首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
The ecological consequences of homogenization remain relatively unexplored. One example of landscape-homogenizing is the establishment of plantations. We studied the effect of human-made forests by contrasting plant and small-mammal community composition between planted tree stands and adjacent natural habitat in two different Mediterranean habitats in Israel: (1) inland habitat where we focused on pine (Pinus halepensis) and carob (Ceratonia siliqua) stands, and (2) coastal sand dune habitat where we focused on planted acacia (Acacia saligna) stands. We first wanted to verify whether planted trees modify plant species composition, and second, if and how the small-mammal community is affected by the different habitat conditions created in plantations with different canopy cover. We were especially interested in the abundance of the commensal house mouse (Mus musculus). All tree stands underwent biotic homogenization indicated by abundance of house mice coupled with lower diversity of indigenous vegetation and small-mammal abundances and diversities. Habitat structural diversity was positively related with small-mammals diversity and was lower in artificial tree stands in both habitats. Our results suggest that using the abundance of commensal generalist species such as the house mouse relative to other more specialist small-mammals is a good approach to determine ecosystem integrity. Pre-commercial thinning treatment is a potential management tool to maintain a proportion of native tree species within the canopy of planted tree stands. However, until sufficient data is available for making generalizations, the exact level of thinning necessary to reverse the homogenization processes in man-made plantations and keeping indigenous small-mammal communities diverse and less prone to invasion must be determined empirically.  相似文献   

2.
Conservation strategies of forested landscapes must consider biodiversity of the included site types, i.e. timber-quality forests and associated non-timber-quality stands. The objectives were to characterize forest overstory structure in timber-quality versus associated non-timber-quality stands; and to compare their understory communities. Six forest types were sampled in Nothofagus forests of Tierra del Fuego (Argentina): two timber-quality N. pumilio forests, and four associated non-timber-quality stands (edge, N. antarctica, wetlands and streamside forests). Overstory structure and understory vegetation (species richness, frequencies, cover and biomass) were characterized during spring and summer seasons. Analysis of variance and multivariates were carried out. Overstory structure differed across the site types, with higher tree size, canopy closure and tree volume in timber-quality stands. Fifty-one understory plant species were observed, but understory variables varied with site types, especially wetlands (highest native and exotic richness, cover and biomass, and 25% of exclusive species). Site types were grouped in three: N. antarctica stands, streamside stands and the other N. pumilio forests according to multivariate analysis. Forty three percent of plants were distributed in all site types, and all timber-quality forest understory species were present in some associated non-timber-quality stands. Timber-quality N. pumilio forests have a marginal value for understory conservation compared to associated non-timber-quality stands, because these last include all the plants observed in timber-quality forests and also possess many exclusive species. Therefore, protection of associated non-timber-quality stands during forest management planning could increase understory conservation at landscape level, and these could be better reserves of understory diversity than retentions of timber-quality stands.  相似文献   

3.
Neighbouring heterospecific plants are often observed to reduce the probability of herbivore attack on a given focal plant. While this pattern of associational resistance is frequently reported, experimental evidence for underlying mechanisms is rare particularly for potential plant species diversity effects on focal host plants and their physical environment. Here, we used an established forest diversity experiment to determine whether tree diversity effects on an important insect pest are driven by concomitant changes in host tree growth or the light environment. We examined the effects of tree species richness, canopy cover and tree growth on the probability of occurrence, the abundance, and volume of galls caused by the pineapple gall adelgid Adelges abietis on Norway spruce. Although tree diversity had no effect on gall abundance, we observed that both the probability of gall presence and gall volume (an indicator of maternal fecundity) decreased with tree species richness and canopy cover around host spruce trees. Structural equation models revealed that effects of tree species richness on gall presence and volume were mediated by concurrent increases in canopy cover rather than changes in tree growth or host tree density. As canopy cover did not influence tree or shoot growth, patterns of associational resistance appear to be driven by improved host tree quality or more favourable microclimatic conditions in monocultures compared to mixed‐stands. Our study therefore demonstrates that changes in forest structure may be critical to understanding the responses of herbivores to plant diversity and may underpin associational effects in forest ecosystems.  相似文献   

