首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The objective of this study was to determine whether infection of Avena fatua L. plants by the mycorrhizal fungus Glomus intraradices Schenck & Smith could influence the vigor of the offspring generation. Two experiments demonstrated that mycorrhizal infection of the maternal generation had slight but persistent positive effects on offspring leaf expansion in the early stages of growth. In two other experiments, mycorrhizal infection of mother plants had several long lasting effects on their offspring. Offspring produced by mycorrhizal mother plants had greater leaf areas, shoot and root nutrient contents and root:shoot ratios compared to those produced by non-mycorrhizal mother plants. Moreover, mycorrhizal infection of mother plants significantly reduced the weight of individual seeds produced by offspring plants while it increased the P concentrations of the seeds and the number of seeds per spikelet produced by offspring plants. The effects of mycorrhizal infections of maternal plants on the vigor and performance of offspring plants were associated with higher seed phosphorus contents but generally lighter seeds. The results suggest that mycorrhizal infection may influence plant fitness by increasing offspring vigor and offspring reproductive success in addition to previously reported increases in maternal fecundity.  相似文献   

2.
Negative reproductive interactions are likely to be strongest between close relatives and may be important in limiting local coexistence. In plants, interspecific pollen flow is common between co‐occurring close relatives and may serve as the key mechanism of reproductive interference. Agamic complexes, systems in which some populations reproduce through asexual seeds (apomixis), while others reproduce sexually, provide an opportunity to examine effects of reproductive interference in limiting coexistence. Apomictic populations experience little or no reproductive interference, because apomictic ovules cannot receive pollen from nearby sexuals. Oppositely, apomicts produce some viable pollen and can exert reproductive interference on sexuals by siring hybrids. In the Crepis agamic complex, sexuals co‐occur less often with other members of the complex, but apomicts appear to freely co‐occur with one another. We identified a mixed population and conducted a crossing experiment between sexual diploid C. atribarba and apomictic polyploid C. barbigera using pollen from sexual diploids and apomictic polyploids. Seed set was high for all treatments, and as predicted, diploid–diploid crosses produced all diploid offspring. Diploid–polyploid crosses, however, produced mainly polyploidy offspring, suggesting that non‐diploid hybrids can be formed when the two taxa meet. Furthermore, a small proportion of seeds produced in open‐pollinated flowers was also polyploid, indicating that polyploid hybrids are produced under natural conditions. Our results provide evidence for asymmetric reproductive interference, with pollen from polyploid apomicts contributing to reduce the recruitment of sexual diploids in subsequent generations. Existing models suggest that these mixed sexual–asexual populations are likely to be transient, eventually leading to eradication of sexual individuals from the population.  相似文献   

3.
Polyploid speciation is an ongoing, important source of angiosperm diversity. However, the barriers to polyploid speciation and mechanisms of establishment remain poorly understood for all but a few species. Several factors likely to have influenced tetraploid establishment, including barriers to triploid formation, consequences of mixed-ploidy pollen loads, and the reproductive success of the minority cytotype, were examined in snow buttercups (Ranunculus adoneus) through a series of pollination and transplant experiments. Tetraploid snow buttercups do not have stigmatic barriers to pollen from diploid plants, nor does pollen from tetraploid plants have an advantage over pollen from diploids when on tetraploid stigmas. Tetraploid plants transplanted into a diploid population produced 50% fewer seeds than tetraploid plants in a tetraploid population. Intrinsic barriers to triploid formation were relatively weak, but few triploid seeds formed when mixed-ploidy pollen was present. Fecundity of triploid plants was very low, and no tetraploid offspring resulted. These results indicate that in snow buttercups, a triploid plant will contribute 0.8% of the tetraploid seeds of a minority tetraploid plant making it a minor contributor to the demographics of tetraploid establishment. The reproductive costs facing minority cytotype plants may explain the previously observed spatial segregation in snow buttercups.  相似文献   

