共查询到20条相似文献,搜索用时 0 毫秒
1.
Caroline Capillon Anne Atlan 《Evolution; international journal of organic evolution》1999,53(2):506-517
Sex-ratio drive is a particular case of meiotic drive, described in several Drosophila species, that causes males bearing driving X chromosome to produce a large excess of females in their progeny. In Drosophila simulans, driving X chromosomes and resistance factors located on the Y chromosome and on the autosomes have been previously reported. In this paper, we report the study of the dynamics of sex-ratio factors in experimental populations. We followed the evolution in frequency of driving X chromosomes in the absence of resistance factors and the evolution of resistance factors in the presence of driving X chromosomes. The driving X chromosome was lost, contrarily to theoretical expectations that predict its rapid invasion. Autosomal resistances increased in frequency, and resistant Y chromosomes invaded the population very quickly, as predicted by theoretical models. Fitness measurements showed that the loss of the driving X chromosome was due to a strong deleterious effect that was expressed only when distorting males were in competition with standard males. However, the spread of autosomal resistances reduced this deleterious effect. Implications for the maintenance of polymorphism in natural populations are discussed. 相似文献
2.
Selective sweeps in a 2-locus model for sex-ratio meiotic drive in Drosophila simulans 总被引:1,自引:0,他引:1
Derome N Baudry E Ogereau D Veuille M Montchamp-Moreau C 《Molecular biology and evolution》2008,25(2):409-416
A way to identify loci subject to positive selection is to detect the signature of selective sweeps in given chromosomal regions. It is revealed by the departure of DNA polymorphism patterns from the neutral equilibrium predicted by coalescent theory. We surveyed DNA sequence variation in a region formerly identified as causing "sex-ratio" meiotic drive in Drosophila simulans. We found evidence that this system evolved by positive selection at 2 neighboring loci, which thus appear to be required simultaneously for meiotic drive to occur. The 2 regions are approximately 150-kb distant, corresponding to a genetic distance of 0.1 cM. The presumably large transmission advantage of chromosomes carrying meiotic drive alleles at both loci has not erased the individual signature of selection at each locus. This chromosome fragment combines a high level of linkage disequilibrium between the 2 critical regions with a high recombination rate. As a result, 2 characteristic traits of selective sweeps--the reduction of variation and the departure from selective neutrality in haplotype tests--show a bimodal pattern. Linkage disequilibrium level indicates that, in the natural population from Madagascar used in this study, the selective sweep may be as recent as 100 years. 相似文献
3.
John Jaenike 《Evolution; international journal of organic evolution》1999,53(1):164-174
Like several other species of Drosophila, D. quinaria is polymorphic for X-chromosome meiotic drive; matings involving males that carry a “sex-ratio” X chromosome (XSR) result in the production of strongly female-biased offspring sex ratios (Jaenike 1996). A survey of isofemale lines of D. quinaria from several populations reveals that there is genetic variation for partial suppression of this meiotic drive. Crossing experiments show that there is Y-linked, and probably autosomal, variation for suppression of drive. Y-linked suppressors of X-chromosome drive have now been described in several species of Diptera. I develop a simple model for the maintenance of Y-chromosome polymorphism in species polymorphic for X-linked meiotic drive. One interesting feature of this model is that, if there is a stable Y-chromosome polymorphism, then the equilibrium frequency of the standard and sex-ratio X chromosomes is determined solely by Y-chromosome parameters, not by the fitness effects of the different X chromosomes on their carriers. This model suggests that Y-chromosome polymorphism may be easier to maintain than previously thought, and I hypothesize that karyotypic variation in Y chromosomes will be found to be associated with suppression of sex-ratio meiotic drive in other species of Drosophila. 相似文献
4.