4.
Little is known about the soil seed bank and the influence of plant communities on the interaction between the seed bank and aboveground vegetation in the Hyrcanian temperate deciduous forest. We surveyed species composition and diversity of the persistent soil seed bank and the aboveground vegetation in six community types in old-growth Hyrcanian Box tree (Buxus hyrcana) stands in northern Iran. Fifty-two species with an average of 3,808 seeds/spores m−2 germinated; forbs accounted for 64% of the seed bank flora. Thirty-four species in the aboveground vegetation were not presented in the seed bank, 32 species in the seed bank were not found in the vegetation, and 20 species were in both. The dominant tree species were Diospyros lotus and Alnus subcordata with an average of 17 and 4.6 seeds m−2, respectively. Our results suggest that (1) vernal geophytes and shade-tolerant perennials are not incorporated in the seed bank, (2) early successional species are well represented in the seed bank, (3) plant community type has significant impacts on seed bank densities, and seed bank richness and diversity were significantly related to presence/absence of Box tree in the aboveground vegetation. The persistent seed bank contained species that potentially have a negative impact on the regeneration of forests, thus forest managers should retain old-growth Hyrcanian Box tree stands to conserve disturbance-sensitive indicator forest species.  相似文献   

5.
The Australian tree Melaleuca quinquenervia (melaleuca) formed dense monocultural forests several decades after invading parts of Florida and the Caribbean islands. These dominant forests have displaced native vegetation in sensitive wetland systems. We hypothesized that native plant diversity would increase following recent reductions in density of mature melaleuca stands in south Florida. We therefore examined data on changes in melaleuca densities and plant species diversity derived from permanent plots that were monitored from 1997 to 2005. These plots were located within mature melaleuca stands in nonflooded and seasonally-flooded habitats. Two host-specific biological control agents of melaleuca, Oxyops vitiosa and Boreioglycaspis melaleucae, were introduced during 1997 and 2002, respectively. Also, an adventive rust fungus Puccinia psidii and lobate-lac scale Paratachardina pesudolobata became abundant during the latter part of the study period. Overall melaleuca density declines in current study coincided with two to four fold increases in plant species diversity. The greatest declines in melaleuca density as well as the greatest increases in family importance values and species diversity indices occurred in nonflooded as compared to seasonally-flooded habitats. Most pioneer plant species in study sites belonged to Asteraceae, Cyperaceae, Poaceae, and Ulmaceae. The rapid reduction in melaleuca density and canopy cover during the study period may be attributed to self-thinning accelerated by the negative impact of natural enemies. Densities of other woody plants, particularly Myrica and Myrsine, which were sparsely represented in the understory by a few suppressed individuals also declined during the same period, possibly due to infestation by the generalist lac-scale. These findings indicate that natural-enemy accelerated self-thinning of melaleuca densities is positively influencing the native plant diversity and facilitating the partial rehabilitation of degraded habitats.  相似文献   

6.
The paper describes the structure and the developmental trends of old-growth Pinus sylvestris stands in the Wigry National Park, in north-eastern Poland. The stands represent a transitional zone between deciduous forests of Central Europe and boreal, coniferous forests of north-eastern Europe. Besides P. sylvestris, the most important tree species are Picea abies and Quercus robur. Among the subcanopy species, Corylus avellana and Sorbus aucuparia occur most frequently. On the basis of the data from 6 permanent sample plots (total size: 1.90 ha), several parameters and stand indices are analysed including species composition of the canopy and the regeneration, diameter distribution, age structure of main tree species, and the relationship between canopy and spatial dispersion of woody regeneration. The most striking feature of the stands studied is the almost complete absence of natural regeneration of P. sylvestris. This seems to be in contradiction with the apparently natural origin of this species in the stands, and a common occurrence of natural disturbances resulting in openings and gaps in forest canopy. The main tree species replacing P. sylvestris in the canopy are P. abies and Q. robur. Also increasing are some broad-leaved species typical of high fertility sites: Acer platanoides, Tilia cordata, Ulmus glabra, and Fraxinus excelsior. A shrub C. avellana occurs extensively competing with tree species and delaying tree replacement processes. While no direct data on the changes in the site conditions can be provided and the recovery hypothesis appears to be the most straightforward explanation of the changes in P. sylvestris stands, the possible role of the allogenic changes in environmental conditions (climate warming, nitrogen deposition) is also discussed.  相似文献   