4.
Plant breeding in black chokeberry (Aronia melanocarpa) is based mainly on seedlings derived from domesticated Russian plants. Previous studies have, however, demonstrated very low levels of phenotypic variation within this gene pool. The present investigation was undertaken in order to study the genetic structure in native populations growing in North America. Random amplified polymorphic DNA (RAPD) marker variation was analysed in eight populations (three or five mother plants/population and five seedlings/mother plant) and compared with the variation in four cultivars and 15 seedlings derived from a Russian plantation. The four cultivars and all the Russian seedlings turned out to have identical RAPD profiles. In the native plant material, there were two types of mother plants: diploid plants that produced very heterogeneous offspring and tetraploid plants that produced homogeneous offspring. Partitioning of variability based on Shannon's diversity index attributed approx. 22% of the variation to the among-population level in diploids, compared to approx. 55% in the tetraploids. However, the diploid populations and the tetraploid populations did not differ significantly in within-population variation. These results prompted a second set of RAPD analyses, which were carried out on offspring obtained through open pollination of the initially examined material when growing in an experimental field. The analyses showed that tetraploid plants produced tetraploid offspring that, with few exceptions, were identical, indicating apomixis, whereas offspring of diploid plants were diploid or triploid, and highly heterogeneous, indicating outcrossing. Presumably, the tetraploid form of Aronia is an allopolyploid, with A. melanocarpa as one of the parents.  相似文献   

5.
We conducted a detailed study of the morphological and cytological variation in seven populations of the Poa orinosa complex along an ecological gradient in northeastern China. Three of the populations were at different elevations in wooded habitats; three were in habitats dominated by grasses other than Poa; and one was in a shrub–steppe habitat. Plants from two of the wooded sites were diploid; those from the third wooded site were primarily octoploid. Plants from two of the grassy sites were tetraploid; those from the third grassy site were hexaploid. The seventh population, located in a shrub–steppe habitat, was diploid. Twenty‐four morphological characters were scored on specimens from each site. Plants from the three wooded sites and the lowest grassy site differed from those from the other three sites in having longer culms, internodes and sheaths. The similarity of the tetraploid plants to the diploid plants suggested that they may be autotetraploids. Similarly, the morphological similarity of the octoploid population to the two diploid populations suggested that it too may be an autopolyploid. The morphological distinction of the hexaploid population suggests that it has incorporated a genome not present in the other populations.  相似文献   

6.
The environmental influences of mothers on offspring traits, or maternal effects, often arise from dietary differences experienced by mothers. However, few studies have explored if and how maternal effects facilitate adaptation to new host plants. To address this, we compared the maternal and direct effects arising from dietary differences in two populations of the large milkweed bug, Oncopeltus fasciatus that live on and feed on the seeds from different hosts. We compared a laboratory population, which has been reared for over 400 generations on sunflower seeds and is now adapted to use these as a host, to the wild population, which is adapted to the ancestral diet of toxic milkweed seeds. We first tested for changes in maternal effects, and then examined offspring performance and survivorship. We found evidence for evolution of the maternal effect facilitating the use of a novel host. However, the strongest effects were population differences and direct dietary effects for all traits. Offspring performance was more strongly influenced by diet than maternal effects. Survivorship depended on population and offspring diet, and their interaction, but was unaffected by maternal diet or other interactions. In the artificially evolved population, diet breadth was increased rather than evolving specialization. Our results suggest changes in maternal effects are likely to be weak compared to direct effects of host plants and other adaptations in adaptation to a novel host. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 114 , 202–211.  相似文献   

