共查询到20条相似文献,搜索用时 15 毫秒
1.
J. Swaegers S. B. Janssens S. Ferreira P. C. Watts J. Mergeay M. A. McPeek R. Stoks 《Journal of evolutionary biology》2014,27(11):2386-2395
Geographic range size is a key ecological and evolutionary characteristic of a species, yet the causal basis of variation in range size among species remains largely unresolved. One major reason for this is that several ecological and evolutionary traits may jointly shape species' differences in range size. We here present an integrated study of the contribution of ecological (dispersal capacity, body size and latitudinal position) and macroevolutionary (species' age) traits in shaping variation in species' range size in Coenagrion damselflies. We reconstructed the phylogenetic tree of this genus to account for evolutionary history when assessing the contribution of the ecological traits and to evaluate the role of the macroevolutionary trait (species' age). The genus invaded the Nearctic twice independently from the Palearctic, yet this was not associated with the evolution of larger range sizes or dispersal capacity. Body size and species' age did not explain variation in range size. There is higher flight ability (as measured by wing aspect ratio) at higher latitudes. Species with a larger wing aspect ratio had a larger range size, also after correcting for phylogeny, suggesting a role for dispersal capacity in shaping the species' ranges. More northern species had a larger species' range, consistent with Rapoport's rule, possibly related to niche width. Our results underscore the importance of integrating macroecology and macroevolution when explaining range size variation among species. 相似文献
2.
Naia Morueta‐Holme Brian J. Enquist Brian J. McGill Brad Boyle Peter M. Jørgensen Jeffrey E. Ott Robert K. Peet Irena Šímová Lindsey L. Sloat Barbara Thiers Cyrille Violle Susan K. Wiser Steven Dolins John C. Donoghue II Nathan J. B. Kraft Jim Regetz Mark Schildhauer Nick Spencer Jens‐Christian Svenning 《Ecology letters》2013,16(12):1446-1454
Despite being a fundamental aspect of biodiversity, little is known about what controls species range sizes. This is especially the case for hyperdiverse organisms such as plants. We use the largest botanical data set assembled to date to quantify geographical variation in range size for ~ 85 000 plant species across the New World. We assess prominent hypothesised range‐size controls, finding that plant range sizes are codetermined by habitat area and long‐ and short‐term climate stability. Strong short‐ and long‐term climate instability in large parts of North America, including past glaciations, are associated with broad‐ranged species. In contrast, small habitat areas and a stable climate characterise areas with high concentrations of small‐ranged species in the Andes, Central America and the Brazilian Atlantic Rainforest region. The joint roles of area and climate stability strengthen concerns over the potential effects of future climate change and habitat loss on biodiversity. 相似文献
3.
Kevin Murphy Priscilla Carvalho Andrey Efremov Julissa Tapia Grimaldo Eugenio Molina-Navarro Thomas A. Davidson Sidinei Magela Thomaz 《Freshwater Biology》2020,65(9):1622-1640
- To test hypotheses concerning the applicability of the Rapoport effect (RE: “species that occur at higher latitudes tend to have greater geographical range-size than species which have ranges limited to latitudes closer to the equator”) to aquatic macrophytes at global scale, we analysed the world latitudinal distribution and range-size of 1,083 vascular aquatic macrophyte species, from 91 genera in 11 families. We targeted macrophyte families strongly associated with inland aquatic habitats (i.e. with a zero, or only very low, proportion of constituent species which occur also in non-aquatic habitats), and which are distributed across a substantial latitudinal gradient, a necessary condition to test our hypotheses.
- The macrophyte species present in these families include plants from all the normally accepted life form-defined functional groups of macrophytes, namely submerged, free-floating, floating-leaf rooted and emergent species, and represent the three major vascular taxonomic groups occurring as aquatic macrophytes (ferns/fern allies, monocots, and dicots). For the analysis, we used both latitude-only and areal measures of macrophyte species geographic range-size, within a 10 × 10° (latitude × longitude) grid of 238 grid cells, covering the six world ecozones (Palaearctic, Orient, Australasia, Nearctic, Neotropics, Afrotropics) that primarily contain inland freshwater and brackish macrophyte habitats.
