首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rapidly declining Golden-winged Warbler (Vermivora chrysoptera) is of conservation concern owing in part to hybridization with the closely related Blue-winged Warbler (V. pinus). These species hybridize extensively in eastern North America and over the past century the Blue-winged Warbler has displaced the Golden-winged Warbler from substantial regions of its historic breeding range. A previous study suggested that these genetic interactions result in rapid and asymmetric introgression of Blue-winged Warbler mitochondrial DNA (mtDNA) into Golden-winged phenotype populations within the zones of contact, but more recent and extensive surveys have documented a more complex pattern of genetic interchange between these taxa. We surveyed mtDNA/phenotype associations in 104 individuals of known phenotype drawn from two locations with different histories of contact and found substantial variation between sites in the extent of introgression. Where both species have co-existed for more than a century, we found evidence of bi-directional introgression and the long-term persistence of Golden-winged mtDNA haplotypes. At the leading edge of the northward expansion of Blue-winged Warblers, we found predominantly Golden-winged Warbler mtDNA haplotypes in both Golden-winged and hybrid-phenotype individuals. Across both sites, genetic swamping does not appear to be occurring via the early immigration of Blue-winged Warbler females into populations dominated by Golden-winged Warbler phenotypes. Instead, the differing patterns of mitochondrial introgression may be driven by the relative local population sizes of the parental species coupled with subtle between-species differences in mate choice and habitat preferences.  相似文献   

2.
We describe 12 microsatellite loci from the Golden‐winged Warbler (Vermivora chrysoptera), a bird species of conservation concern owing to competition and hybridization with the Blue‐winged Warbler (V. pinus). Directional mitochondral DNA introgression from V. pinus into V. chrysoptera has been reported within the hybrid zone. Frequent hybrid phenotypes suggest that nuclear introgression is also prevalent, although this has not been demonstrated conclusively with molecular markers. These microsatellites will foster explorations of the genetic interactions between these avian congeners, and amplification tests suggest that they have high cross‐species utility for closely allied bird genera and families.  相似文献   

3.
Differential introgression of mitochondrial genomes has been used to explain the occurrence in some species of individuals bearing mtDNA from a related species. This situation has been observed for Drosophila mauritiana (endemic to Mauritius) where a high proportion of individuals (88%) carries an mtDNA also found in D. simulans populations from Madagascar and Réunion. Using these two species, experiments were carried out to test for differential mtDNA introgression. A single virgin female from one species (initial frequency 0.03) was introduced into a population of the other. D. simulans mtDNA can, within three generations, almost entirely displace (frequency up to 0.80) D. mauritiana mtDNA. Hybrid male sterility probably curtails to a large degree parallel introgression of nuclear genes. The progress of cytoplasmic introgression is dependent on the degree of inbreeding of the recipient D. mauritiana strains. In reciprocal experiments, introgression was much less likely: few D. mauritiana migrant females are inseminated and their mtDNA frequency always remains very low. The results of these experiments support the hypothesis that a selective advantage of hybrids (probably at the nuclear level) has promoted mtDNA transfer from D. simulans Madagascar or Reunion populations into D. mauritiana through introgressive hybridization.  相似文献   

4.
ABSTRACT The Canada warbler (Wilsonia canadensis) is one of many common neotropical migrants whose populations are in decline across their range. Influences of habitat loss and degradation on breeding or wintering grounds have been postulated as possible causes, but few empirical data exist to support a specific cause. Based on previous studies linking abundances of Canada warbler and spruce budworm (Choristoneura fumiferana), we hypothesized that the Canada warbler may be influenced by a persistent decline in spruce budworm throughout the bird's breeding range, a hypothesis that has received little attention. This hypothesis makes 5 predictions: 1) budworm outbreaks and warbler detections should be spatially and temporally coincident; 2) the relationship between Canada warbler and spruce budworm outbreaks should be similar to relationships for other warblers known to be spruce budworm associates; 3) the relationship should be stronger than for warblers lacking an association with spruce budworm; 4) because temporal trends of both spruce budworm and Canada warblers have varied throughout Canadian provinces, declines in Canada warblers should be seen only in provinces where spruce budworm also declined; and 5) variation in Canada warbler abundance should reflect variation in supply of preferred habitat for the spruce budworm if habitat rather than budworm abundance is the key. Our analyses supported predictions 1–4, suggesting that Canada warbler may be even more closely associated with spruce budworm than are known associated species, a phenomenon noted in the literature but previously unexplained. Prediction 5 was not supported, because budworm habitat (area of mature and older balsam fir [Abies balsamea] and white spruce [Picea glauca]) remained constant in Ontario while warbler abundance declined. Although the correlative nature of these results precludes inference of a causal relationship between the declines of the Canada warbler and spruce budworm, we postulate that potential links may exist directly, where spruce budworm outbreaks provide elevated levels of insect prey items for breeding Canada warblers, or indirectly through changes in forest structure and composition following outbreaks. These results have implications when considering long-term trends in Canada warbler populations, because it may be impossible to alter population trends for species linked to the timing and magnitude of spruce budworm outbreaks.  相似文献   

