higher SOD, APX, and GR activities after 12 days of submergence. The levels of SOD activity indicated that detoxification of O2·− to H2O2 was maintained at a stable level throughout the submergence stress until up to 8 days and increased rapidly at 12 days of submergence. The results indicated that tolerance to submergence in rice is associated until 8 days submergence for MR219-4 and FR13A cultivars. These findings suggested that tolerance to submergence stress in rice might be proven by increased the capacity of antioxidative system. In addition, CAT activity has much higher affinity for scavenges H2O2 than APX. Therefore, ascorbate glutathione cycle might be more efficient to scavenge H2O2.  相似文献   

18.
In order to better understand the role of cold acclimation in alleviating freezing injury, two barley cultivars with different cold tolerance, i.e. a sensitive cv. Chumai 1 and a tolerant cv. Mo 103, were used. The freezing treatment increased leaf soluble protein content more in the tolerant cultivar than in the sensitive one. Cold acclimation increased H2O2 content of the two cultivars during freezing treatment, especially in Mo 103. Glutathione and ascorbate contents during freezing and recovery were significantly higher in cold-acclimated plants than in non-acclimated ones. Activities of peroxidase, ascorbate peroxidase and glutathione reductase were also higher in cold-acclimated plants than non-acclimated plants during freezing treatment. However, there was no significant difference between cold-acclimated plants and the control plants in catalase activity. It may be assumed that cold acclimation induced H2O2 production, which in turn enhanced activities of antioxidative enzymes and synthesis of antioxidants, resulting in alleviation of oxidative stress caused by freezing.  相似文献   

19.
An experiment was conducted to evaluate the influence of Glomus intraradices colonization on the activity of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), peroxidase (PX), ascorbate peroxidase (APX), and glutathione reductase (GR)] and the accumulation of nonenzymatic antioxidants (ascorbic acid, α-tocopherol, glutathione, and carotenoids) in roots and leaves of fenugreek plants subjected to varying degrees of salinity (0, 50, 100, and 200 mM NaCl) at two time intervals (1 and 14 days after saline treatment, DAT). The antioxidative capacity was correlated with oxidative damage in the same tissue. Under salt stress, lipid peroxidation and H2O2 concentration increased with increasing severity and duration of salt stress (DoS). However, the extent of oxidative damage in mycorrhizal plants was less compared to nonmycorrhizal plants. The study reveals that mycorrhiza-mediated attenuation of oxidative stress in fenugreek plants is due to enhanced activity of antioxidant enzymes and higher concentrations of antioxidant molecules. However, the significant effect of G. intraradices colonization on individual antioxidant molecules and enzymes varied with plant tissue, salinity level, and DoS. The significant effect of G. intraradices colonization on antioxidative enzymes was more evident at 1DAT in both leaves and roots, while the concentrations of antioxidant molecules were significantly influenced at 14DAT. It is proposed that AM symbiosis can improve antioxidative defense systems of plants through higher SOD activity in M plants, facilitating rapid dismutation of O2 - to H2O2, and subsequent prevention of H2O2 build-up by higher activities of CAT, APX, and PX. The potential of G. intraradices to ameliorate oxidative stress generated in fenugreek plants by salinity was more evident at higher intensities of salt stress.  相似文献   

20.
Antioxidant defences of the apoplast   总被引:1,自引:0,他引:1  
Summary The apoplast of barley and oat leaves contained superoxide dismutase (SOD), catalase, ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase activities. The activities of these enzymes in the apoplastic extracts were greatly modified 24 h after inoculation with the biotrophic fungal pathogenBlumeria graminis. The quantum efficiency of photosystem II, which is related to photosynthetic electron transport flux, was comparable in inoculated and healthy leaves during this period. Apoplastic soluble acid invertase activity was also modified in inoculated leaves. Inoculation-dependent increases in apoplastic SOD activity were observed in all lines. Major bands of SOD activity, observed in apoplastic protein extracts by activity staining of gels following isoelectric focusing, were similar to those observed in whole leaves but two additional minor bands were found in the apoplastic fraction. The apoplastic extracts contained substantial amounts of dehydroascorbate (DHA) but little or no glutathione (GSH). Biotic stress decreased apoplastic ascorbate and DHA but increased apoplastic GSH in resistant lines. The antioxidant cycle enzymes may function to remove apoplastic H2O2 with ascorbate and GSH derived from the cytoplasm. DHA and oxidized glutathione may be reduced in the apoplast or returned to the cytosol for rereduction.Abbreviations AA reduced ascorbate - APX ascorbate peroxidase - DHA dehydroascorbate (oxidised ascorbate) - DHAR dehydroascorbate reductase - G6PDH glucose-6-phosphate dehydrogenase - GSH reduced glutathione - GSSG glutathione disulphide - GR glutathione reductase - MDHA monodehydroascorbate - MDHAR monodehydroascorbate reductase - SOD superoxide dismutase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号