7.
Vegetation in canopy gaps of two old-growth Abies-Betula forest stands, one with bamboo the other without, was measured. The structure of gap vegetation at each site was used to derive tree replacement probabilities. Transition probabilities indicate different tree replacement trends in forests with bamboo compared to those without. Projected compositions show Betula to be the most abundant species in bamboo stands while Abies remains most abundant where bamboo was absent. A dense bamboo sward seems to reduce the probability of Abies filling gaps by inhibiting establishment and growth of seedlings. Bamboo preempts space after canopy gap formation by increasing shoot production which reduces opportunities for establishment and growth of other woody species. Differences in dispersal ability and longevity of Abies and Betula appear to be important factors contributing to their coexistence forests with a small canopy gap disturbance regime.  相似文献   

8.
Abstract

To investigate the differences in understorey composition and diversity between old-growth and managed forests, we analyzed an old-growth and a managed beech stand in the same area displaying similar abiotic features. We considered variations in understorey species composition and richness. The sampled understorey species were characterized in terms of functional traits, Ellenberg's indicator values and taxonomic distinctness; next, we calculated four different pairwise plot-to-plot dissimilarity matrices based on species composition, functional traits, Ellenberg's indices and taxonomic distances. We applied a permutational multivariate extension of ANOVA to test whether the forest stands significantly differ in the considered features. Indicator values of all plant species in managed and old-growth stands were evaluated.

The old-growth forest had a higher species richness; permutational analysis of variance showed significant differences between the two stands in plant species composition, functional traits, Ellenberg indices and taxonomic distances. Indicator species analysis highlighted 14 indicator species for the unmanaged stand, while only 3 indicators were found for the managed one.

The results suggest that forest management determines ecological differences that strongly affect plant species composition.

The knowledge of natural stands dynamics could allow development of new approaches and practices in forest management focusing on biodiversity conservation.  相似文献   

9.
Population structure (size, age, spatial patterns) and radial growth patterns are used to analyze regeneration patterns of Abies faxoniana, Betula albosinensis, Betula utilis, Larix potaninii, Picea purpurea, and Sabina saltuaria and reconstruct disturbance history in 8 subalpine forest stands in Wang Lang Natural Reserve, Sichuan, China. In old-growth stands tree regeneration occurs in tree-fall gaps whereby A. faxoniana, Betula sp., P. purpurea, and S. saltuaria persist at stand scales by gap-phase regeneration. Clump sizes of young populations are similar to canopy gap sizes but clumps sizes vary among species. Young Betula patches are larger than those of A. faxoniana suggesting that gap-partitioning by size contributes to species coexistence in mixed stands. Picea purpurea and S. saltuaria are longer lived than A. faxoniana which may compensate for lower recruitment and prevent their replacement by A. faxoniana. Tree regeneration and community structure are also influenced by the understory bamboo Fargesia denudata. Seedlings, saplings, and shrub density all decline with an increase in bamboo cover. Species that regenerate in old-growth forest also regenerate after flooding as do species that establish only on bare substrates (i.e. Larix potaninii, Prunus sp.). Structural and compositional patterns in Wang Lang forests are a reflection of disturbance history, canopy species life history attributes such as dispersal ability, shade tolerance, growth rates, and longevity, and competition of trees and shrubs with understory bamboos.  相似文献   

