共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract. 1. Reproductive costs associated with flight capability were evaluated in the wing dimorphic planthopper, Prokelisia dolus Wilson, by comparing the life history of traits of winged (macropterous) and flightless (brachypterous) females under controlled laboratory conditions.
2. Macropters with large thoraces and fully developed wings maintain a greater investment in flight apparatus than brachypters with small thoraces and reduced wings.
3. Associated with greater flight capability in the macropter of P.dolus are shorter adult life, decreased total fecundity, and delayed age at first reproduction compared to brachypterous females.
4. Under field conditions where mortality is high, the difference in realized fecundity between the two wing forms living on similar resources is further exaggerated with the brachypter having the greater advantage.
5. When the life history traits of the wing forms of P. dolus are compared with traits for nine other species of planthoppers, two similarities emerge. First, the preoviposition period of the macropterous wing form is always longer than that for the brachypter resulting in a reproductive delay. Second, most studies show that macropters are less fecund than brachypters.
6. There is no general tendency among planthopper species for macropterous adults to live fewer days or develop more slowly as nymphs compared to their flightless counterparts.
7. The reproductive delay and reduced fecundity of the volent wing form of planthoppers supports the notion that flight capability is costly and that phenotypic trade-offs between flight and reproduction exist. 相似文献
2. Macropters with large thoraces and fully developed wings maintain a greater investment in flight apparatus than brachypters with small thoraces and reduced wings.
3. Associated with greater flight capability in the macropter of P.dolus are shorter adult life, decreased total fecundity, and delayed age at first reproduction compared to brachypterous females.
4. Under field conditions where mortality is high, the difference in realized fecundity between the two wing forms living on similar resources is further exaggerated with the brachypter having the greater advantage.
5. When the life history traits of the wing forms of P. dolus are compared with traits for nine other species of planthoppers, two similarities emerge. First, the preoviposition period of the macropterous wing form is always longer than that for the brachypter resulting in a reproductive delay. Second, most studies show that macropters are less fecund than brachypters.
6. There is no general tendency among planthopper species for macropterous adults to live fewer days or develop more slowly as nymphs compared to their flightless counterparts.
7. The reproductive delay and reduced fecundity of the volent wing form of planthoppers supports the notion that flight capability is costly and that phenotypic trade-offs between flight and reproduction exist. 相似文献
2.
A range-wide survey of Dakotaskipper (Hesperia dacotae) populationsassessed levels of genetic variability andgeographic scale of population structure inthis species of conservation concern. Thisspecies exists on isolated patches of nativetall- and mixed-grass prairie within a highlymodified landscape dominated by agriculture. It has been extirpated from the southernportion of its range and has sufferedrange-wide declines. Nine populations weresampled from western Minnesota, eastern SouthDakota, and southern Manitoba. Starch gelelectrophoresis was used to resolve 21 isozymeloci in 278 Dakota skippers. Dakota skipperpopulations were approximately as variable asother lepidopterans found in isolated habitats. Genetic distances indicated that Manitobapopulations were somewhat distinct from ones inMinnesota and South Dakota. Isolation-by-distance was detected range-wideand among the seven southern-most populations. Genetically effective immigration rates weresmall at both range-wide and regional scalesand effective populations sizes were lowsuggesting that Dakota skipper populations aregenetically isolated from one another, althoughthey were likely more connected in the recentpast. Genotype assignment tests revealed twoclusters of populations in Minnesota and SouthDakota that were not apparent from theisolation-by-distance results. Significantheterozygote deficiencies relative toHardy-Weinberg expectations and high inbreedingcoefficients suggest structure within samplelocations. Management recommendations includethe maximization of effective population sizein each Dakota skipper population to offset theeffects of drift and habitat corridors in somecases. Habitat management should consider thewithin-site population structure and possibletemporal population structure detected in thisstudy. 相似文献
3.
Hans Peter Comes Richard J. Abbott 《Evolution; international journal of organic evolution》1998,52(2):355-367
Comparisons of cytoplasmic and nuclear diversity within and among natural plant populations have the potential to distinguish the relative influences of seed and pollen dispersal on contemporary gene flow, or alternatively, may permit inferences of the colonization history of a species via seed. We examined patterns of cpDNA and allozyme variation in Senecio gallicus, a diploid, annual plant that occurs in both coastal and ruderal inland areas of the Iberian Peninsula and southern France. The species appears to have a strong propensity for long-distance seed dispersal. Five cpDNA haplotypes were found by RFLP analysis among a sample of 111 individuals derived from 11 populations. Differences in haplotype frequencies across populations were most evident with respect to a dramatic increase in the frequency of a derived haplotype from coastal to inland localities. The level of cpDNA differentiation among populations within the inland group (θ0 = 0.07) was significantly less than that seen within the coastal group (θ0 = 0.41). In contrast, for allozymes, no significant difference in population structure was evident between collections from coastal and inland habitats. At the rangewide geographic scale, there was only a very weak association between inferred levels of gene flow and geographic distance for cpDNA, and no such association was found for allozymes. It appears that while seed movement in the species might be sufficiently great to disturb the pattern of isolation by distance for cpDNA, it cannot fully account for the nearly randomized spatial structure at polymorphic allozyme loci. It is suggested that isolation of populations in Atlantic-Mediterranean coastal refugia during previous glacial maxima, and the effects of subsequent colonization events in inland areas, have had an important effect on molding the present genetic structure of the species. 相似文献
4.