Fitness traits of three Drosophila simulans strains infected by endocellular bacteria belonging to the genus Wolbachia have been compared with those of replicate stocks previously cured from the infection by an antibiotic treatment. The traits measured were development time, egg-to-adult viability, egg hatch, productivity, fecundity, and the number of functional ovarioles. Individuals of the first strain were bi-infected by two Wolbachia variants, wHa and wNo. The second strain was infected by wHa, the third one by wNo. The Wolbachia studied here cause cytoplasmic incompatibility (CI), a high embryonic mortality (70% to > 90%) when an infected male is crossed with an uninfected female. Three generations after antibiotic treatment, we observed in all strains a significant drop in productivity in the cured stocks. This drop was not due to antibiotic toxicity and was associated with the loss of the Wolbachia. However the effect had disappeared in two of the three strains five generations after treatment, and could not be found in the third strain in a third measurement carried out 14 generations after treatment. The temporary nature of the productivity difference indicates that Wolbachia do not enhance productivity in infected strains. On the other hand, in all traits measured, our results show the absence of any negative effects of the Wolbachia on their host. This could be explained when considering Wolbachia evolution, as maternally transmitted parasites bear a strong selective pressure not to harm their female host. However, CI would allow the bacteria to be maintained even when harming the female. The apparent absence of deleterious effects caused by these Wolbachia might result from a trade-off, where a relatively low bacteria density would advantage the Wolbachia by suppressing any deleterious effects on the female host, at the cost of a weaker maternal transmission rate of the infection. 相似文献
5.
Montchamp-Moreau C Ginhoux V Atlan A 《Evolution; international journal of organic evolution》2001,55(4):728-737
The sex-ratio trait, known in several species of Drosophila including D. simulans, results from meiotic drive of the X chromosome against the Y. Males that carry a sex-ratio X chromosome produce strongly female-biased progeny. In D. simulans, drive suppressors have evolved on the Y chromosome and on the autosomes. Both the frequency of sex-ratio X and the strength of the total drive suppression (Y-linked and autosomal) vary widely among geographic populations of this worldwide species. We have investigated the pattern of Y-linked drive suppression in six natural populations representative of this variability. Y-linked suppressors were found to be a regular component of the suppression, with large differences between populations in the mean level of suppression. These variations did not correspond to differences in frequency of discrete types of Y chromosomes, but to a more or less wide continuum of phenotypes, from nonsuppressor to partial or total suppressor. We concluded that a large diversity of Y-linked suppressor alleles exists in D. simulans and that some populations are highly polymorphic. Our results support the hypothesis that a Y-chromosome polymorphism can be easily maintained by a balance between meiotic drive and the cost of drive suppression. 相似文献
6.
7.
Y. Chu E. Yang J. M. Schinaman J. S. Chahda R. Sousa‐Neves 《Evolution; international journal of organic evolution》2013,67(8):2335-2347
Courtship is an elaborate behavior that conveys information about the identity of animal species and suitability of individual males as mates. In Drosophila, there is extensive evidence that females are capable of evaluating and comparing male courtships, and accepting or rejecting males as mates. These relatively simple responses minimize random sexual encounters involving subpar conspecific males and heterospecific males, and over generations can potentially select novel physical and behavioral traits. Despite its evolutionary and behavioral significance, little is still known about the genes involved in mating choice and how choices for novel males and females arise during evolution. Drosophila simulans and Drosophila sechellia are two recently diverged species of Drosophila in which females have a preference for conspecific males. Here we analyzed a total of 1748 F2 hybrid females between these two species and found a small number of dominant genes controlling the preference for D. simulans males. We also mapped two redundant X‐linked loci of mating choice, Macho‐XA and Macho‐XB, and show that neither one is required for female attractiveness. Together, our results reveal part of the genetic architecture that allows D. simulans females to recognize, mate, and successfully generate progenies with D. simulans males. 相似文献
8.
