首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Sexual selection is predicted to drive the coevolution of mating signals and preferences (mating traits) within populations, and could play a role in speciation if sexual isolation arises due to mating trait divergence between populations. However, few studies have demonstrated that differences in mating traits between populations result from sexual selection alone. Experimental evolution is a promising approach to directly examine the action of sexual selection on mating trait divergence among populations. We manipulated the opportunity for sexual selection (low vs. high) in populations of Drosophila pseudoobscura. Previous studies on these experimental populations have shown that sexual selection manipulation resulted in the divergence between sexual selection treatments of several courtship song parameters, including interpulse interval (IPI) which markedly influences male mating success. Here, we measure female preference for IPI using a playback design to test for preference divergence between the sexual selection treatments after 130 generations of experimental sexual selection. The results suggest that female preference has coevolved with male signal, in opposite directions between the sexual selection treatments, providing direct evidence of the ability of sexual selection to drive the divergent coevolution of mating traits between populations. We discuss the implications in the context sexual selection and speciation.  相似文献   

2.
Understanding the biological conditions and the genetic basis of early stages of sexual isolation and speciation is an outstanding question in evolutionary biology. It is unclear how much genetic and phenotypic variation for mating preferences and their phenotypic cues is segregating within widespread and human-commensal species in nature. A recent case of incipient sexual isolation between Zimbabwe and cosmopolitan populations of the human-commensal fruit fly Drosophila melanogaster indicates that such species may initiate the process of sexual isolation. However, it is still unknown whether other geographical populations have undergone evolution of mating preferences. In this study we present new data on multiple-choice mating tests revealing partial sexual isolation between the United States and Caribbean populations. We relate our findings to African populations, showing that Caribbean flies are partially sexually isolated from Zimbabwe flies, but mate randomly with West African flies, which also show partial sexual isolation from the United States and Zimbabwe flies. Thus, Caribbean and West African populations seem to exhibit distinct mating preferences relative to populations in the United States and in Zimbabwe. These results suggest that widespread and human-commensal species may harbor different types of mating preferences across their geographical ranges.  相似文献   

3.
Reinforcement of species boundaries may alter mate recognition in a way that also affects patterns of mate preference among conspecific populations. In the fly Drosophila subquinaria, females sympatric with the closely related species D. recens reject mating with heterospecific males as well as with conspecific males from allopatric populations. Here, we assess geographic variation in behavioral isolation within and among populations of D. subquinaria and use cline theory to understand patterns of selection on reinforced discrimination and its consequences for sexual isolation within species. We find that selection has fixed rejection of D. recens males in sympatry, while significant genetic variation in this behavior occurs within allopatric populations. In conspecific matings sexual isolation is also asymmetric and stronger in populations that are sympatric with D. recens. The clines in behavioral discrimination within and between species are similar in shape and are maintained by strong selection in the face of gene flow, and we show that some of their genetic basis may be either shared or linked. Thus, while reinforcement can drive extremely strong phenotypic divergence, the long‐term consequences for incipient speciation depend on gene flow, genetic linkage of discrimination traits, and the cost of these behaviors in allopatry.  相似文献   

4.
Synopsis We analyzed variation in allozymes and mating preferences in 12 populations across much of the range of the sailfin molly, Poecilia latipinna. Sailfin mollies can be sympatric with its sexual parasite Amazon mollies, P. formosa. Amazon mollies must co-exist and mate with bisexual males of closely related species (including sailfin mollies) to induce embryogenesis but inheritance is strictly maternal. Where sailfin and Amazon mollies are sympatric there is evidence of reproductive character displacement as males show a significantly stronger mating preference for sailfin molly females over Amazon mollies compared to preferences of males from allopatric populations. From the allozyme data we found a moderate amount of genetic variation across all populations but this variation did not reveal significant partitioning between sympatric and allopatric populations. Additionally, we found no evidence for isolation by distance as genetic distance was not significantly correlated with geographic distance. While allozyme variation also did not significantly correlate with male mating preferences, there was a significant correlation between male mating preferences and geographic distance. This correlation between mating preferences and geographic distance may have arisen from coevolution with Amazon mollies resulting in reproductive character displacement. Taken together, the distribution of genetic and behavioral variation among sympatric and allopatric populations suggests that behavioral evolution has outpaced evolution at the allozyme loci we examined in P. latipinna.  相似文献   