7.
C. Houssard  J. Escarré 《Oecologia》1991,86(2):236-242
Summary The effects of seed size on growth, biomass allocation and competitive ability of Rumex acetosella plants grown either individually or in competition were studied in two populations (6 months and 15 years old respectively) sampled from a postcultivation successional gradient. For plants grown individually there were highly significant effects of seed weight on growth after 43 days, with a higher relative growth rate (RGR) observed for plants raised from heavier seeds. However at the end of the experiment, seedlings developed from lighter seeds had a RGR 2 times greater than those from heavier seeds. Final biomass of the two types was not significantly different after 73 days of growth. When plants were grown individually, there were only slight differences between populations, but when grown in monocultures of 4 plants per pot, plants from the old population had higher root and leaf biomass per pot whereas those from the young population had a higher reproductive effort per pot. This suggests that a trade-off between allocation to sexual and vegetative reproduction occurs over successional time. In mixtures of light and heavy seeds, plants from light seeds were shorter, had fewer leaves and lower biomass than plants from heavy seeds, which were also taller and produced more dry matter than plants grown from heavy seeds in monoculture. The significant effects of seed weight and population on biomass parameters persisted unit the end of the experiment. Seedlings from heavy seeds were strong competitors: those from the young population grew better in the presence of neighbors than in monoculture and those from the late successional population suppressed the more the growth of their partners. Seedlings from light seeds were subordinate competitors. These results suggest that seedlings from seeds of different sizes benefit from contrasting ecological conditions and that selection acts on reproductive output along successional gradients.  相似文献   

8.
In the context of a long-term study of the pathosystem Digitaria sanguinalis–Ustilago syntherismae, seeds were collected over several years from a naturally infested field. Two different patterns of germination were found depending on the embryonic organ that first emerges: radicle or coleoptile. The mean frequencies of each pattern of germination were obtained in sets of seeds from non-smutted field plants of five consecutive years, and in a set of seeds belonging to the offspring of partially smutted field plants. The percentage of seeds showing radicular germination ranged from 54% to 69% in the field-collected lots, but it was only 1% in the offspring of partially smutted plants. Furthermore, while seeds with a radicular pattern reached 63% germination 43.5 hours after imbibition, the seeds with a coleoptilar pattern needed 101.5 hours to reach the same percentage. The effect of the amount of water during the imbibition period was also tested in two sets of seeds of different origin. There were no significant differences attributable to this factor, even in the levels of the factor that simulate flooding. We discuss the importance of the different germination behaviour observed in relation to the U. syntherismae infection process.  相似文献   

9.
Spontaneous outcrossing of different malesterile rapeseed lines and transgenic hybrids with a population of a weedy species, Raphanus raphanistrum L., has led to the harvest of numerous seeds showing a size dimorphism. Flow cytometry analysis correlated with chromosome counts showed that all of the large seeds belonged to rapeseed, whereas the small seeds were a mixture of mostly interspecific triploid hybrids, with some trigenomic amphidiploids, diploid and haploid rapeseed plants. Significant differences were revealed between the rapeseed lines and transgenic hybrids in their ability to form interspecific hybrids with Raphanus raphanistrum under natural conditions. Resistance to the herbicide Basta was properly expressed in the triploid and amphidiploid hybrids. Low male fertility of the interspecific triploid hybrids was not correlated with seed set in the subsequent generation.  相似文献   

10.
Summary Phenotypically there appeared to exist no diversity in different individual plants in a population ofCalotropis procera. The diversity in imbibition and germination behaviour of seeds from different plants was revealed only after detailed studies were undertaken. Seeds from six individual plants were collected and stored separately for a period of two years. Ordinarily the seeds of this species did not exhibit any dormancy and were found to germinate immediately after harvest. Two years old seeds did not loose their viability in any of the six lots indicated above. It was discovered that the weight and size of seeds, the rate of imbibition of water, the amount of water imbibed, the loss of water upon drying, the rate of germination, the percentage of germination, and the germination behaviour in continuous illumination and total darkness, all exhibited diversity to some extent in the six lots studied. It was evident that there did not exist seeds exhibiting homogeneous behaviour in a population ofCalotropis procera.  相似文献   