Philip Welbergen Folchert R. van Dijken Wim Scharloo Wolfgang Khler 《Evolution; international journal of organic evolution》1992,46(5):1385-1398
The genetic analysis of sexual isolation between the closely-related species Drosophila melanogaster and Drosophila simulans involved two experiments with no-choice tests. The efficiency of sexual isolation was measured by the frequency of courtship initiation and interspecific mating. We first surveyed the variation in sexual isolation between D. melanogaster strains and D. simulans strains of different geographic origin. Then, to investigate variation in sexual isolation within strains, we made F1 diallel sets of reciprocal crosses within strains of D. melanogaster and D. simulans. The F1 diallel progeny of one sex were paired with the opposite sex of the other species. The first experiment showed significant differences in the frequency of interspecific mating between geographic strains. There were more matings between D. simulans females and D. melanogaster males than between D. melanogaster females and D. simulans males. The second experiment uncovered that the male genotypes in the D. melanogaster diallel significantly differed in interspecific mating frequency, but not in courtship initiation frequency. The female genotypes in the D. simulans diallel were not significantly different in courtship initiation and interspecific mating frequency. Genetic analysis reveals that in D. melanogaster males sexual isolation was not affected by either maternal cytoplasmic effects, sex-linked effects, or epistatic interaction. The main genetic components were directional dominance and overdominance. The F1 males achieved more matings with D. simulans females than the inbred males. The genetic architecture of sexual isolation in D. melanogaster males argues for a history of weak or no selection for lower interspecific mating propensity. The behavioral causes of variation in sexual isolation between the two species are discussed. 相似文献
9.
Jerry A. Coyne 《Evolution; international journal of organic evolution》1993,47(3):778-788
Matings between Drosophila simulans females and males of the sibling species D. mauritiana are of abnormally short duration. These rapid matings interrupt the transfer of sperm, leading to substantial reproductive isolation in interspecific as compared to intraspecific copulations. Genetic analysis of this behavior shows that it is influenced much more by the male than the female genotype, with genes from D. simulans being dominant. In males, shortened copulation is caused by interspecific divergence at a minimum of three loci, with one gene on each of the major chromosomes. This is an underestimate of the true number of loci affecting the trait, which could be much larger. The two autosomes have the largest effect, whereas that of the X chromosome is much smaller. The genetic architecture of copulation duration and the larger effect of male than female genotype suggest that females can detect and discriminate against differences in male genitalia. 相似文献
10.
Adam K. Chippindale Terence J. F. Chu Michael R. Rose 《Evolution; international journal of organic evolution》1996,50(2):753-766
The measurement of trade-offs may be complicated when selection exploits multiple avenues of adaptation or multiple life-cycle stages. We surveyed 10 populations of Drosophila melanogaster selected for increased resistance to starvation for 60 generations, their paired controls, and their mutual ancestors (a total of 30 outbred populations) for evidence of physiological and life-history trade-offs that span life-cycle stages. The directly selected lines showed an impressive response to starvation selection, with mature adult females resisting starvation death 4–6 times longer than unselected controls or ancestors—up to a maximum of almost 20 days. Starvation-selected flies are already 80% more resistant to starvation death than their controls immediately upon eclosion, suggesting that a significant portion of their selection response was owing to preadult growth and acquisition of metabolites relevant to the stress. These same lines exhibited significantly longer development and lower viability in the larval and pupal stages. Weight and lipid measurements on one of the starvation-selected treatments (SB1–5), its control populations (CB1–5), and their ancestor populations (B1–5) revealed three important findings. First, starvation resistance and lipid content were linearly correlated; second, larval lipid acquisition played a major role in the evolution of adult starvation resistance; finally, increased larval growth rate and lipid acquisition had a fitness cost exacted in reduced viability and slower development. This study implicates multiple life-cycle stages in the response to selection for the stress resistance of only one stage. Our starvation-selected populations illustrate a case that may be common in nature. Patterns of genetic correlation may prove misleading unless multiple pleiotropic interconnections are resolved. 相似文献
11.
Andrew T. Beckenbach 《Evolution; international journal of organic evolution》1996,50(2):787-794
“Sex-ratio” (SR) is a naturally occurring X-linked meiotic drive system, where the SR-X chromosome is transmitted to nearly all progeny of SR males. It occurs at frequencies of up to 25% in some populations of Drosophila pseudoobscura. Because of the twofold drive advantage, SR should rapidly fix in populations, causing the extinction of the species, unless opposed by strong selection. I examine several of the adult components of fitness, including the frequencies of all genotypic mating combinations, fertilities, and fecundities of flies from two populations in southeastern Arizona. Significant reduction of fecundity of SR/SR females was observed in the Tucson population. No evidence was found for either lower fertility or reduced mating success of SR males, relative to standard males. Most selection opposing SR appears to be operating at the larval stages in nature. 相似文献
12.