10.
Question: How do spatial patterns and associations of canopy and understorey vegetation vary with spatial scale along a gradient of canopy composition in boreal mixed‐wood forests, from younger Aspen stands dominated by Populus tremuloides and P. balsamifera to older Mixed and Conifer stands dominated by Picea glauca? Do canopy evergreen conifers and broad‐leaved deciduous trees differ in their spatial relationships with understorey vegetation? Location: EMEND experimental site, Alberta, Canada. Methods: Canopy and understorey vegetation were sampled in 28 transects of 100 contiguous 0.5 m × 0.5 m quadrats in three forest stand types. Vegetation spatial patterns and relationships were analysed using wavelets. Results: Boreal mixed‐wood canopy and understorey vegetation are patchily distributed at a range of small spatial scales. The scale of canopy and understorey spatial patterns generally increased with increasing conifer presence in the canopy. Associations between canopy and understorey were highly variable among stand types, transects and spatial scales. Understorey vascular plant cover was generally positively associated with canopy deciduous tree cover and negatively associated with canopy conifer tree cover at spatial scales from 5–15 m. Understorey non‐vascular plant cover and community composition were more variable in their relationships with canopy cover, showing both positive and negative associations at a range of spatial scales. Conclusions: The spatial structure and relation of boreal mixed‐wood canopy and understorey vegetation varied with spatial scale. Differences in understorey spatial structure among stand types were consistent with a nucleation model of patch dynamics during succession in boreal mixed‐wood forests.  相似文献   

11.
Afforestation and fire exclusion are pervasive threats to tropical savannas. In Brazil, laws limiting prescribed burning hinder the study of fire in the restoration of Cerrado plant communities. We took advantage of a 2017 wildfire to evaluate the potential for tree cutting and fire to promote the passive restoration of savanna herbaceous plant communities after destruction by exotic tree plantations. We sampled a burned pine plantation (Burned Plantation); a former plantation that was harvested and burned (Harvested & Burned); an unburned former plantation that was harvested, planted with native trees, and treated with herbicide to control invasive grasses (Native Tree Planting); and two old-growth savannas which served as reference communities. Our results confirm that herbaceous plant communities on post-afforestation sites are very different from old-growth savannas. Among post-afforestation sites, Harvested & Burned herbaceous communities were modestly more similar in composition to old-growth savannas, had slightly higher richness of savanna plants (3.8 species per 50-m2), and supported the greatest cover of native herbaceous plants (56%). These positive trends in herbaceous community recovery would be missed in assessments of tree cover: whereas canopy cover in the Harvested & Burned site was 6% (less than typical of savannas of the Cerrado), the Burned Plantation and Native Tree Planting supported 34% and 19% cover, respectively. By focusing on savanna herbaceous plants, these results highlight that tree cutting and fire, not simply tree planting and fire exclusion, should receive greater attention in efforts to restore savannas of the Cerrado.  相似文献   

12.
Light is a key resource for plant growth and is of particular importance in forest ecosystems, because of the strong vertical structure leading to successive light interception from canopy to forest floor. Tree species differ in the quantity and heterogeneity of light they transmit. We expect decreases in both the quantity and spatial heterogeneity of light transmittance in mixed stands relative to monocultures, due to complementarity effects and niche filling. We tested the degree to which tree species identity and diversity affected, via differences in tree and shrub cover, the spatiotemporal variation in light availability before, during, and after leaf expansion. Plots with different combinations of three tree species with contrasting light transmittance were selected to obtain a diversity gradient from monocultures to three species mixtures. Light transmittance to the forest floor was measured with hemispherical photography. Increased tree diversity led to increased canopy packing and decreased spatial light heterogeneity at the forest floor in all of the time periods. During leaf expansion, light transmittance did differ between the different tree species and timing of leaf expansion might thus be an important source of variation in light regimes for understory plant species. Although light transmittance at the canopy level after leaf expansion was not measured directly, it most likely differed between tree species and decreased in mixtures due to canopy packing. A complementary shrub layer led, however, to similar light levels at the forest floor in all species combinations in our plots. Synthesis. We find that a complementary shrub layer exploits the higher light availability in particular tree species combinations. Resources at the forest floor are thus ultimately determined by the combined effect of the tree and shrub layer. Mixing species led to less heterogeneity in the amount of light, reducing abiotic niche variability.  相似文献   