5.
The presence of positive genetic correlations between oviposition or feeding preference for hosts, and performance on those hosts, is of fundamental importance to models of host race formation, sympatric speciation, and the maintenance of genetic variation within phytophagous insect populations. In this paper, I estimate the amount of genetic variation in oviposition preference and larval performance present in two California populations of a cosmopolitan pest of stored legumes, Callosobruchus maculatus (Bruchidae: Coleoptera), and examine whether positive genetic correlations exist between preference and performance. High levels of genetic variation in both preference and performance were detected in one population (Bay Area population, h2 = 0.73 for oviposition preference), but not in another population (Davis population). A second estimate of the amount of genetic variation for oviposition preference in the Bay Area population, after three generations of laboratory rearing, supports the hypothesis that the absence of significantly nonzero heritabilities in the Davis population is probably due to the three generations of laboratory rearing prior to the start of the experiment. No positive genetic correlations were detected between preference and any performance character measured. Data are also presented on the genetic correlations between performance on azuki (Vigna angularis) and cowpea (Vigna unguiculata). Genetic correlations were found to be positive for all characters in both populations of C. maculatus (range 0.132 to 0.542).  相似文献   

6.
Understanding the fate of hybrids in wild populations is fundamental to understanding speciation. Here we provide evidence for disruptive sexual selection against hybrids between Heliconius cydno and Heliconius melpomene. The two species are sympatric across most of Central and Andean South America, and coexist despite a low level of hybridization. No-choice mating experiments show strong assortative mating between the species. Hybrids mate readily with one another, but both sexes show a reduction in mating success of over 50% with the parental species. Mating preference is associated with a shift in the adult colour pattern, which is involved in predator defence through Müllerian mimicry, but also strongly affects male courtship probability. The hybrids, which lie outside the curve of protection afforded by mimetic resemblance to the parental species, are also largely outside the curves of parental mating preference. Disruptive sexual selection against F(1) hybrids therefore forms an additional post-mating barrier to gene flow, blurring the distinction between pre-mating and post-mating isolation, and helping to maintain the distinctness of these hybridizing species.  相似文献   

7.
B. N. Singh 《Genetica》1996,97(3):321-329
Drosophila ananassae is a cosmopolitan and domestic species. It occupies a nuique status among the Drosophila species due to certain peculiarities in its genetic behaviour. The most unusual feature of this species is spontaneous male recombination in appreciable frequency. The present review summarises the work done on population and behaviour genetics of D. ananassae from India. Population dynamics of three cosmopolitan inversions has been studied in Indian population of D. ananassae and it is evident from the results that there is a considerable degree of genetic divergence at the level of inversion polymorphism. In general, the populations from south India show more differentiation than those from the north. These three cosmopolitan inversions, which are coextensive with the species, exhibit heterosis. Interracial hybridization does not lead to beaakdown of heterosis, which suggests that evidence for coadaptation is lacking in geographic populations of D. ananassae. Heterosis appears to be simple luxuriance rather than populational heterosis (coadaptation). Unlinked inversions occur in random associations, indicating no interchromosomal interactions. However, two inversions of the third chromosome often show strong linkage disequilibrium in laboratory populations, which is due to epistatic gene interaction and suppression of crossing-over. Genetic variations for certain allozyme polymorphism and sternoleural bristle phenotypes in Indian populations of D. ananassae have also been observed.A number of investigations have also been carried out on certain aspects of behaviour genetics of Indian D. ananassae. There is evidence for sexual isolation within D. ananassae. Significant variations in mating propensity of several isofemale strains, inversion karyotypes, the diminishing effects of certain mutations on sexual activity of males and positive response to selection for high and low mating propensity provide evidence for genetic control of sexual behaviour in D. ananassae. Males contribute more to variation and thus are more subject to intra-sexual selection than females. Evidence for rare male mating advantage has also been presented. Geographic strains of D. ananassae show variation with respect to oviposition site preference. The results of studies on pupation site preference, which is an important component of larval behaviour, suggest that larval pupation behaviour in D. ananassae is under polygenic control with a substantial amount of additive genetic variation.  相似文献   