Adam K. Chippindale Allen G. Gibbs Mani Sheik Kandice J. Yee Minou Djawdan Timothy J. Bradley Michael R. Rose 《Evolution; international journal of organic evolution》1998,52(5):1342-1352
Resistance to environmental stress is one of the most important forces molding the distribution and abundance of species. We investigated the evolution of desiccation stress resistance using 20 outbred Drosophila melanogaster populations directly selected in the laboratory for adult desiccation resistance (D), postponed senescence (O), and their respective controls (C and B). Both aging and desiccation selection increased desiccation resistance relative to their controls, creating a spectrum of desiccation resistance levels across selection treatments. We employed an integrative approach, merging data on the life histories of these populations with a detailed physiology of water balance. The physiological basis of desiccation resistance may be mechanisms enhancing either resource conservation or resource acquisition and allocation. Desiccation-resistant populations had increased water and carbohydrate stores, and showed age-specific patterns of desiccation resistance consistent with the resource accumulation mechanism. A significant proportion of the resources relevant to resistance of the stress were accumulated in the larval stage. Males and females of desiccation-selected lines exhibited distinctly different patterns of desiccation resistance and resource acquisition, in a manner suggesting intersexual antagonism in the evolution of stress resistance. Preadult viability of stress-selected populations was lower than that of controls, and development was slowed. Our results suggest that there is a cost to preadult resource acquisition, pointing out a complex trade-off architecture involving characters distributed across distinct life-cycle stages. 相似文献
13.
14.
Aurora García-Dorado 《Evolution; international journal of organic evolution》1997,51(4):1130-1139
The empirical distribution of the mean viability of mutation accumulation lines, obtained from three published experiments, was analyzed using minimum-distance estimation. In two cases (Mukai et al. 1972; Ohnishi 1977), mutations were allowed to accumulate in copies of chromosome II protected from natural selection and recombination. In the other one (Fernández and López-Fanjul 1996), they accumulated in inbred lines derived from an isogenic stock. In contrast with currently accepted hypotheses, we consistently estimated low (about 0.01) genomic viability mutation rates, λ, and a small kurtosis of the distribution of mutational effects on viability (a) in the three datasets. Minimum-distance estimates of the per-generation mean viability change due to mutation (λE[a]) were also obtained. These were very similar for both chromosomal datasets, their absolute values being about five times smaller than estimates obtained from the observed change in mean viability during the mutation process. It must be noted that, in both experiments, viability was measured relative to the Cy chromosome of a Cy/Pm stock. Thus, an unnoticed viability increase in this Cy chromosome may have resulted in overestimation of the mean viability reduction in the lines. In parallel, minimum-distance estimation of λE(a) from inbred lines data (where the selective pressure during the accumulation process was larger) was even somewhat smaller, in absolute value, and very close to the estimate obtained by comparing the mean viability of the lines with that of the control isogenic line. The evolutionary importance of these results, as well as their relevance to the solution of the mutational load paradox, is discussed. 相似文献
15.
Daniel R. Matute Alexandra Harris 《Evolution; international journal of organic evolution》2013,67(8):2451-2460
Drosophila yakuba and D. santomea are sister species that differ in their levels of abdominal pigmentation; D. yakuba shows heavily pigmented posterior abdominal segments in both sexes, whereas D. santomea lacks dark pigment anywhere on its body. Using naturally collected lines, we demonstrate the existence of altitudinal variation in abdominal pigmentation in D. yakuba but not in D. santomea. We use the variation in pigmentation within D. yakuba and two body‐color mutants in D. yakuba to elucidate selective advantage of differences in pigmentation. Our results indicate that although differences in abdominal pigmentation have no effect on desiccation resistance, lighter pigmentation confers ultraviolet radiation resistance in this pair of species. 相似文献
16.