13.
Gap characteristics and gap phase replacement of major tree species were examined in two primary old-growth (mean DBHs of the canopy trees were 45.2 and 56.1 cm) and four secondary developing (range of mean DBH of the canopy trees was 23.5–39.9 cm) beech (Fagus crenata) stands in the Daisen Forest Reserve, southwestern Japan, and these were analyzed in relation to stand development as expressed by the difference of mean DBH of canopy trees. Percentage gap area (percentage of total gap area to total surveyed area) and mean and maximum gap size varied widely and ranged from 1.7 to 20.0%, from 19.4 to 162.8 m2, and from 35.7 to 585.1 m2, respectively. Mean percentage gap area and mean gap size were significantly greater in old-growth than in developing stands. However, they and maximum gap size might not increase linearly with stand development, and the gap feature of less developed stands was greater than that of later stages in developing stands. The cause was a higher formation rate, in younger developing stands, of gaps formed by simultaneous death (multiple trees falling down in domino fashion) which tends to produce larger gaps. In developing stands mean DBH of gapmakers (canopy trees that formed a gap) was smaller than that of canopy trees, though the inverse trend might be found in old-growth stands. Three typical types of death or injury states of gapmakers such as standing dead, trunk broken and uprooted were found in every study stand and the difference in stand development may not cause stand-to-stand variations for them. Importance of F. crenata (the most dominant species) in the canopy layer increased and its importance in the understory layer decreased with stand development. Shade-intolerant Quercus mongolica in the canopy layer was more important in younger than in old-growth stands, and there was no Quercus regeneration in old-growth stands. Acer mono consistently appeared, though in much less abundance than other species, in both canopy and understory layers of all study stands. Sub-canopy layers, which are mainly formed by sub-canopy tree species such as Acanthopanax sciadophylloides and Acer japonicum, may gradually develop with stand development.p>  相似文献   

14.
Old-growth deciduous forests in western Europe, for the most part, consist of small tracts that often may be atypical due to human disturbance, poor soil productivity or inaccessibility. In addition, very little information on tree age distributions, structural heterogeneity and tree spatial patterns appears to be available for west-European forests. Characterization of the structural features of tree populations in these old-growth stands can provide the basis to design conservation plans and also inform on how present forests might look in the absence of human interference. Four old-growth stands in a deciduous forest in the Cantabrian lowlands, northern Spain, were surveyed to determine forest structure and spatial patterns. Live and dead trees were identified, measured and mapped, and live trees were cored for age estimation. Structural heterogeneity was analyzed by means of the spatial autocorrelation of tree diameter, height and age, and the uni- and bivariate spatial patterns of trees were analyzed. The dominant species, Fagus sylvatica and Quercus robur, showed reverse-J shaped size distributions but discontinuous age distributions, with maximum ages of 255–270 yr. Tree ages suggested that the forest was largely modified by past changes in forest-use, especially by temporal variation in grazing intensity. Spatial autocorrelation revealed that former parkland stands were heterogeneous with respect to tree height only, while high forest stands were composed of patches of even-aged and even-sized trees. Young trees were clumped at varying distances and establishment occurred preferentially in canopy gaps, except for Ilex aquifolium that mainly occurred beneath mature Quercus trees. Surviving trees became less intensely clumped in the dominant species, and more strongly clumped in understorey ones, which may have been due to the effects of intraspecific competition and of canopy trees on tree survival, respectively. The spatial associations between species varied within the forest, probably as a consequence of specific establishment preferences and competitive interactions.  相似文献   