5.
The cyprinid fishes Luxilus cornutus and Luxilus chrysocephalus hybridize extensively in a zone extending through the Great Lakes region with extensive introgression of L. cornutus mtDNA occurring in populations of L. chrysocephalus south of the present hybrid zone in Ohio. Western populations of these two species occur adjacent to one another in Missouri but hybridization has never been observed. In order to determine if hybridization has occurred historically in Missouri, allopatric populations of L. chrysocephalus were analysed for mtDNA introgression. Extensive introgression of L. ***cornutus mtDNA was observed in most populations of L. chrysocephalus in Missouri resulting in the elimination of L. chrysocephalus mtDNA in many populations. Luxilus cornutus mtDNA in L. chrysocephalus is found approximately 300 km south of extant L. cornutus populations in Missouri. Luxilus chrysocephalus mtDNA was replaced by four unique L. cornutus mtDNA haplotypes, with one particular haplotype becoming fixed in several L. chrysocephalus populations. The pattern of introgression suggests that historically L. cornutus occupied a more southern distribution in Missouri bringing it into contact with western populations of L. chrysocephalus and resulting in a hybrid zone.  相似文献   

6.
Using genetic data to study the process of population divergence is central to understanding speciation, yet distinguishing between recent divergence and introgressive hybridization is challenging. In a previous study on the phylogeography of the yellow‐rumped warbler complex using mitochondrial (mt)DNA data, we reported limited sequence divergence and a lack of reciprocal monophyly between myrtle and Audubon's warblers (Dendroica coronata and Dendroica auduboni, respectively), suggesting very recent isolation. In the present study, we report the results obtained from a subsequent sampling of Audubon's warbler in Arizona and Utah (‘memorabilis’ race), which shows that, although this taxon is similar to auduboni in plumage colour, most memorabilis individuals sampled (93%) carry haplotypes that belong to the divergent black‐fronted warbler lineage (Dendroica nigrifrons) of Mexico. Furthermore, the auduboni and nigrifrons lineages mix in southern Utah at a narrow, yet apparently ‘cryptic’ contact zone. Newly‐available evidence from nuclear markers indicating marked differentiation between auduboni and coronata has focused attention on the possibility of mtDNA introgression in the absence of nuclear gene flow, and the results of the present study are consistent with the hypothesis that the mtDNA of auduboni was indeed historically introgressed from the coronata lineage. Analysis of morphological traits shows that memorabilis is significantly differentiated from auduboni and nigrifrons in some traits, yet is overall intermediate between the two, which is consistent with a shared common ancestor for the auduboni/memorabilis/nigrifrons group. The striking, unexpected mtDNA pattern reported in the present study reveals a complex evolutionary history of the yellow‐rumped warbler complex, and cautions against the exclusive use of mtDNA to infer evolutionary relationships. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 696–706.  相似文献   

7.
Molecular techniques provide powerful tools for studying the geographic structure of hybrid zones and the dynamics of gene exchange between incipient species. We examined allozyme variation at five loci (PGM, GPI, MDH-1, MDH-2, and LDH) for 27 populations of Palaemonetes kadiakensis from the central, coastal, and eastern regions of Texas. Central Texas populations of P. kadiakensis exhibited highly significant linkage disequilibrium and departures from Hardy-Weinberg genotype proportions. In populations with linkage disequilibrium, allelic differences at GPI defined two types of P. kadiakensis, designated A and B. Both types existed in central Texas with little or no evidence of interbreeding, whereas the populations from all other localities showed complete introgression of type B alleles into the type A gene pool. We also examined ribosomal DNA (rDNA) and mitochondrial DNA (mtDNA) variation in a subset of populations, chosen to cover a range of geographic locations and levels of linkage disequilibrium. Two groups of mtDNA haplotypes and two restriction fragment patterns for the rDNA corresponded to allozyme type A and B individuals in populations exhibiting linkage disequilibrium. In populations with ongoing hybridization, all hybrid animals (N= 15) exhibited type A mtDNA. Exhibition of type A mtDNA indicated that type A females had mated successfully with type B males, but type B females had not mated successfully with type A males. Genotype distributions suggest reduced reproduction by hybrid offspring in central Texas populations. These patterns are consistent with a mosaic model of hybrid zone dynamics.  相似文献   