zip基因为果蝇晚期神经发生所必需。分子生物学研究表明,zip基因产物是一个膜上整合糖蛋白,可能作为神经细胞的识别或粘联分子参与神经系统的发生。通过基因工程的方法,我们提取了lacZ-zip融合蛋白,继而免疫兔子制备了抗lacZ-zip融合蛋白抗体。该抗体在经过蛋白质印迹鉴定后,用于整幅果蝇胚胎的标记。结果显示zip基因产物主要在胚带缩短后表达,表明zip基因可能参与了晚期神经的发生。抗zip抗体除了识别中枢神经系统(CNS)中的个别神经元外,还标记了侧神经纤维,证实了以前的推测,即在CNS中表达的zip基因可能参与神经纤维束化的建立和维持。 相似文献
17.
H. Allen Orr Shannon Irving 《Evolution; international journal of organic evolution》1997,51(6):1877-1885
There have been very few genetic analyses of “natural” adaptations, that is, those not involving artificial selection or responses to human disturbance. Here we analyze the genetic basis of geographic variation in Drosophila melanogaster's resistance to parasitism by a wasp, Asobara tabida. Our results suggest that population differences in ability to encapsulate parasitoid eggs have a fairly simple genetic basis: 60% of the D. melanogaster genome plays no role in differences between resistant and susceptible populations. Instead, resistance gene(s) are restricted to chromosome two, and may be further restricted to the centromeric region of this chromosome. This finding suggests that natural adaptations—like many responses to artificial selection and human disturbance—sometimes have a simple genetic basis. 相似文献
18.
Alberto Civetta Rama S. Singh 《Evolution; international journal of organic evolution》1998,52(4):1080-1092
Phenotypic divergence in the male reproductive system (genitalia and gonads) between species of the Drosophila melanogaster complex and their hybrids was quantified to decipher the role of these traits in species differentiation and speciation. Internal as well as external, sexual and nonsexual traits were analyzed with respect to genetic variation and trait asymmetry between strains within species, genetic divergence between species, and dominance and asymmetry in species and hybrids. The variation between strains within species was significant among sexual traits, and only external traits were less asymmetric than internal ones, which suggests that sexual traits are not strongly constrained within species. Three main findings show that sexual traits are most divergent between species: (1) testis length and area, and the area of the posterior lobe of the genital arch (sexual traits) showed the highest proportion of variation between species; (2) linear discriminant functions with the highest components associated to sexual traits were better predictors of species membership; and (3) testis length and area revealed a departure from a linear relationship between members of the species group. Examination of interspecific hybrids showed that sexual traits had higher asymmetry in species hybrids than in the parental species and that sexual traits showed additivity or dominance whereas nonsexual traits showed overdominance (with the exception of malpighian tubules length). These results suggest that sexual traits have undergone more genetic changes and, as a result, tend to show higher divergence and stronger hybrid breakdown between species than nonsexual traits. We propose that sexual selection in the broad sense, affecting all aspects of sexuality, may be responsible for the diversified appearance of sexual traits among closely related species and that the genetic architecture underlying sexual traits may be more prone to disruption during the early stages of speciation. 相似文献
19.
真核生物的转座因子(transposable elements)特别是果蝇P因子在研究生物进化上有重要的意义。以我国东北地区13个地方及毗邻的北京、烟台和呼和浩特三个地方共130个黑腹果蝇(D.melanogaster)单雌系为材料,对P因子序列的ORF2-ORF3区段进行PCR扩增,统计不同地方黑腹果蝇群体的P因子在此区段的缺失频率,再从整个地区来分析P因子缺失的分布规律,以推导东北地区黑腹果蝇中P因子的传递和扩散途径。结果显示P因子缺失频率由边境地区向内地逐渐递减,群体相对隔离的地方也较低,推断我国东北地区黑腹果蝇中P因子由朝鲜和俄罗斯向中国边境入侵后,逐步向中国内地扩散。 相似文献