8.
Understanding incipient sexual isolation and speciation is an important pursuit in evolutionary biology. The fruit fly Drosophila melanogaster is a useful model to address questions about the early stages of sexual isolation occurring within widespread species. This species exhibits sexual isolation between cosmopolitan and African flies, especially from Zimbabwe populations. In addition, we have recently described another example of partial sexual isolation between some US and Caribbean populations. This and other phenotypic data suggest that Caribbean flies might be segregating African traits. In the present work we study the geographical variation at the pheromone locus desaturase-2, as well as morphology and courtship behavior across the US-Caribbean region. We find that US and Caribbean populations show sharp geographical clines in all traits and demonstrate that Caribbean traits are more similar to those of Africa than to US populations. Further, African traits in the Caribbean are associated with sexual isolation and best explain variation in sexual isolation when all traits are considered together. These results imply that Caribbean mating preferences are likely to be based on African traits and that even at such early stages of sexual isolation, individuals may already cue in on several traits simultaneously during mate choice.  相似文献   

9.
One proposed mechanism of speciation is divergent sexual selection, whereby divergence in female preferences and male signals results in behavioural isolation. Despite the appeal of this hypothesis, evidence for it remains inconclusive. Here, we present several lines of evidence that sexual selection is driving behavioural isolation and speciation among populations of an Amazonian frog (Physalaemus petersi). First, sexual selection has promoted divergence in male mating calls and female preferences for calls between neighbouring populations, resulting in strong behavioural isolation. Second, phylogenetic analysis indicates that populations have become fixed for alternative call types several times throughout the species' range, and coalescent analysis rejects genetic drift as a cause for this pattern, suggesting that this divergence is due to selection. Finally, gene flow estimated with microsatellite loci is an average of 30 times lower between populations with different call types than between populations separated by a similar geographical distance with the same call type, demonstrating genetic divergence and incipient speciation. Taken together, these data provide strong evidence that sexual selection is driving behavioural isolation and speciation, supporting sexual selection as a cause for speciation in the wild.  相似文献   

10.
Contact zones provide important insights into the evolutionary processes that underlie lineage divergence and speciation. Here, we use a contact zone to ascertain speciation potential in the red-eyed treefrog (Agalychnis callidryas), a brightly coloured and polymorphic frog that exhibits unusually high levels of intraspecific variation. Populations of A. callidryas differ in a number of traits, several of which are known sexual signals that mediate premating reproductive isolation in allopatric populations. Along the Caribbean coast of Costa Rica, a ~100 km contact zone, situated between two phenotypically and genetically divergent parent populations, contains multiple colour pattern phenotypes and late-generation hybrids. This contact zone provides the opportunity to examine processes that are important in the earliest stages of lineage divergence. We performed analyses of colour pattern variation in five contact zone sites and six parental sites and found complex, continuous colour variation along the contact zone. We found discordance between the geographic distribution of colour pattern and previously described genomic population structure. We then used a parental site and contact zone site to measure assortative mating and directional selection from naturally-occurring amplectant mating pairs. We found assortative mating in a parental population, but no assortative mating in the contact zone. Furthermore, we uncovered evidence of directional preference towards the adjacent parental phenotype in the contact zone population, but no directional preference in the parent population. Combined, these data provide insights into potential dynamics at the contact zone borders and indicate that incipient speciation between parent populations will be slowed.  相似文献   