8.
Abstract The extent and impact of introgressive hybridization was examined in the Gila robusta complex of cyprinid fishes using mitochondrial DNA (mtDNA) sequence variation. Lower Colorado River basin populations of G. robusta, G. elegans, and G. cypha exhibited distinct mtDNAs, with only limited introgression of G. elegans into G. cypha. The impact of hybridization was significant in upper Colorado River basin populations; most upper basin fishes sampled exhibited only G. cypha mtDNA haplotypes, with some individuals exhibiting mtDNA from G. elegans. The complete absence of G. robusta mtDNA, even in populations of morphologically pure G. robusta, indicates extensive introgression that predates human influence. Analysis of the geographic distribution of variation identified two distinctive G. elegans lineages; however, the small number of individuals and localities sampled precluded a comprehensive analysis. Analysis of haplotype and population networks for G. cypha mtDNAs from 15 localities revealed low divergence among haplotypes; however, significant frequency differences among populations within and among drainages were found, largely attributable to samples in the Little Colorado River region. This structure was not associated with G. cypha and G. robusta, as morphotypes from the same location are more similar than conspecific forms in other locations. This indicates that morphological and mtDNA variation are affected by different evolutionary forces in Colorado River Gila and illustrates how both hybridization and local adaptation can play important roles in evolution.  相似文献   

9.
Population abundance estimates using predictive models are important for describing habitat use and responses to population-level impacts, evaluating conservation status of a species, and for establishing monitoring programs. The golden-cheeked warbler (Setophaga chrysoparia) is a neotropical migratory bird that was listed as federally endangered in 1990 because of threats related to loss and fragmentation of its woodland habitat. Since listing, abundance estimates for the species have mainly relied on localized population studies on public lands and qualitative-based methods. Our goal was to estimate breeding population size of male warblers using a predictive model based on metrics for patches of woodland habitat throughout the species' breeding range. We first conducted occupancy surveys to determine range-wide distribution. We then conducted standard point-count surveys on a subset of the initial sampling locations to estimate density of males. Mean observed patch-specific density was 0.23 males/ha (95% CI = 0.197–0.252, n = 301). We modeled the relationship between patch-specific density of males and woodland patch characteristics (size and landscape composition) and predicted patch occupancy. The probability of patch occupancy, derived from a model that used patch size and landscape composition as predictor variables while addressing effects of spatial relatedness, best predicted patch-specific density. We predicted patch-specific densities as a function of occupancy probability and estimated abundance of male warblers across 63,616 woodland patches accounting for 1.678 million ha of potential warbler habitat. Using a Monte Carlo simulation, our approach yielded a range-wide male warbler population estimate of 263,339 (95% CI: 223,927–302,620). Our results provide the first abundance estimate using habitat and count data from a sampling design focused on range-wide inference. Managers can use the resulting model as a tool to support conservation planning and guide recovery efforts. © 2012 The Wildlife Society.  相似文献   

10.
Introgressive hybridization is a widespread evolutionary phenomenon which may lead to increased allelic variation at selective neutral loci and to transfer of fitness‐related traits to introgressed lineages. We inferred the population genetic structure of the European roe deer (Capreolus capreolus) in Poland from mitochondrial (CR and cyt b) and sex‐linked markers (ZFX, SRY, DBY4 and DBY8). Analyses of CR mtDNA sequences from 452 individuals indicated widespread introgression of Siberian roe deer (C. pygargus) mtDNA in the European roe deer genome, 2000 km from the current distribution range of C. pygargus. Introgressed individuals constituted 16.6% of the deer studied. Nearly 75% of them possessed haplotypes belonging to the group which arose 23 kyr ago and have not been detected within the natural range of Siberian roe deer, indicating that majority of present introgression has ancient origin. Unlike the mtDNA results, sex‐specific markers did not show signs of introgression. Species distribution modelling analyses suggested that C. pygargus could have extended its range as far west as Central Europe after last glacial maximum. The main hybridization event was probably associated with range expansion of the most abundant European roe deer lineage from western refugia and took place in Central Europe after the Younger Dryas (10.8–10.0 ka BP). Initially, introgressed mtDNA variants could have spread out on the wave of expansion through the mechanism of gene surfing, reaching high frequencies in European roe deer populations and leading to observed asymmetrical gene flow. Human‐mediated introductions of C. pygargus had minimal effect on the extent of mtDNA introgression.  相似文献   

