首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Two experiments were performed in an upland stream to determine the effects of the frequency of physical disturbance on the relationship between an abundant glossosomatid trichopteran (Agapetus monticolus; Banks) and the epilithon upon which it feeds. Artificial cobbles with an established epilithic community were tumbled either every 1, 2 or 4 weeks. The first experiment failed to detect any significant effects of rock tumbling on the abundance of A. monticolus or the epilithon: a result due to several spates. The first experiment did reveal that disturbances may disrupt the ability of A. monticolus to locate patches of abundant food. The second experiment found that although the abundance of A. monticolus was not affected by the disturbances, periphyton abundance was significantly reduced. Increasing the frequency of disturbance did not magnify this effect. Comparisons of these results with other studies of disturbance in streams indicate that the effects of disturbance on herbivory may be highly variable. A variety of factors, such as the relative resistances of the herbivores and the epilithon, need to be examined before the effects of disturbances on lotic herbivorous interactions can be completely understood.  相似文献   

2.
1. Increases in spatial heterogeneity may provide more food, create new resources or interfere with the foraging activities of a herbivore. 2. Three colonization experiments were performed in an upland stream to investigate the effects of one type of spatial heterogeneity (grooves on the substratum) on the relationship between an abundant herbivore, Agapetus monticolus (Banks, Trichoptera), and the epilithon on which it feeds. 3. The results indicate that grooves do not provide any different resources or interfere with the foraging activities of A. monticolus, but may increase food abundance, although the effect of grooves on food abundance appears to vary temporally. 4. Temporal variation in the effects of microspatial complexity raises the possibility that its importance to the community may be over- or underestimated unless experiments are designed to incorporate this temporal variation.  相似文献   

3.
Information on the structure of microalgal assemblages in the epiphyton and epilithon is necessary to understand the origin of phytoplankton in lowland rivers. To this end, we carried out concurrent investigations on phytoplankton, epiphyton and epilithon in 18 reaches of three Estonian rivers during the midsummers of 2002 and 2003. A total of 251 taxa was recorded, of which 192 were epiphyton species, 158 were epilithon species and 150 were phytoplankton species. Canonical correspondence analysis (CCA), based on the 31 most abundant taxa, indicated differences in the structure of the algal assemblages between the different biotopes (phytoplankton, epiphyton and epilithon) as well as between the studied rivers. The composition of the phytoplankton clearly differed from that of the other biotopes, with prevailing small flagellates, a chrysophyte (Synura uvella) and cryptophytes (Rhodomonas lacustris and Cryptomonas erosa). The epiphyton was characterized by a large number of diatoms, while the epilithic community contained filamentous cyanobacteria (Phormidium tergestinum and Planktolyngya sp.) and a green alga (Stigeoclonium tenue) in addition to diatoms. Based on redundancy analysis (RDA), phosphorous was the most relevant parameter determining the distribution of species in the phytoplankton assemblages. Shading by trees on the river bank, dissolved oxygen concentration and water temperature as well as river width determined the distribution of species in the epiphyton. The data set on the epilithon did not reveal any significant relationships between species distribution and the measured environmental parameters.  相似文献   

4.
1. Levels of ash-free dry matter (AFDM) and chlorophyll a in epilithon, benthic participate organic matter (BPOM), invertebrate assemblage composition, and biomass of functional feeding groups were compared in winter and summer at forest and pasture sites in three Victorian streams. 2. Chlorophyll a concentrations of epilithon were significantly higher at pasture than forest sites in winter but not in summer while BPOM was not significantly greater at forest sites in either season. Epilithic biomass as AFDM did not show consistent differences between land uses or seasons. 3. Total biomass of invertebrates did not differ between forest and pasture sites but the biomass of shredders was significantly higher, and that of grazers significantly lower, at forest than pasture sites. A site shaded with an artificial canopy behaved as a forest site for grazers but as a pasture site for shredders. 4. Cluster analyses of invertebrate assemblages grouped pasture sites with forest sites on the same stream at the same season, indicating that assemblage composition was less influenced by land-use differences than by between-stream and seasonal differences. 5. Biomass of functional feeding groups appeared to be a more sensitive indicator of invertebrate assemblage response to land-use alteration than either species diversity/ richness measures, or multivariate assemblage composition measures.  相似文献   