15.
16.
Dominant understorey species influence forest dynamics by preventing tree regeneration at the seedling stage. We examined factors driving the spatial distribution of the monocarpic species Isoglossa woodii, a dominant understorey herb in coastal dune forests, and the effect that its cover has on forest regeneration. We used line transects to quantify the area of the forest understorey with I. woodii cover and with gaps in the cover. Paired experimental plots were established in semi-permanent understorey gaps with I. woodii naturally absent and in adjacent areas with I. woodii present to compare plant community composition, soil, and light availability between the two habitats. Isoglossa woodii was widespread, covering 65–95% of the understorey, while gaps covered the remaining 5–35% of the area. The spatial distribution of this species was strongly related to tree canopy structure, with I.␣woodii excluded from sites with dense tree cover. Seedling establishment was inhibited by low light availability (<1% of PAR) beneath I.␣woodii. When present, I. woodii reduced the density and species richness of tree seedlings. The tree seedling community beneath I. woodii represented a subset of the seedling community in gaps. Some species that were found in gaps did not occur beneath I. woodii at all. There were no significant differences between the sapling and canopy tree communities in areas with I. woodii gaps and cover. In the coastal dune forest system, seedling survival under I. woodii is dependent on a species’ shade tolerance, its ability to grow quickly during I. woodii dieback, and/or the capacity to regenerate by re-sprouting and multi-stemming. We propose a general conceptual model of forest regeneration dynamics in which the abundant understorey species, I. woodii, limits local tree seedling establishment and survival but gaps in the understorey maintain tree species diversity on a landscape scale.  相似文献   

17.
This study analyses the effects of anthropogenic disturbance on plant diversity and community attributes of a sacred grove (montane subtropical forest) at Swer in the East Khasi Hills district of Meghalaya in northeast India. The undisturbed, moderately disturbed and highly disturbed stands were identified within the sacred grove on the basis of canopy cover, light interception and tree (cbh 15 cm) density. The undisturbed forest stand had >40% canopy cover, >50% light interception and a density of 2103 trees per hectare, whereas the highly disturbed stand had <10% canopy cover, <10% light interception and 852 trees per hectare. The moderately disturbed stand occupied the intermediate position with respect to these parameters. The study revealed that the mild disturbance favoured species richness, but with increased degree of disturbance, as was the case in the highly disturbed stand, the species richness markedly decreased. The number of families of angiosperms was highest (63) in the undisturbed stand, followed by the moderately (60) and highly disturbed (46) stands. The families Rubiaceae, Asteraceae and Poaceae were the dominant families in the sacred forest. Rubiaceae was represented by 11, 14 and 10 species in the undisturbed, moderately disturbed and highly disturbed stands, respectively, whilst the family Asteraceae had 16 species in the moderately disturbed stand and 14 species in the highly disturbed stand. The number of families represented by a single species was reduced significantly from 33 in the undisturbed stand to 23 in the moderately and 21 in the highly disturbed stand. The similarity index was maximum (71%) between the undisturbed and moderately disturbed stand and minimum (33%) between the undisturbed and highly disturbed stands. The Margalef index, Shannon diversity index and evenness index exhibited a similar trend, with highest values in the moderately disturbed stand. In contrast, the Simpson dominance index was highest in the highly disturbed stand. There was a sharp decline in tree density and basal area from the undisturbed (2103 trees ha–1 and 26.9 m2 ha–1) to the moderately disturbed (1268 trees ha–1 and 18.6 m2 ha–1) and finally to the highly disturbed (852 trees ha–1 and 7.1 m2 ha–1) stand. Density–girth curves depicted a successive reduction in number of trees in higher girth classes from the undisturbed to the moderately and highly disturbed stands. The log-normal dominance–distribution curve in the undisturbed and moderately disturbed stands indicated the complex and stable nature of the community. However, the short-hooked curve obtained for the highly disturbed stand denoted its simple and unstable nature.  相似文献   