11.
Introgression has been considered to be one of main factors leading to phylogenetic incongruence among different datasets at lower taxonomic levels. In the plants of Pinaceae, the mtDNA, cpDNA, and nuclear DNA (nrDNA) may have different evolutionary histories through introgression because they are inherited maternally, paternally and biparentally, respectively. We compared mtDNA, cpDNA, and two low-copy nrDNA phylogenetic trees in the genus Pinus subgenus Strobus, in order to detect unknown past introgression events in this group. nrDNA trees were mostly congruent with the cpDNA tree, and supported the recent sectional and subsectional classification system. In contrast, mtDNA trees split the members of sect. Quinquefoliae into two groups that were not observed in the other gene trees. The factors constituting incongruence may be divided into the following two categories: the different splits within subsect. Strobus, and the non-monophyly of subsect. Gerardianae. The former was hypothesized to have been caused by the past introgression of cpDNA, mtDNA or both between Eurasian and North American species through Beringia. The latter was likely caused by the chimeric structure of the mtDNA sequence of P. bungeana, which might have originated through past hybridization, or through a horizontal transfer event and subsequent recombination. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Phylogenetic conflicts between genetic markers can help to disentangle complex histories of phylogeography and introgression among taxa. We previously proposed that the Chinese mainland subspecies of the intermediate horseshoe bat Rhinolophus affinis himalayanus colonized Hainan Island to form the subspecies R. a. hainanus. Subsequent recolonization of the mainland formed a third taxon, R. a macrurus, and a secondary contact zone with the ancestral himalayanus. To test for historical and recurrent genetic exchange between these mainland subspecies, we sampled populations of each from two parapatric zones and undertook analyses using one mtDNA marker, three nuclear genes and 14 microsatellites. Nuclear DNA, echolocation call frequencies and morphological data all recovered two taxa; however, a mtDNA phylogeny revealed two himalayanus clades, of which one clustered with macrurus, as well as some shared or related mtDNA haplotypes in eastern populations. Isolation‐with‐migration (IM) models suggested some mtDNA gene flow from macrurus to himalayanus. However, strong population structure in himalayanus raises the possibility that macrurus captured mtDNA from a coastal population of himalayanus that has since become rare or extinct. To reconcile these two sets of results, we suggest that the IM estimates might reflect historical mtDNA gene flow among populations of himalayanus, before mtDNA was subsequently captured by macrurus. Finally, microsatellite‐based ABC analyses supported the island origin of macrurus; however, mtDNA‐based ABC analyses suggest this taxon might have evolved on the mainland. Our findings highlight the importance of understanding population history and structure for interpreting hybridization and introgression events.  相似文献   

13.
Hybridization or the interbreeding of genetically discrete populations or species can occur where ranges of genetically distinct units overlap. Golden‐winged warblers Vermivora chrysoptera, a species that has been in steady decline for decades, highlight the potential population‐level consequences of hybridization. A major factor implicated in their decline is hybridization with their sister species, the blue‐winged warbler Vermivora cyanoptera, which has likely been exacerbated by historic and current land‐use practices. We examined habitat associations of golden‐winged and blue‐winged warblers, phenotypic hybrids, and cryptic hybrids (i.e. mismatch between plumage phenotype and genotype as identified by mitochondrial DNA) in an area of relatively recent range overlap and hybridization in northern New York, USA. To explore the robustness of these results, we then compared the patterns from New York with habitat associations from the central Pennsylvanian Appalachian Mountains where blue‐winged warblers either do not occur or are in very low abundance, yet cryptic golden‐winged warbler hybrids are present. From 2008 to 2011, we captured 122 birds in New York and 28 in Pennsylvania and collected blood samples, which we used to determine maternal ancestry. For each bird captured, we measured territory‐level (50‐m radius circles) habitat, and later used remote‐sensing data to quantify habitat on the territories and in surrounding areas (100‐, 250‐, and 500‐m radius circles). In New York, golden‐winged warblers occupied structurally heterogeneous territories surrounded by homogeneously structured, contiguous deciduous forest, far from urban areas. Blue‐winged warblers showed opposite associations, and hybrids’ habitat associations were typically intermediate. In Pennsylvania, the habitat associations of golden‐winged warblers and their cryptic hybrids were remarkably similar to those in New York. These findings suggest that patterns of habitat occupancy by hybrids may promote contact with golden‐winged warblers and thus likely facilitate genetic introgression, even in areas where the parental species are not sympatric.  相似文献   