5.
Benthic invertebrates mediate bottom–up and top–down influences in aquatic food webs, and changes in the abundance or traits of invertebrates can alter the strength of top–down effects. Studies assessing the role of invertebrate abundance and behavior as controls on food web structure are rare at the whole ecosystem scale. Here we use a comparative approach to investigate bottom–up and top–down influences on whole anchialine pond ecosystems in coastal Hawai‘i. In these ponds, a single species of endemic atyid shrimp (Halocaridina rubra) is believed to structure epilithon communities. Many Hawaiian anchialine ponds and their endemic fauna, however, have been greatly altered by bottom–up (increased nutrient enrichment) and top–down (introduced fish predators) disturbances from human development. We present the results of a survey of dissolved nutrient concentrations, epilithon biomass and composition, and H. rubra abundance and behavior in anchialine ponds with and without invasive predatory fish along a nutrient concentration gradient on the North Kona coast of Hawai‘i. We use linear models to assess 1) the effects of nutrient loading and fish introductions on pond food web structure and 2) the role of shrimp density and behavior in effecting that change. We find evidence for bottom–up food web control, in that nutrients were associated with increased epilithon biomass, autotrophy and nutrient content as well as increased abundance and size of H. rubra. We also find evidence for top–down control, as ponds with invasive predatory fish had higher epilithon biomass, productivity, and nutrient content. Top–down effects were transmitted by both altered H. rubra abundance, which changed the biomass of epilithon, and H. rubra behavior, which changed the composition of the epilithon. Our study extends experimental findings on bottom–up and top–down control to the whole ecosystem scale and finds evidence for qualitatively different effects of trait‐ and density‐mediated change in top–down influences.  相似文献   

6.
In nature most organisms have to manage conflicting demands of food gathering, predator avoidance, and finding a favorable abiotic environment (oxygen, temperature, etc.) in order to maximize their fitness. In the vertical water column of lakes with high solar ultraviolet radiation (UV) and invertebrate predators, zooplankton face two particularly strong and conflicting selective pressures. During daylight hours invertebrate predators often induce an upward vertical migration of zooplankton prey while potentially damaging UV forces a downward migration. We used 2.2 m long columns suspended vertically in a lake to conduct 2×2 factorial experiments to examine patterns of depth selection behavior by zooplankton in the presence and absence of both the invertebrate predator Chaoborus and UV. We hypothesized that Chaoborus and UV both affect the distribution of zooplankton and a combination of both factors would lead to a narrowing of depth distribution. We found that when Chaoborus were present zooplankton tended to be distributed at shallower depths in the columns, while in the presence of UV they exhibited a deeper distribution. Chaoborus themselves were always found near the bottom of the columns regardless of the UV treatment. Simultaneous exposure to predators and UV resulted in a peak of zooplankton (especially Daphnia catawba) distribution at intermediate depths. In a significant number of cases, depth range was narrowed in response to Chaoborus, UV, or both.  相似文献   