- The results provide new insight into the relationships between global range-size of macrophytes, latitude, and other potential spatio-environmental and anthropogenic drivers acting upon these plants at world scale. In particular, the outcomes indicated that: (1) the range-size versus latitude distribution of macrophytes shows evidence of a strong RE influence, with significantly greater species range-size at higher latitudes; and (2) the β-diversity pattern of species distribution along this latitudinal gradient is poorly explained by nestedness organisation, and species turnover is a more likely explanation of the observed changes in species distribution with latitude.
- Spatio-environmental and anthropogenic variables other than latitude may also influence the observed global geographical pattern of macrophyte range-size, although their importance as predictors varies between individual families. Extent of agricultural land use, altitude, and historic (post-Quaternary) climate change velocity were all significant predictor variables for some families. However, interestingly, neither the area of land nor the area of waterbody present per grid cell were major influences on macrophyte range-size distribution.
- Our finding of evidence for an RE, acting at global scale in aquatic macrophytes, contributes to increasing the generality of conclusions so far reached about the large-scale factors that drive patterns of species range-size at global scale. The study also provides a baseline for future macroecological work on aquatic plants, and potentially other freshwater organisms, particularly in the context of predicting how the world ranges of freshwater biota will respond to ongoing global environmental change.
4.
Nikolai M. Veter Larisa R. G. DeSantis Lindsey T. Yann Shelly L. Donohue Ryan J. Haupt Sarah E. Corapi Siobhan L. Fathel Emily K. Gootee Lucas F. Loffredo Jennifer L. Romer Stoycho M. Velkovsky 《Biology letters》2013,9(5)
Macroecology strives to identify ecological patterns on broad spatial and temporal scales. One such pattern, Rapoport''s rule, describes the tendency of species'' latitudinal ranges to increase with increasing latitude. Several mechanisms have been proposed to explain this rule. Some invoke climate, either through glaciation driving differential extinction of northern species or through increased seasonal variability at higher latitudes causing higher thermal tolerances and subsequently larger ranges. Alternatively, continental tapering or higher interspecific competition at lower latitudes may be responsible. Assessing the incidence of Rapoport''s rule through deep time can help to distinguish between competing explanations. Using fossil occurrence data from the Palaeobiology Database, we test these hypotheses by evaluating mammalian compliance with the rule throughout the Caenozoic of North America. Adherence to Rapoport''s rule primarily coincides with periods of intense cooling and increased seasonality, suggesting that extinctions caused by changing climate may have played an important role in erecting the latitudinal gradients in range sizes seen today. 相似文献
5.
6.
Aim The biogeography and global distribution of protists has long been disputed, with two primary, opposing views. To test these two sets of views in greater detail, we have compiled the available data for marine benthic ciliates and assessed the general patterns of their diversity and distribution compared with Metazoa. Location World‐wide. Methods A comprehensive database (1342 species, over 350 sources) was used to analyse the diversity, distribution, species occurrences and range size distribution of free‐living ciliates that inhabit marine sediments in 17 geographical regions. Results Twenty‐five per cent of the species have been found in a single region only, whereas 18% are widespread (they occur in more than half the regions covering both hemispheres). Only 5–7% of regional faunas are endemic, which is much lower than for macroorganisms. Regional diversity depends neither on total area nor on coastline length and does not show any obvious latitudinal trends, but correlates highly with the investigation effort expended in a region and (negatively) with the average salinity. A comparison of species composition reveals distinctions between the Arctic Area (the White, Barents and Kara seas), Laurasian Area (north Atlantic, north Pacific and European seas), Gondwanian Area (Southern Ocean) and the Antarctic. No clear geographical correlations are found for faunistic composition at the genus or family levels. There is the tendency to narrow the latitudinal ranges for species found at high latitudes (reversal of Rapoport's rule). Main conclusions Undersampling and data insufficiency are the key factors affecting the observed diversity and distribution of microorganisms. Nevertheless, marine benthic ciliates demonstrate certain patterns that generally agree with the ‘moderate endemicity’ model ( Foissner, 2004, 2008 ), but consistently contradict the regularities commonly observed for multicellular taxa. Thus, ciliates do have a biogeography, but their macroecological patterns may be different in some respects from that of macroorganisms. 相似文献
7.
L. M. Gutiérrez‐Pesquera M. Tejedo M. Á. Olalla‐Tárraga H. Duarte A. Nicieza M. Solé 《Journal of Biogeography》2016,43(6):1166-1178
8.