11.
Fisher's runaway process is an explanation for the origin of conspicuous features which make one sex more attractive to the other. It has been suggested that it could lead to the evolution of sexual characters that significantly impair viability. Runaway selection requires a genetic correlation between alleles affecting the sexual character and alleles affecting the preference. Correlations may be expected because of assortative mating when there is variation in both the sexual character and sexual preferences. We contend that such genetic correlations are unlikely to persist in finite populations. We present simulations which confirm our expectations. They suggest that assortative mating is inefficient at generating correlations, especially if sexual selection maintains characters away from their viability optimum. In finite populations, such weak correlations will be overwhelmed by drift.  相似文献   

12.
It is widely recognized that there are basic conflicts between the resource needs of a plant for paternal versus maternal functions. In dioecious species, these divergent demands, and the selection pressures they impose, can lead to the evolution of sexual dimorphism. The present study was conducted to assess the potential for the evolution of sexual dimorphism in Silene latifolia by evaluating the genetic variation and genetic correlation between characters and between the sexes for a range of growth and reproductive characters. Sexual dimorphism is largely restricted to reproductive characters, particularly flower number and flower size. A canonical correlation analysis revealed considerable intercorrelation between growth characters, such as germination date, height, and leaf size, and reproductive characters; plants that grow fast early on also flower earlier, and plants that produce big leaves also produce big flowers. There was genetic variation for several sexually dimorphic characters; much of the focus in this analysis was on flower size, particularly calyx diameter. Finally, genetic correlations within and between the sexes were found that limit the rate of evolutionary divergence between the sexes. The genetic results suggest that S. latifolia has been subject to divergent selection on the two sexes for a long period of time, bringing about a gradual fixation of sex-limited gene effects, so that the remaining genetic effects are expressed in both sexes. Genetic correlations between the sexes that arise from this residual variation impose limits on further evolutionary change.  相似文献   

13.
We review the significance of two forms of sexual conflict (different evolutionary interests of the two sexes) for genetic differentiation of populations and the evolution of reproductive isolation. Conflicting selection on the alleles at a single locus can occur in males and females if the sexes have different optima for a trait, and there are pleiotropic genetic correlations between the sexes for it. There will then be selection for sex limitation and hence sexual dimorphism. This sex limitation could break down in hybrids and reduce their fitness. Pleiotropic genetic correlations between the sexes could also affect the likelihood of mating in interpopulation encounters. Conflict can also occur between (sex-limited) loci that determine behaviour in males and those that determine behaviour in females. Reproductive isolation may occur by rapid coevolution of male trait and female mating preference. This would tend to generate assortative mating on secondary contact, hence promoting speciation. Sexual conflict resulting from sensory exploitation, polyspermy and the cost of mating could result in high levels of interpopulation mating. If females evolve resistance to make pre- and postmating manipulation, males from one population could be more successful with females from the other, because females would have evolved resistance to their own (but not to the allopatric) males. Between-locus sexual conflict could also occur as a result of conflict between males and females of different populations over the production of unfit hybrids. We develop models which show that females are in general selected to resist such matings and males to persist, and this could have a bearing on both the initial level of interpopulation matings and the likelihood that reinforcement will occur. In effect, selection on males usually acts to promote gene flow and to restrict premating isolation, whereas selection on females usually acts in the reverse direction. We review theoretical models relevant to resolution of this conflict. The winning role depends on a balance between the ''value of winning'' and ''power'' (relating to contest or armament costs): the winning role is likely to correlate with high value of winning and low costs. Sperm-ovum (or sperm-female tract) conflicts (and their plant parallels) are likely to obey the same principles. Males may typically have higher values of winning, but it is difficult to quantify ''power'', and females may often be able to resist mating more cheaply than males can force it. We tentatively predict that sexual conflict will typically result in a higher rate of speciation in ''female-win'' clades, that females will be responsible for premating isolation through reinforcement, and that ''female-win'' populations will be less genetically diverse.  相似文献   