7.
Plants may protect themselves against herbivorous arthropods by providing refuges to predatory arthropods, but they cannot prevent herbivores from taking countermeasures or even from reaping the benefits. To understand whether plants benefit from providing self‐made refuges (so‐called domatia), it is not only necessary to determine the fitness consequences for the plant, but also to assess (1) against which factors the refuge provides protection, (2) why predatory arthropods are more likely to monopolise the refuge, and (3) how herbivorous and predatory arthropods respond to and affect each other in and outside the refuge. In this article, we focus on the last aspect by studying the dynamics of refuge use of a predatory mite (Typhlodromalus aripo) and its consequences for a herbivorous mite (Mononychellus tanajoa) on cassava plants in Benin, West Africa. The refuge, located in‐between the leaf primordia of the cassava apex, is thought to provide protection against abiotic factors and/or intraguild predators. To test whether the predator waits for prey in the apex or comes out, we sampled predator‐prey distributions on leaves and in the apex at 4 hour‐intervals over a period of 24 hours. The predatory mites showed pronounced diurnal changes in within‐plant distribution. They were in the apices during the day, moved to the young leaves during night and returned to the apices the next morning. Nocturnal foraging bouts were more frequent when there were more herbivorous mites on the leaves near the apex. However, the foraging predators elicited an avoidance response by mobile stages of their prey, since these were more abundant on the first 20 leaves below the apex during late afternoon, than on the same leaves during night. These field observations on cassava plants show that (1) during daytime predatory mites monopolise the apical domatia, (2) they forage on young leaves during night and (3) elicit avoidance by within‐plant, vertical migration of mobile stages of the herbivorous mites. We hypothesize that cassava plants benefit from apical domatia by acquiring protection for their photosynthetically most active, young parts, because predatory mites (1) protect primordial leaves in the apex, (2) reduce the densities of herbivorous mites on young leaves, and (3) cause herbivorous mites to move down to less profitable older leaves.  相似文献   

8.
  • 1 Plant patch shape may affect the abundance of herbivorous insects. Patches of the same size but longer or irregular have a higher perimeter/area relationship (P/A) than square or regular ones, which may determine the immigration, emigration and abundance of individuals in the patch.
  • 2 Only specialist species should be affected by plant patch shape. Those species that are more abundant in smaller patches should be more abundant in patches with higher P/A, whereas those that are more abundant in larger patches should be more abundant in patches with lower P/A.
  • 3 We studied the density of eggs, larvae and pupae of Pieris brassicae, Plutella xylostella and Trichoplusia ni in square (low P/A) and I‐shaped (high P/A) patches of 144 plants of Brassica oleracea. We also estimated their immigration to these patches, and the final plant weight.
  • 4 Plant patch shape affected the abundance, but not the distribution, of the two specialist species. Whereas P. brassicae was denser in I‐shaped patches, P. xylostella was more abundant in square patches. The generalist T. ni was not affected by patch shape. Immigration of P. brassicae was higher in I‐shaped patches, but immigration of P. xylostella and T. ni was not affected by patch shape. Plants were heavier in the centre of square patches.
  • 5 Our results suggest that plant patch shape affects the density of herbivorous insects and should be considered independently from other plant patch variables when studying the population dynamics of these organisms.
  相似文献   

9.
Zooplankton grazing impact on algae, heterotrophic flagellates and bacteria, as well as invertebrate predation on herbivorous zooplankton, were investigated in two sub-Antarctic lakes with extremely simple food chains. The two species of herbivorous zooplankton present in the lakes (the copepods boeckella michaelseni and Pseudoboeckella poppei) exerted substantial grazing pressure on algae. However, the dominant algal species exhibited properties that enabled them to avoid (large size or extruding spines, e.g. Staurastrum sp., Tribonema sp.) or compensate (recruitment from the sediment, Mallomonas sp.) grazing. There are only two potential invertebrate predators on the herbivorous copepods in the two lakes: the copepod Parabroteas sarsi and the diving beetle Lancetes claussi. Vertebrate predators are entirely abscent from sub-Antarctic lakes. Based on our experiments, we estimated that the predators would remove at most about 0.4% of the herbivorous copepods per day, whereas planktivorous fish, if present in the lakes, would have removed 5–17% of the zooplankton each day. Consequently, the invertebrate predators in these high-latitude lakes had only a marginal predation impact compared to the predation pressure on zooplankton in the presence of vertebrate predators in temperate lakes. The study of these simple systems with only two quantitatively functionally important trophic links, suggests that high grazing pressure foreces the algal community towards forms with grazer resistant adaptations such as large size, recruitment from another habitat, and grazer avoidance spines. We propose that due to such adaptations, predictions from food web theory are only partly corroborated, i.e. algal biomass actually increases with increasing productivity, although the grazer community is released from predation. In more species-rich and complex systems, e.g temperate lakes with three functionally important links, such adaptations are likely to be even more important, and, consequently, the observable effects of trophic interactions from top predators on lower trophic levels even more obscured.  相似文献   