9.
Kimberly S. Sheldon Adam D. Leaché Félix B. Cruz 《Global Ecology and Biogeography》2015,24(6):632-641
10.
11.
Benjamin Baiser Dominique Gravel Alyssa R. Cirtwill Jennifer A. Dunne Ashkaan K. Fahimipour Luis J. Gilarranz Joshua A. Grochow Daijiang Li Neo D. Martinez Alicia McGrew Timothe Poisot Tamara N. Romanuk Daniel B. Stouffer Lauren B. Trotta Fernanda S. Valdovinos Richard J. Williams Spencer A. Wood Justin D. Yeakel 《Global Ecology and Biogeography》2019,28(9):1204-1218
12.
13.
Sailendra Dewan;Bhoj Kumar Acharya; 《Biotropica》2024,56(3):e13311
Understanding elevational range size distribution of organisms can provide valuable insights on biogeographic pattern of species and their conservation. Rapoport's rule posits that the elevational range size of species increases with increasing elevation. However, the validity of this rule is often questioned due to variations in methodologies across studies and inconsistencies among different groups of organisms. In this study, we examined the elevational range size distribution of butterflies in the Eastern Himalaya, and assessed the applicability of Rapoport's rule using different approaches, which perhaps is the first of its kind in the Himalaya. We sampled butterflies along the elevational gradient of 16 elevational bands (300–3300 m) using point count method along the transect. The sampled butterflies were grouped into various sub-groups based on family, biogeographic affinity, and larval feeding pattern. We found that the majority of the butterfly species (total as well as sub-groups) had small range sizes, and their elevational range distribution showed support for the Rapoport's rule. Increase in variation in temperature as measured by temperature seasonality and mean annual temperature range were the most important predictors of range size distribution pattern of the overall butterfly community. However, the relationship between range size and climatic variability differed among various sub-groups implying that the perceived pattern may vary even within the species of the same taxon. 相似文献
14.
Ehab Abouheif 《Evolution; international journal of organic evolution》1998,52(4):1197-1204
One of the toughest problems facing comparative biology is the paucity of robust phylogenetic hypotheses for many taxonomic groups. Martins (1996) proposed a method to analyze comparative data in the absence of a known phylogeny using randomly generated trees. Before applying this method, however, researchers should be aware that (1) parameter estimates derived from this method essentially assume a star phylogeny, and thus, estimate the same evolutionary regression or correlation coefficient as traditional cross-species analyses; and (2) statistical conclusions derived from this method may be so conservative as to mask evolutionary patterns, such as Rensch's rule, and should be interpreted with caution. 相似文献
15.
Numerous hypotheses have been proposed to explain latitudinal gradients in species richness, but all are subject to ongoing debate. Here we examine Rohde's (1978, 1992) hypothesis, which proposes that climatic conditions at low latitudes lead to elevated rates of speciation. This hypothesis predicts that rates of molecular evolution should increase towards lower latitudes, but this prediction has never been tested. We discuss potential links between rates of molecular evolution and latitudinal diversity gradients, and present the first test of latitudinal variation in rates of molecular evolution. Using 45 phylogenetically independent, latitudinally separated pairs of bird species and higher taxa, we compare rates of evolution of two mitochondrial genes and DNA-DNA hybridization distances. We find no support for an effect of latitude on rate of molecular evolution. This result casts doubt on the generality of a key component of Rohde's hypothesis linking climate and speciation. 相似文献
16.
17.
Jianchao Liang Huijian Hu Zhifeng Ding Ganwen Lie Zhixin Zhou Paras Bikram Singh Zhixiang Zhang Shengnan Ji 《Ecology and evolution》2021,11(14):9385
A fundamental yet controversial topic in biogeography is how and why species range sizes vary along spatial gradients. To advance our understanding of these questions and to provide insights into biological conservation, we assessed elevational variations in the range sizes of vascular plants with different life forms and biogeographical affinities and explored the main drivers underlying these variations in the longest valley in China''s Himalayas, the Gyirong Valley. Elevational range sizes of vascular plants were documented in 96 sampling plots along an elevational gradient ranging from 1,800 to 5,400 m above sea level. We assessed the elevational variations in range size by averaging the range sizes of all recorded species within each sampling plot. We then related the range size to climate, disturbance, and the mid‐domain effect and explored the relative importance of these factors in explaining the range size variations using the Random Forest model. A total of 545 vascular plants were recorded in the sampling plots along the elevational gradient. Of these, 158, 387, 337, and 112 were woody, herbaceous, temperate, and tropical species, respectively. The range size of each group of vascular plants exhibited uniform increasing trends along the elevational gradient, which was consistent with the prediction of Rapoport''s rule. Climate was the main driver of the increasing trends of vascular plant range sizes in the Gyirong Valley. The climate variability hypothesis and mean climate condition hypothesis could both explain the elevation–range size relationships. Our results reinforce the previous notion that Rapoport''s rule applies to regions where the influence of climate is the most pronounced, and call for close attention to the impact of climate change to prevent species range contraction and even extinction due to global warming. 相似文献
18.