14.
Following Pleistocene glacial maxima, species that adapted to temperate climates in low‐latitude refugia had to modify their ranges as climate changed, expanding either latitudinally towards the poles, or altitudinally to higher elevations in mountainous regions. Within just a few thousand years, populations taking alternative routes during interglacials became isolated from each other and subjected to different selection pressures, often leading to lineage divergence and speciation. The pine siskin Spinus pinus is a common and widespread songbird showing relative phenotypic uniformity across the North American continent. One exception is the subspecies found in the highlands of northern Central America (S. p. perplexus), which shows marked differentiation in plumage color and shares some traits with the endemic and partly sympatric black‐capped siskin S. atriceps, suggesting potential introgression or even a hybrid origin of perplexus. Relationships and species limits among pinus, perplexus and atriceps have been controversial for decades. We provide new molecular evidence to help resolve the evolutionary history of the group. Phylogenetic analysis of mitochondrial DNA and nuclear intron sequences revealed three distinct lineages within the complex, corresponding to: 1) S. pinus individuals from Canada through central Mexico (S. p. pinus and S. p. macropterus), 2) individuals from the highlands of Guatemala and Chiapas (S. p. perplexus), and 3) S. atriceps. Pine siskins across North America show evidence of a recent postglacial population expansion and extremely low levels of diversity and structure. In contrast, S. p. perplexus shows evidence of demographic stasis, reflecting long‐term isolation and restricted dispersal. Marked and diagnostic genetic differences among the three lineages in mtDNA and at least one intron, suggest that a hybrid origin of S. p. perplexus is unlikely, yet some degree of introgression between S. p. perplexus and S. atriceps cannot be ruled out in localities where they occur in sympatry.  相似文献   

15.
Variation of wing pointedness index between groups of juveniles captured in different months (July, August, and September) and at different stages of juvenile moult was studied in three Acrocephalus warbler species captured on the Courish Spit on the Baltic Sea. Sedge warblers (Acrocephalus schoenobaenus) captured in July had less pointed wings than sedge warblers captured in August or September. Marsh warblers (A. palustris) showed no significant difference between birds in early and in late moult. No differences in wing pointedness were found between different cohorts of reed warblers (A. scirpaceus), including known locally hatched birds and late migrants captured in September. It is hypothesised that reed warbler populations in the northeastern Baltic are too evolutionarily young to have evolved a different wing shape as compared with the local Courish population.Communicated by F. Bairlein  相似文献   

16.
Aim We studied the history of colonization, diversification and introgression among major phylogroups in the American pika, Ochotona princeps (Lagomorpha), using comparative and statistical phylogeographic methods. Our goal was to understand how Pleistocene climatic fluctuations have shaped the distribution of diversity at mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) loci in this alpine specialist. Location North America’s Intermountain West. Methods We accumulated mtDNA sequence data (c. 560–1700 bp) from 232 pikas representing 64 localities, and sequenced two nuclear introns (mast cell growth factor, c. 550 bp, n = 148; protein kinase C iota, c. 660 bp, n = 139) from a subset of individuals. To determine the distribution of major mtDNA lineages, we conducted a phylogenetic analysis on the mtDNA sequence data, and we calculated divergence times among the lineages using a Bayesian Markov chain Monte Carlo approach. Relationships among nuclear alleles were explored with minimum spanning networks. Finally, we conducted coalescent simulations of alternative models of population history to test for congruence between nDNA and mtDNA responses to Pleistocene glacial cycles. Results We found that: (1) all individuals could be assigned to one of five allopatric mtDNA lineages; (2) lineages are associated with separate mountain provinces; (3) lineages originated from at least two rounds of differentiation; (4) nDNA and mtDNA markers exhibited overall phylogeographic congruence; and (5) introgression among phylogroups has occurred at nuclear loci since their initial isolation. Main conclusions Pika populations associated with different mountain systems have followed separate but not completely independent evolutionary trajectories through multiple glacial cycles. Range expansion associated with climate cooling (i.e. glaciations) promoted genetic admixture among populations within mountain ranges. It also permitted periodic contact and introgression between phylogroups associated with different mountain systems, the record of which is retained at nDNA but not mtDNA loci. Evidence for different histories at nuclear and mtDNA loci (i.e. periodic introgression versus deep isolation, respectively) emphasizes the importance of multilocus perspectives for reconstructing complete population histories.  相似文献   