10.
Males are expected to adjust testes investment according to the varying level of sperm competition that they experience. Spatial and temporal variation in population density likely influences sperm competition. In herbivorous aquatic organisms, densities often decrease along a vertical depth gradient, because their food is photosynthetic and thus becomes less abundant in deeper regions where less light penetrates. This decrease should be dramatic on a steep slope, which allows testing of the association between density and testes investment at the within‐population level. We tested the effect in the socially monogamous herbivorous cichlid fish Variabilichromis moorii living on a steep slope in Lake Tanganyika. We examined competitor density and food abundance as ecological factors, territory defense behaviors and phenotypic traits (testes investment and somatic investment), and compared them between shallow (4–6 m depth) and deep habitats (10–13 m depth) separated by several dozen meters. We found that food availability drastically decreased with increasing depth and that V moorii was much more abundant in shallower habitats. Males in shallower habitats were in better physical condition (based on fat and liver mass) despite experiencing greater costs in terms of territory defense. Testes investment differed in areas with different competitor density and food abundance along a vertical depth gradient, but competitor density was the most explanatory factor of the difference. This suggests that this herbivorous fish would change testes investment in response to population density.  相似文献   

11.
In Lake Constance, Eurasian bream Abramis brama (L.) spawn in very shallow littoral areas by the beginning of May. They attach their adhesive eggs to pebble and cobble substratum at <40 cm depth. Increasing water levels before spawning inundate bare substratum to which bream eggs may attach better than to deeper substratum covered by epilithon. Consequently, the water level increase prior to spawning should determine the amount of pristine spawning substratum available to bream and thus influence their breeding success. In order to test this hypothesis, the influence of hydrology and climate on the abundance of age-0 bream was combined with the results from field investigations on the egg survival and abundance of age-0 bream. A strong positive correlation between the mean water level increase during the spawning season of bream (April–May) and the abundance of juvenile bream was found. In contrast, the absolute water level during spawning and during the nursery stage in summer, the cumulative temperature during the egg, larval and juvenile stages and two North Atlantic Oscillation (NAO) indices did not affect the abundance of juvenile bream. The field investigations confirmed that bream eggs attach better to and have higher survival rates on bare substratum than on substratum with epilithon cover. Accordingly, eggs within a spawning habitat of bream were most abundant between 10 and 20 cm depth, where the epilithon cover was lower than at depths exceeding 30 cm. The results of this study confirm an adverse influence of epilithon cover on the attachment and subsequent survival of bream eggs and emphasize the importance of spring inundations for the successful breeding of the bream. Handling editor: J. A. Cambray  相似文献   

12.
Grazer species effects on epilithon nutrient composition   总被引:3,自引:0,他引:3  
1. Field and laboratory experiments were conducted to investigate the excretion stoichiometry of nitrogen (N) and phosphorus (P) of two benthic macroinvertebrate grazers, the crayfish Orconectes propinquus and the snail Elimia livescens, that differ in body stoichiometry (mean body molar N : P 18 and 28, respectively). Crayfish excretion had a significantly higher ammonium : soluble reactive phosphorus (SRP) ratio in the laboratory and in three natural streams than did snails, as predicted by ecological stoichiometry theory. 2. In greenhouse recirculating artificial streams, treatments consisting of crayfish, snails, or no grazers were used to examine responses in dissolved nutrient concentrations and epilithon nutrient composition and limitation. SRP concentrations depended upon the grazer species, with the snail treatment having a higher SRP concentration than other treatments (P < 0.05). Dissolved inorganic N was not affected by grazers, but appeared to be rapidly incorporated in epilithon. 3. Epilithon N content was dependent upon the grazer species present, with the crayfish treatment having a significantly higher N content than other treatments (P = 0.001). No grazer species effects on epilithon P content were found. However, both grazer treatments had significantly lower epilithon P content than the no‐grazer treatment. 4. Traditionally, studies have focused on how grazer‐induced structural changes to epilithon can alter epilithon nutrient dynamics, but this structural mechanism could not solely explain differences in epilithon nutrient contents and ratios in the present study. Our results rather suggest that benthic grazers can alter epilithon nutrient composition and limitation via nutrient excretion. Consequently, macroinvertebrate grazers may serve as ‘nutrient pumps’ that partly regulate the availability of nutrients to algae in stream ecosystems.  相似文献   