Patrick T. Rohner Scott Pitnick Wolf U. Blanckenhorn Rhonda R. Snook Gerhard Bächli Stefan Lüpold 《Ecography》2018,41(10):1707-1717
Support for macroecological rules in insects is mixed, with potential confounding interrelations between patterns rarely studied. We here investigate global patterns in body and wing size, sexual size dimorphism and range size in common fruit flies (Diptera: Drosophilidae) and explore potential interrelations and the predictive power of Allen's, Bergmann's, Rensch's and Rapoport's rules. We found that thorax length (r2 = 0.05) and wing size (r2 = 0.09) increased with latitude, supporting Bergmann's rule. Contrary to patterns often found in endothermic vertebrates, relative wing size increased towards the poles (r2 = 0.12), a pattern against Allen's rule, which we attribute to selection for increased flight capacity in the cold. Sexual size dimorphism decreased with size, evincing Rensch's rule across the family (r2 = 0.14). Yet, this pattern was largely driven by the virilis–repleta radiation. Finally, range size did not correlate with latitude, although a positive relationship was present in a subset of the species investigated, providing no convincing evidence for Rapoport's rule. We further found little support for confounding interrelations between body size, wing loading and range size in this taxon. Nevertheless, we demonstrate that studying several traits simultaneously at minimum permits better interpretation in case of multiple, potentially conflicting trends or hypotheses concerning the macroecology of insects. 相似文献
19.
Yadong Zhou Anne C. Ochola Antony W. Njogu Biyansa H. Boru Geoffrey Mwachala Guangwan Hu Haiping Xin Qingfeng Wang 《Ecology and evolution》2019,9(8):4495-4503
The research about species richness pattern and elevational Rapoport's rule (ERR) have been carried out mostly in the temperate regions in the recent years and scarcely in the tropical mountains; meanwhile, it is unclear whether the ERR is consistent among different life‐forms and phytogeographic affinities. Here, we compiled a database of plant species of Mount Kenya, a tropical mountain of East Africa, and divided these species into twelve groups depending on the life‐form and phytogeographic affinity of each species. We inspected the species richness pattern of each group along the elevation gradient and also tested ERR of each group using Stevens' method. Our results showed that species richness of the total species showed a positively skewed (hump‐shaped) pattern along the elevation gradient and different life‐forms and phytogeographic affinities showed similar hump‐shaped patterns as the total species. The average elevation range size of the total species and herbaceous species showed increasing patterns along the elevation gradient, while lycophytes and ferns, and woody species showed an obvious downward trend after peaking in the high elevation regions. We concluded that the widely distributed herbaceous species which also have broad elevation range sizes are more applicable to ERR, while the narrowly distributed woody species with small elevation range sizes occurring in the higher elevations could reverse ERR. Therefore, we concluded that the ERR is not consistent among different organisms in the same region. 相似文献
20.
Species response to environmental change may vary from adaptation to the new conditions, to dispersal towards territories with better ecological settings (known as habitat tracking), and to extinction. A phylogenetically explicit analysis of habitat tracking in Caenozoic large mammals shows that species moving over longer distances during their existence survived longer. By partitioning the fossil record into equal time intervals, we showed that the longest distance was preferentially covered just before extinction. This supports the idea that habitat tracking is a key reaction to environmental change, and confirms that tracking causally prolongs species survival. Species covering longer distances also have morphologically less variable cheek teeth. Given the tight relationship between cheek teeth form and habitat selection in large mammals, this supports the well-known, yet little tested, idea that habitat tracking bolsters morphological stasis. 相似文献