11.
Background and Aims Diaspores of heteromorphic species may germinate at different times due to distinct dormancy-breaking and germination requirements, and this difference can influence life history traits. The primary aim of this study was to determine the effect of germination time of the two seed morphs of Suaeda corniculata subsp. mongolica on life history traits of the offspring.Methods Germinated brown and black seeds were sown on the 20th of each month from April to September in a simulated but near-natural habitat of the species. Phenological and vegetative traits of the maternal plants, and number, size and germination percentage of the offspring were determined.Key Results Germinated seeds sown late in the year produced smaller plants that had a higher proportion of non-dormant brown than dormant black seeds, and these brown seeds were larger than those produced by germinated seeds sown early in the year. The length of the seedling stage for brown seeds was shorter than that for black seeds, and the root/shoot ratio and reproductive allocation of plants from brown seeds were more variable than they were for plants from black seeds. Late-germinating brown seeds produced larger plants than late-germinating black seeds.Conclusions Altering the proportion of the two seed types in response to germination timing can help alleviate the adverse effects of delayed germination. The flexible strategy of a species, such as S. corniculata, that produces different proportions of dimorphic seeds in response to variation in germination timing may favour the maintenance and regeneration of the population in its unpredictable environment.  相似文献   

12.
孟雅冰  李新蓉 《生态学报》2015,35(23):7785-7793
集合繁殖体(synaptospermy)是荒漠植物为适应恶劣环境条件而演化出的关键性特征,其作为植物生活史特性之一,有助于了解在荒漠环境下集合繁殖体植物的适应策略。蒺藜(Tribulus terrestris)和欧夏至草(Marrubium vulgare)分别为一年生及多年生草本植物,蒺藜扩散单位由一朵花发育而成的集合繁殖体组成,欧夏至草扩散单位由多朵花发育的集合繁殖体和种子组成,以这两种植物为材料,对其集合繁殖体形态、活力、吸水及萌发特性进行初步研究。结果显示:(1)蒺藜集合繁殖体依照发育成熟先后位置在质量、附属物刺的长度、附属物占质量百分比、种子数、活力、吸水量、萌发率及萌发速率均存在显著差异;欧夏至草集合繁殖体质量及吸水量明显大于种子,而活力、萌发率及萌发速率不存在显著差异。(2)萌发位置上,蒺藜集合繁殖体仅在长刺端位置的种子萌发,属非随机萌发,而欧夏至草集合繁殖体萌发不具有规律性,属随机萌发;萌发时间上,蒺藜和欧夏至草集合繁殖体在当季下均只萌发部分种子,具间歇性萌发特性。(3)对不同生活型植物而言,其集合繁殖体附属物对种子的保护、保水、扩散及萌发行为的功能相同,但一年生草本植物的萌发行为侧重于种群繁衍,因此蒺藜集合繁殖体在当季萌发率及萌发速率较高;多年生草本植物的萌发行为侧重于种群扩散,因此欧夏至草扩散单位多样化,且萌发率及萌发速率较低。  相似文献   

13.
Summary Parthenogenetic seed induction was performed on one clone of Solanum tuberosum subspecies andigena (2n=4x=48) using S. phureja (2n=2x=24) marker inducer clones. The parthenogenetic population when grown was found to contain both diploid and tetraploid individuals presumably arising from reduced and unreduced gametes, respectively. Variation patterns in the diploid and tetraploid sub-populations, as well as a population obtained by selfing the parental clone, were compared to try and elucidate the origin of the tetraploid parthenotes. From the results of this one generation it appeared that the tetraploid parthenogenetic plants had been produced by a mechanism equivalent to second division restitution (SDR).  相似文献   

14.
Apomixis is an asexual reproduction way of plants that can produce clonal offspring through seeds.In this study, we introduced apomixis into rice(Oryza sativa) by mutating OsSPO11-1, OsREC8, OsOSD1,and OsMATL through a CRISPR/Cas9 system. The quadruple mutant showed a transformation from meiosis to mitosis and produced clonal diploid gametes. With mutated Osmatl, which gives rise to haploid induction in plants,the quadruple mutant is expected to be able to be produced apomictic diploid offspring. We named this quadruple mutant as AOP(Apomictic Offspring Producer)for its ability to produce apomictic offspring.  相似文献   