13.
SUMMARY.
  • 1 In many streams, blackfly larvae rapidly colonize scoured surfaces, then decline in numbers as other species are still increasing. Such a colonization pattern may be generated by species that seek disturbed substrata because they prefer scoured surfaces having low epilithon cover (i.e. they are opportunists) or because of lowered faunal densities (i.e. they are fugitives), but this has rarely been tested.
  • 2 In the Acheron River, south-eastern Australia, the larvae of the blackfly Austrosimulium torrentium show the typical pattern of increase and decline whereas A. victoriae shows a different pattern of more gradual increase.
  • 3 An experiment showed that A. torrentium, consistent with its colonization pattern, responded strongly to treatments that mimicked the effects of disturbance; it colonized bricks with few other animals present regardless of epilithon cover and therefore is potentially a fugitive species. A. victoriae did not respond convincingly to treatments, which is also consistent with its colonization pattern.
  • 4 Blackfly larvae of both species preferentially colonized bricks that were in fast-moving water. Hence, A. torrentium only responded to the densities of other fauna when bricks occurred in currents greater than approximately 30 cm s?1.
  • 5 Whilst epilithon cover did not affect abundance of blackfly larvae, it did affect attachment positions. In one experimental treatment, epilithon was reduced on one half of the top surfaces of bricks. More than 50% of larvae on these bricks were attached to the epilithon-reduced halves.
  • 6 Our results show that functional feeding or taxonomic groups do not necessarily contain ecologically equivalent taxa; colonization patterns may provide a more useful way of categorizing species for the purposes of modelling these assemblages.
  相似文献   

14.
1. Quantitative samples of Agapetus pontona and Agapetus monticolus larvae were taken at two sites on each of three rivers in the catchment of the Acheron River (i.e. Little River, Steavenson River and Acheron River). Both species were univoltine with A. pontona having a 5–6-month life cycle (spring to late summer) and A. monticolus a 10-month life cycle (autumn to early summer). 2. Population densities, biomass (B), growth rates and mortality patterns derived from these field data were used to calculate secondary production (P) and turnover (P/B). At each site, these features were measured for the whole of the A. pontona life cycle, but only for the last 3 months of the A. monticolus life cycle. 3. Growth rates were highest at the sites on the Little River during summer for both species: 1.8–1.9% dry weight day?1 for A. pontona and 2.0–2.2% dry weight day?1 for A. monticolus. Turnover ratios (P/B) were also highest at the Little River sites: 3.2–6.3 for A. pontona and 1.6–1.9 for A. monticolus. Production was variable and was not significantly different among rivers for A. pontona (28.4–222.1 mg m?2 per 6 months) but was for A. monticolus (70.5–123.8 mg m?2 per 3 months for the Little River compared with 14.8–23.3 mg m?2 at the other sites). 4. Two of the rivers were subject to higher levels of rock movement during summer than the third (Little River). It was suggested that the higher growth rates (and turnover ratios) in the Little River were caused by the lower levels of rock movement causing less disruption to the feeding of the larvae. 5. Little or no larval mortality of A. pontona was observed at any site. However, mortality occurred between instar 5 and the pupal stage. This varied in a density dependent fashion, suggesting population regulation occurred: the higher the larval density the greater the mortality suffered by the pupae. No such density dependent pattern occurred for the mortality between instar 5 and the pupal stage of A. monticolus. 6. The population of A. pontona was not food limited and larval densities were low. Competition appeared to occur for pupation sites. Low and relatively constant discharges during the late summer when A. pontona pupated appeared to provide more predictable conditions than those experienced by A. monticolus in the spring when discharge was very variable resulting in the stranding (and thus death) of pupae above the water line. Such unpredictable conditions would not foster density dependent population regulation via pupal mortality.  相似文献   