14.
The Kaneshiro model proposes a role for sexual selection in peripatric speciation. During population bottlenecks, derived males lose attractive traits and become discriminated against by ancestral females, whereas derived females are selected to be less choosy. This permits novel mate choice cues to evolve in derived populations. In a quantitative analysis of laboratory experiments, we show that bottlenecked males have indeed become less attractive, but females have not lost their ancestral preferences. Contrary to the model, mating asymmetries were not limited to bottlenecks, but regularly occurred between derived and ancestral populations. The simplest explanation for the observed mating asymmetries is loss of genetic variation and inbreeding in the derived populations. The Kaneshiro process is unlikely to isolate small daughter populations from their ancestor but with slight modifications it may become a strong candidate for speciation in allopatry manifested as isolation between daughter populations in secondary contact.  相似文献   

15.
Theory suggests that, under some circumstances, sexual conflict over mating can lead to divergent sexually antagonistic coevolution among populations for traits associated with mating, and that this can promote reproductive isolation and hence speciation. However, sexual conflict over mating may also select for traits (e.g. male willingness to mate) that enhance gene flow between populations, limiting population divergence. In the present study, we compare pre‐ and post‐mating isolation within and between two species characterized by male–female conflict over mating rate. We quantify sexual isolation among five populations of the seed bug Lygaeus equestris collected from Italy and Sweden, and two replicates of a population of the sister‐species Lygaeus simulans, also collected from Italy. We find no evidence of reproductive isolation amongst populations of L. equestris, suggesting that sexual conflict over mating has not led to population divergence in relevant mating traits in L. equestris. However, there was strong asymmetric pre‐mating isolation between L. equestris and L. simulans: male L. simulans were able to mate successfully with female L. equestris, whereas male L. equestris were largely unable to mate with female L. simulans. We found little evidence for strong post‐mating isolation between the two species, however, with hybrid F2 offspring being produced. Our results suggest that sexual conflict over mating has not led to population divergence, and indeed perhaps supports the contrary theoretical prediction that male willingness to mate may retard speciation by promoting gene flow.  相似文献   

16.
Sexual selection acting on small initial differences in mating signals and mate preferences can enhance signal–preference codivergence and reproductive isolation during speciation. However, the origin of initial differences in sexual traits remains unclear. We asked whether biotic environments, a source of variation in sexual traits, may provide a general solution to this problem. Specifically, we asked whether genetic variation in biotic environments provided by host plants can result in signal–preference phenotypic covariance in a host‐specific, plant‐feeding insect. We used a member of the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae) to assess patterns of variation in male mating signals and female mate preferences induced by genetic variation in host plants. We employed a novel implementation of a quantitative genetics method, rearing field‐collected treehoppers on a sample of naturally occurring replicated host plant clone lines. We found remarkably high signal–preference covariance among host plant genotypes. Thus, genetic variation in biotic environments influences the sexual phenotypes of organisms living on those environments in a way that promotes assortative mating among environments. This consequence arises from conditions likely to be common in nature (phenotypic plasticity and variation in biotic environments). It therefore offers a general answer to how divergent sexual selection may begin.  相似文献   