15.
Polyploidization is an important mechanism of sympatric speciation, but few studies have addressed breeding barriers between polyploids and their diploid progenitors in the field, and the available data have been mainly obtained from diploid-tetraploid contact zones. In contrast to diploid-tetraploid complexes, hybridization between diploid and hexaploid individuals may lead to viable fertile tetraploid offspring, and thus the interactions between these ploidy levels can be more complex. We investigated the breeding barriers operating between diploid and hexaploid individuals of Aster amellus at a contact zone in Central Europe to understand the absence of hybrids (i.e., tetraploids) and mixed populations. Phenological segregation, assortative mating mediated by pollinators and crossing ability were assessed under natural and controlled conditions in diploid and hexaploid populations growing in close proximity. The results revealed low levels of reproductive isolation (RI) due to flowering phenology (RI = 11–45%) and pollinator behavior (RI = 17%), so that pollen transfer between diploids and hexaploids is possible. In contrast, almost complete reproductive isolation was observed due to a series of post-pollination barriers that significantly reduced the production of offspring from inter-cytotype crosses (RI = 99.9%), even though some tetraploids were detected in seeds and seedlings. We conclude that the absence of tetraploids at the contact zone is probably due to a combination of several factors, including spatial segregation, strong post-pollination barriers (such as gametic isolation, low viability of tetraploid seeds and/or inability of tetraploid plants to reach the flowering stage), and to a lesser extent, temporal and behavioral segregation. Future studies should explore the fitness of tetraploids and the effect of different traits on the reproductive success and fitness of each cytotype. This will enable a fuller understanding of the dynamics and mechanisms acting in contact zones.  相似文献   

16.
The most common form of polyploidization is that which occurs via the fertilization of unreduced 2 n gametes, i.e. gametes that possess the somatic chromosome number of the species. However, very few data are available concerning the frequency of spontaneous polyploidization in diploid plant populations. In this study we have quantified both the frequency of In pollen production and the frequency of polyploid seed production in diploid populations of the grass Anthoxanthum alpinum. More than 6000 seeds from four different populations collected during two years of study were screened for ploidy using a flow cytometer. In parallel, the frequency both of plants with large pollen (LP) and of LP production on these plants was quantified in two populations. No tetraploid seeds were detected, although in each population a few triploid seeds were regularly produced at a frequency of two triploid seeds per thousand. The frequency of LP producers was similar in the four populations, as was the frequency of LP production. The frequency of LP was ten times that of triploid seeds. These finding suggest that the 'triploid block' is not enough to prevent the regular occurrence of triploids in diploid populations of this species. The role played by the hypothesized 'triploid bridge' in the genesis of autotetraploids is discussed in the light of these results.  相似文献   

17.
Yan  Yu-Juan  Qin  Si-Si  Zhou  Ning-Zhi  Xie  Yan  He  Ying 《Plant Cell, Tissue and Organ Culture》2022,149(3):735-745