15.
While the distribution of herbivorous insects over leaves along the stem often shows a peak at some distance from the apex this does not necessarily reflect an innate preference as alternative explanations can be provided such as impact of predators and inter- or intraspecific competitors. It is of interest to determine which factors shape the distribution of insects over the leaves of a plant. Do leaves from different positions differ in suitability for insects and is that reflected in the insect's preference, or are other factors involved? In this paper we assess how the herbivorous insect western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), chooses among leaves from different positions relative to the apex of cucumber, Cucumis sativus (L.) plants. On leaf discs of a susceptible and three partially resistant cucumber accessions, thrips reproduction was highest on apical leaves and lowest on basal leaves. In dual-choice essays thrips females preferred younger leaves over older leaves for oviposition in all cucumber accessions tested, as was predicted from the no-choice assay. This indicates that differences in leaf suitability are an important factor in determining thrips distribution on cucumber plants.  相似文献   

16.
1. Nitrogen (N) and phosphorus (P) fluxes via excretion by benthic invertebrates were quantified in a eutrophic reservoir (Acton Lake, Ohio, U.S.A.). We quantified variation in nutrient fluxes seasonally (June until November 1997), spatially (three sites) and among taxa (chironomids, tubificid oligochaetes and Chaoborus). 2. The three taxa differed in spatial distribution and contribution to nutrient fluxes. Tubificids were the most abundant taxon at two oxic sites (1.5 and 4 m depth), and were exceedingly rare at an anoxic, hypolimnetic site (8 m). Chironomids were abundant only at the shallowest oxic site. Chaoborus was the only abundant taxon at the anoxic site. Total benthic invertebrate biomass was greatest at the shallowest site and lowest at the anoxic, hypolimnetic site. 3. Mass‐specific excretion rate [μmol NH4–N or soluble reactive P (SRP) excreted mg dry mass–1 h–1] varied among experiments and was influenced by temperature. Differences among taxa were not significant. Thus, nutrient flux through benthic invertebrates was affected more by total invertebrate biomass and temperature than by species composition. 4. Fluxes of N and P via benthic invertebrate excretion (μmol NH4–N or SRP m–2 day–1) were greatest at the oxic sites, where fluxes were dominated by the excretion of tubificids and chironomids. The N and P fluxes at the anoxic site were much lower, and were dominated by excretion by Chaoborus. The ratio of N and P excreted by the benthic invertebrate assemblage varied seasonally and was lowest at the anoxic site. 5. Comparison with other measured inputs shows that excretion by benthic invertebrates could be an important source of nutrients, especially of P. However, the relative importance of nutrient excretion by the benthos varies greatly spatially and temporally.  相似文献   

17.
In Hawaii, invasive plants have the ability to alter litter-based food chains because they often have litter traits that differ from native species. Additionally, abundant invasive predators, especially those representing new trophic levels, can reduce prey. The relative importance of these two processes on the litter invertebrate community in Hawaii is important, because they could affect the large number of endemic and endangered invertebrates. We determined the relative importance of litter resources, represented by leaf litter of two trees, an invasive nitrogen-fixer, Falcataria moluccana, and a native tree, Metrosideros polymorpha, and predation of an invasive terrestrial frog, Eleutherodactylus coqui, on leaf litter invertebrate abundance and composition. Principle component analysis revealed that F. moluccana litter creates an invertebrate community that greatly differs from that found in M. polymorpha litter. We found that F. moluccana increased the abundance of non-native fragmenters (Amphipoda and Isopoda) by 400% and non-native predaceous ants (Hymenoptera: Formicidae) by 200%. E. coqui had less effect on the litter invertebrate community; it reduced microbivores by 40% in F. moluccana and non-native ants by 30% across litter types. E. coqui stomach contents were similar in abundance and composition in both litter treatments, despite dramatic differences in the invertebrate community. Additionally, our results suggest that invertebrate community differences between litter types did not cascade to influence E. coqui growth or survivorship. In conclusion, it appears that an invasive nitrogen-fixing tree species has a greater influence on litter invertebrate community abundance and composition than the invasive predator, E. coqui.  相似文献   