17.
The unique aspects of speciation and divergence in peripheral populations have long sparked much research. Unidirectional migration, received by some peripheral populations, can hinder the evolution of distinct differences from their founding populations. Here, we explore the effects that sexual selection, long hypothesized to drive the divergence of distinct traits used in mate choice, can play in the evolution of such traits in a partially isolated peripheral population. Using population genetic continent‐island models, we show that with phenotype matching, sexual selection increases the frequency of an island‐specific mating trait only when female preferences are of intermediate strength. We identify regions of preference strength for which sexual selection can instead cause an island‐specific trait to be lost, even when it would have otherwise been maintained at migration‐selection balance. When there are instead separate preference and trait loci, we find that sexual selection can lead to low trait frequencies or trait loss when female preferences are weak to intermediate, but that sexual selection can increase trait frequencies when preferences are strong. We also show that novel preference strengths almost universally cannot increase, under either mating mechanism, precluding the evolution of premating isolation in peripheral populations at the early stages of species divergence.  相似文献   

18.
Should we have different expectations regarding the likelihood and pace of speciation by sexual selection when considering species with sexually monomorphic mating signals? Two conditions that can facilitate rapid species divergence are Felsenstein's one‐allele mechanism and a genetic architecture that includes a genetic association between signal and preference loci. In sexually monomorphic species, the former can manifest in the form of mate choice based on phenotype matching. The latter can be promoted by selection acting upon genetic loci for divergent signals and preferences expressed simultaneously in each individual, rather than acting separately on signal loci in males and preference loci in females. Both sexes in the Chrysoperla carnea group of green lacewings (Insecta, Neuroptera, Chrysopidae) produce sexually monomorphic species‐specific mating signals. We hybridized the two species C. agilis and C. carnea to test for evidence of these speciation‐facilitating conditions. Hybrid signals were more complex than the parents and we observed a dominant influence of C. carnea. We found a dominant influence of C. agilis on preferences in the form of hybrid discrimination against C. carnea. Preferences in hybrids followed patterns predicting preference loci that determine mate choice rather than a one‐allele mechanism. The genetic association between signal and preference we detected in the segregating hybrid crosses indicates that speciation in these species with sexually monomorphic mating signals can have occurred rapidly. However, we need additional evidence to determine whether such genetic associations form more readily in sexually monomorphic species compared to dimorphic species and consequently facilitate speciation.  相似文献   

19.
If sexual selection is to result in speciation, traits involved in mate choice within species need to be capable of producing sexual isolation between species. We investigated the association between mate choice and sexual isolation using interspecific hybrids between two sibling species, Drosophila serrata and Drosophila birchii. A perfuming experiment demonstrated that olfaction was involved in the sexual isolation between the two species. A quantitative genetic analysis using 30 populations of hybrids between the two species indicated that mating success in hybrid individuals was predominately determined by cuticular hydrocarbons; the average genetic correlation between mating success and cuticular hydrocarbon profile was 0.84, and in some instances exceeded 0.95. Multivariate analysis of the cuticular hydrocarbons of the two species revealed that there were three independent blends of cuticular hydrocarbons that separated three levels of organization: species, sex, and sex within species. The hydrocarbons used by hybrids in mate choice included those that separated the two species, demonstrating that species-specific characters may be used in mate choice within populations. The interspecific reciprocal cross had major effect on which cuticular hydrocarbons were associated with mating success, indicating that the expression of the cuticular hydrocarbons was strongly sex linked.  相似文献   

20.
Sexual isolation, a reproductive barrier, can prevent interbreeding between diverging populations or species. Sexual isolation can have a clear genetic basis; however, it may also result from learned mate preferences that form via sexual imprinting. Here, we demonstrate that two sympatric species of mice—the white‐footed mouse (Peromyscus leucopus) and its sister species, the cotton mouse (P. gossypinus)—hybridize only rarely in the wild despite co‐occurrence in the same habitat and lack of any measurable intrinsic postzygotic barriers in laboratory crosses. We present evidence that strong conspecific mating preferences in each species result in significant sexual isolation. We find that these preferences are learned in at least one species: P. gossypinus sexually imprints on its parents, but in P. leucopus, additional factors influence mating preferences. Our study demonstrates that sexual imprinting contributes to reproductive isolation that reduces hybridization between otherwise interfertile species, supporting the role for learning in mammalian speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号