17.
Abstract.—Mytilus edulis and M. galloprovincialis are two blue mussel species that coexist in western Europe. Previously, we reported that M. galloprovincialis populations contain female and male haplotypes that are fixed in M. edulis populations as well as unique haplotypes. This study assesses whether paraphyly for these species is due to introgression or incomplete lineage extinction. The lineage extinction hypothesis predicts that the shared mtDNA haplotypes in M. galloprovincialis will be significantly diverged from those in M. edulis and form distinct sequence clades. In contrast, the introgression hypothesis proposes that M. edulis haplotypes have only recently been introduced into M. galloprovincialis through hybridization with relatively little divergence accumulating between the shared RFLP haplotypes. We examined 80 mtl6S gene sequences for both the maternal and paternal mtDNA lineages from mussels sampled from various European populations and found strong support for the introgression hypothesis. In addition, we found that M. edulis mtDNA haplotypes appear to be introgressing into mussel populations in the Baltic Sea, which have predominantly M. trossulus nuclear genotypes, indicating that introgressive hybridization is prevalent among European mussel populations.  相似文献   

18.
Mitochondrial DNA (mtDNA) polymorphism was examined in two Russian populations of Novgorod oblast, from the city of Velikii Novgorod (n = 81), and the settlement of Volot (n = 79). This analysis showed that the mitochondrial gene pool of Russians examined was represented by the mtDNA types belonging to 20 haplogroups and subhaplogroups distributed predominantly among the European populations. Haplogroups typical of the indigenous populations of Asia were found in the population sample from Velikii Novgorod with the average frequency of 3.7% (haplogroups A, Z, and D5), and with the frequency of 6.3% (haplogroups Z, D, and M*) in the Volot population. It was demonstrated that the frequency of the mitochondrial lineages combination, D5, Z, U5b-16144, and U8, typical of the Finnish-speaking populations of Northeastern Europe, was somewhat higher in the urban population (7.4%) compared to rural one (3.8%). The problem of genetic differentiation of Russians from Eastern Europe inferred from mtDNA data, is discussed.  相似文献   

19.
Pinus species exhibit paternal chloroplast inheritance and maternal mitochondrial inheritance. This independent inheritance of two cytoplasmic genomes provides an exceptional environment for discriminating female (seeds) and male (pollen) components of gene flow across hybridizing species. We obtained mitochondrial genetic markers diagnostic toP. parviflora var.pentaphylla andP. pumila by PCR amplification of the intron ofnad1 on mtDNA, and examined the spatial-distribution pattern of the mtDNA haplotypes in a hybrid zone betweenP. parviflora var.pentaphylla andP. pumila in the Tanigawa Mountains of Japan. These data, in conjunction with previous information on cpDNA haplotypes and needle morphology, revealed contrastive patterns of introgression of two cytoplasmic genomes. CpDNA introgression has occurred uni-directionally fromP. parviflora var.pentaphylla toP. pumila. Conversely, mtDNA introgression has occurred in the opposite direction, fromP. pumila toP. parviflora var.pentaphylla. Levels of introgression are roughly equivalent for cpDNA and mtDNA. The contrastive spatial distribution pattern of cpDNA and mtDNA haplotypes could be caused by differential movement of seeds and pollen for interspecific genetic exchange.  相似文献   

20.
Hybrid zones are natural experiments that expose the forces maintaining species differences. But for cases where a trait of one of the hybridizing pair appears shifted into the range of the other, the underlying mechanism can be difficult to infer. For example, hybridization between hermit warbler (Dendroica occidentalis) and Townsend's warbler (Dendroica townsendi) is restricted to narrow hybrid zones in Washington and Oregon, yet hermit mtDNA can be found in phenotypically pure Townsend's populations up to 2000 km north along the Pacific coast. This could reflect introgression of selectively favoured hermit mitochondria north across the hybrid zones, or a neutral genetic wake left behind following southern zone movement. Hermit mitochondrial haplotypes in populations of coastal Townsend's exhibit relatively high genetic diversity and significant divergence from those found in populations of hermit warblers. This contradicts the predictions of selective introgression, but is consistent with a northern population of hermits diverging in a glacial refugium before being replaced by Townsend's via aggressive hybridization. Previous field studies showing Townsend's males to be competitively superior to hermit males support this scenario, and suggest that the extreme hybrid zone movement evidenced by the hermit mitochondrial wake represents an extinction in progress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号