Buddleja lindleyana Fort. is a garden ornamental plant with great potential for development and also a commonly used medicinal plant. To enrich its germplasm resources, the seeds of B. lindleyana were treated with colchicine solution with concentration gradients of 0.5%, 1.0%, 1.5%, 2.0% and 3.0% for 12-, 24- and 48-h respectively, and the water treatment was set as the control group. The purpose was to explore the effects of colchicine on the germination and mutagenic effect of B. lindleyana seeds at different concentrations and different times, to screen the appropriate combination of mutagenic concentration and time, to provide guidance for the construction of B. lindleyana mutation population in future research. The results were as follows: (1) Colchicine had an inhibitory effect on seed germination and seedling height of B. lindleyana seeds, and the higher the concentration, the more obvious the inhibitory effect. (2) After colchicine treatment, 30 mutant plants showed morphological variations such as leaf malformation, leaf color macular, early leaf bud germination, uneven leaf surface and leaf hyperplasia, among which 3.0%?+?48-h treatment group had great potential to produce yellow-leaf plants. (3) Detection and analysis by flow cytometry revealed that among the 30 morphologically variant plants, there were 22 diploid plants, 3 tetraploid plants, and 5 chimera plants. Among them, tetraploids were mainly from colchicine concentration of 3.0% (2 plants) and 1.5% (1 plant), chimeras were mainly from colchicine concentration of 1.0% (2 plants), 1.5% (1 plant) and 3.0% (2 plants), and the seed soaking time was 48-h. (4) The length and width of guard cells and stomata were significantly different between diploid and tetraploid, and there were significant differences in leaf width and leaf shape index between tetraploid and diploid, but there were no significant differences in leaf length among diploid, tetraploid and chimera. In short, we got tetraploids and chimeras materials which were potentially useful cultivars of B. lindleyana and provided an effective identification method for polyploids of B. lindleyana.

  相似文献   

18.
Summary Siblings of Abutilon theophrasti, were grown on a nutrient gradient. The plants grown at higher nutrient levels were larger and produced larger and more seeds than plants grown at lower soil nutrient concentrations. There were no differences in germinability of seeds, but the competitive abilities of resulting plants were markedly different.In two different competition experiments designed to eliminate the effects of genotype, seed size, and germination time, by using synchronously germinated seedlings derived from similar size seed from plants grown at different nutrient levels, we found that plants from seeds produced at higher nutrient levels consistently, outperformed plants from seeds produced at the lower nutrient levels. The dominance of seeds produced at higher nutrient levels may be explained by the fact that they had markedly higher concentrations of nitrogen than did seeds produced at lower soil nutrient levels. The additional advantage of increased seed quality to plants controlling more of the nutrient resource than their neighbors would be expected to accelerate their contributions to the gene pool of the population.  相似文献   

19.
Plants of Senecio vulgaris L. were grown individually within pots to examine effects of maternal soil nutrient level on offspring. Genotypic variability among maternal plants was minimized by using only maternal plants derived from seed of a single inbred line. Significant (P < 0.05) maternal effects of the nutrient gradient were detected at four different levels. Maternal plants grown in lower soil nutrients produced: 1) seeds with lower individual mass; 2) seeds that germinated later; 3) seedling offspring that grew into smaller juvenile plants in nutrient-impoverished soil; and 4) seedling offspring that survived longer in the absence of external nutrients. This last type of maternal effect is reported for the first time in the present study. These data suggest that a compensatory effect of relatively low maternal soil nutrient level may be conferred on the plant's offspring in the form of a “wait and tolerate” strategy through a longer “seedling dormancy” period. This appears to involve a high seedling tolerance threshold level for external nutrient deprivation. To account for these results, we propose two hypotheses based on two different causes of nutrient deprivation, and based on the assumption that if maternal plants experience nutrient deprivation, seedling offspring have a high probability of also experiencing the same cause of nutrient deprivation: 1) Under the “nutrient supply hypothesis,” the wait and tolerate strategy in seedling offspring represents an adaptation to selection factors associated with nutrient deprivation resulting from a low nutrient-supplying power of the environment. 2) Under the “nutrient-depletion hypothesis,” this strategy represents an adaptation to selection factors associated with nutrient depletion by neighbors.  相似文献   

20.
We examined in the field the effect of the vesicular-arbuscular (VA) mycorhizal symbiosis on the reproductive success of Abutilon theophrasti Medic., an early successional annual member of the Malvaceae. Mycorrhizal infection greatly enhanced vegetative growth, and flower, fruit and seed production, resulting in significantly greater recruitment the following year. In addition, the seeds produced by mycorrhizal plants were significantly larger and contained significantly more phosphorus than seeds from non-mycorrhizal plants, an effect which may improve offspring vigor. Infection by mycorrhizal fungi may thus contribute to the overall fitness of a host plant and strongly influence long-term plant population dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号