18.
Conifers, which are widely planted as fast growing tree crops, are invading forested and treeless environments across the globe, causing important changes in biodiversity. However, how small-scale impacts on plant diversity differ according to pine size and habitat context remains unclear. We assessed the effects of different stages of pine invasion on plant communities in forest and steppe sites located in southern Chile. In each site, we sampled plant diversity under and outside the canopy of Pinus contorta individuals, using paired plots. We assessed the relative impact of pine invasion on plant species richness and cover. In both sites, richness and cover beneath pine canopy decreased with increasing pine size (i.e. height and canopy area). A significant negative impact of pines on species richness and plant cover was detected for pines over 4 m in height. The impact of pines on plant richness and cover depended on pine size (i.e. canopy area) and habitat type. Larger pines had more negative impacts than smaller pines in both sites, with a greater impact for a given pine size in the Patagonian steppe compared to the A. araucaria forest. Species composition changed between under and outside canopy plots when pines were 4 m or taller. Pine presence reduced cover of most species. The impacts of pine invasions are becoming evident in forested and treeless ecosystems of southern Chile. Our results suggest that the magnitude of pine invasion impacts could be related to how adapted the invaded community is to tree cover, with the treeless environment more impacted by the invasion.  相似文献   

19.
The understory of exotic tree plantations can have non‐negligible native species richness. Ecological restoration of these sites may include the harvest of trees, depending on the tradeoff between timber income and harvest impacts on biodiversity. This study aimed to investigate how a site can recover from harvest disturbance, by comparing the regeneration of woody species in the understory of two types of 37‐year‐old Pinus taeda plantation (P1 and P2, high and low relative density of pine seedlings in the understory, respectively), with stands that were similar to P2 but subjected to harvest and then abandoned for 15 years (R sites). Secondary forests (SF) were used as references. We sampled three different sites for each stand condition; soil chemical properties, estimations of litter mass, and canopy cover were measured. P1 had low species diversity, and P2 and R had 50 and 46% of SF richness, respectively. The R site contained few pine saplings and was floristically similar to P2; this indicated that 15 years was sufficient for the recovery of plant diversity to near pre‐harvesting levels. Soil fertility was highest in SF and lowest in P1. Thus old plantations of P. taeda with low relative density of pine juveniles can be cost‐effective starting points for restoration. Despite the destructive effects of pine harvest, recovery of native species can occur rapidly. In situations in which clearcutting of pine stands is not planned or possible, modest thinning of P. taeda adults and/or intensive thinning of juveniles could expedite restoration.  相似文献   

20.
Anthropogenic forests, particularly conifer monocultures, today constitute a large proportion of Central European woodland. Conversion of such forest stands into abundantly structured mixed‐species woodland is within the focus of ecosystem restoration and is considered to affect forest biodiversity. Short‐lived tree species play an important role in such conversion processes and may serve as focal species. However, not much is known about their relationship with forest biodiversity. In this study, the short‐lived tree species, European mountain ash (Sorbus aucuparia L.), European white birch (Betula pendula Roth), Downy birch (B. pubescens Ehrh.), and Glossy buckthorn (Frangula alnus P. Mill.), commonly occurring throughout Central Europe, are investigated with regard to their relationship with plant diversity. The focus is on their occurrences in Scots pine (Pinus sylvestris L.)–dominated forests in the Northeast German lowlands. A significant increase in vascular plant diversity is revealed in stands with the selected species’ presence, in comparison to stands without them. Increase in plant species numbers is highest where the respective species occurs in the tree and/or shrub layer, compared with their presence only in the herb layer. For bryophyte species, there is a less strong inverse relationship. An analysis of different species groups, such as threatened, woody, and typical forest species of higher plants, reveals no decrease in species numbers in these groups if short‐lived tree species are present. It is concluded that short‐lived tree species can be indicators for plant diversity assessment within forest restoration processes. As to causal explanations, effects of differing site conditions, assessed by use of Ellenberg indicator values, are discussed as well as possible active effects of the tree species changing their environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号