18.
1. Pacific salmon (Oncorhynchus spp.) deliver salmon‐derived nutrients (SDN) to the streams in which they spawn. However, many stream parameters, such as discharge and spawner abundance, can vary from year to year, which could alter the quantity and flux of SDN. 2. Over six consecutive years, we studied responses in streamwater chemistry and epilithon (i.e. the microbial community on submerged rocks) to salmon spawners in Fish Creek, southeastern Alaska, U.S.A. The lower reach of Fish Creek receives spawners of several salmon species, while the upper reach does not receive spawners because of an intervening waterfall. 3. We estimated salmon spawner biomass, analysed water chemistry [ammonium, nitrate, soluble reactive phosphorus (SRP) and dissolved organic carbon (DOC)], and measured epilithon abundance [as chlorophyll a (chl a) and ash‐free dry mass (AFDM)] in Fish Creek. Measurements were made in both the upper and lower reaches, before, during and after the major salmon runs. 4. Absolute values and relative differences indicated that the presence of salmon spawners consistently increased dissolved ammonium (by 58 μg L−1 on average, 41× over background), SRP (by 6 μg L−1, 14×), epilithon chl a (by 35 mg m−2, 16×), and epilithon AFDM (by 3 g m−2, 8×). Salmon spawners did not increase nitrate or DOC in either absolute or relative amounts. The persistence and magnitude of spawner effects varied among years and appeared to reflect weather‐driven hydrology as well as spawner biomass. 5. Salmon‐derived nutrients can stimulate the growth of primary producers by increasing streamwater nutrient concentrations, but this positive influence may be modulated by other factors, such as water temperature and discharge. To better assess the ecological influence of SDN on stream biota, future studies should explicitly consider the role of key environmental factors and their temporal and spatial dynamics in stream ecosystems.  相似文献   

19.
Abstract The impact of predation over a 3 week period by the small (mean length 53 mm) salmoniform fish, Galaxias olidus, on the invertebrate communities in the still summer pools of an intermittent stream in southeastern Australia was tested using enclosures that incorporated both deep and shallow habitat areas. Twenty G. olidus, a key generalist predator in the system studied, were enclosed for 3 weeks in 1.5 × 1.7 m enclosures. Galaxias olidus was found to reduce significantly the distribution and abundance of air-breathing nektonic species. In contrast, the abundance of non-air-breathing nektonic species increased in the presence of fish in the deep areas of the enclosures. There was no significant impact offish predation on species richness, total abundance, epibenthic or interstitial species. The most likely reason for the general lack of response to the presence of fish by epibenthic and interstitial species is the availability of abundant spatial refugia from predation within the complex substrate of the stream. In contrast, air-breathing nektonic species are vulnerable to predation by fish due to the lack of refuges in the open water. Increases in the abundance of non-air-breathing nektonic species in the presence of fish may be related to reductions in the abundance of predatory dytiscid beetles. Significant differences between deep and shallow habitats were observed in total abundance and species richness, and in the abundances of air-breathing nektonic and epibenthic species, suggesting that physicochemical factors play a key role in determining invertebrate distribution within stream pools.  相似文献   

20.
A manipulative field experiment was performed to determine the effect of birds, subsidized by aquatic insect emergence, on the insect herbivores in a riparian deciduous forest. Insectivorous birds were observed more frequently in the riparian forest than in upland forest away from the stream, utilizing both herbivorous insects feeding on the riparian vegetation and aquatic insects emerging from the stream as their prey. Field experiments revealed that the insect herbivore population in the riparian forest was more depressed by bird predation than that in the upland forest. This suggests that allochthonous prey input to the in situ prey population was responsible for a modification in the interaction between birds and herbivorous insects, resulting in a heterogeneous food web structure in the forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号