Greater prairie-chickens (Tympanuchus cupido pinnatus) were once found throughout the tallgrass prairie of midwestern North America but over the last century these prairies have been lost or fragmented by human land use. As a consequence, many current populations of prairie-chickens have become isolated and small. This fragmentation of populations is expected to lead to reductions in genetic variation as a result of random genetic drift and a decrease in gene flow. As expected, we found that genetic variation at both microsatellite DNA and mitochondrial DNA (mtDNA) markers was reduced in smaller populations, particularly in Wisconsin. There was relatively little range-wide geographical structure (FST) when we examined mtDNA haplotypes but there was a significant positive relationship between genetic (FST) and geographical distance (isolation by distance). In contrast, microsatellite DNA loci revealed significant geographical structure (FST) and a weak effect of isolation by distance throughout the range. These patterns were much stronger when populations with reduced levels of genetic variability (Wisconsin) were removed from the analyses. This suggests that the effects of genetic drift were stronger than gene flow at microsatellite loci, whereas these forces were in range-wide equilibrium at mtDNA markers. These differences between the two molecular markers may be explained by a larger effective population size (Ne) for mtDNA, which is expected in species such as prairie-chickens that have female-biased dispersal and high levels of polygyny. Our results suggest that historic populations of prairie-chickens were once interconnected by gene flow but current populations are now isolated. Thus, maintaining gene flow may be important for the long-term persistence of prairie-chicken populations. 相似文献
5.
The interactions between organisms and their environments can shape distributions of spatial genetic variation, resulting in patterns of isolation by environment (IBE) in which genetic and environmental distances are positively correlated, independent of geographic distance. IBE represents one of the most important patterns that results from the ways in which landscape heterogeneity influences gene flow and population connectivity, but it has only recently been examined in studies of ecological and landscape genetics. Nevertheless, the study of IBE presents valuable opportunities to investigate how spatial heterogeneity in ecological processes, agents of selection and environmental variables contributes to genetic divergence in nature. New and increasingly sophisticated studies of IBE in natural systems are poised to make significant contributions to our understanding of the role of ecology in genetic divergence and of modes of differentiation both within and between species. Here, we describe the underlying ecological processes that can generate patterns of IBE, examine its implications for a wide variety of disciplines and outline several areas of future research that can answer pressing questions about the ecological basis of genetic diversity. 相似文献
6.
Most landscape genetic studies assess the impact of landscape elements on species' dispersal and gene flow. Many of these studies perform their analysis on all possible population pairs in a study area and do not explicitly consider the effects of spatial scale and population network topology on their results. Here, we examined the effects of spatial scale and population network topology on the outcome of a landscape genetic analysis. Additionally, we tested whether the relevant spatial scale of landscape genetic analysis could be defined by population network topology or by isolation‐by‐distance (IBD) patterns. A data set of the wetland grasshopper Stethophyma grossum, collected in a fragmented agricultural landscape, was used to analyse population network topology, IBD patterns and dispersal habitats, using least‐cost transect analysis. Landscape genetic analyses neglecting spatial scale and population network topology resulted in models with low fits, with which a most likely dispersal habitat could not be identified. In contrast, analyses considering spatial scale and population network topology resulted in high model fits by restricting landscape genetic analysis to smaller scales (0–3 km) and neighbouring populations, as represented by a Gabriel graph. These models also successfully identified a likely dispersal habitat of S. grossum. The above results suggest that spatial scale and potentially population network topology should be more explicitly considered in future landscape genetic analyses. 相似文献
7.
Natal dispersal in a vagile carnivore, the American marten (Martes americana), was studied by comparing radio-tracking data and microsatellite genetic structure in two populations occupying contrasting habitats. The genetic differentiation determined among groups of individuals using F(ST) indices appeared to be weak in both landscapes, and showed no increase with geographical distance. Genetic structure investigated using pairwise genetic distances between individuals conversely showed a pattern of isolation by distance (IBD), but only in the population occurring in a homogeneous high-quality habitat, therefore showing the advantage of individual-based analyses in detecting within-population processes and local landscape effects. The telemetry study of juveniles revealed a leptokurtic distribution of dispersal distances in both populations, and estimates of the mean squared parent-offspring axial distance (sigma2) inferred both from the genetic pattern of IBD and from the radio-tracking survey showed that most juveniles make little contribution to gene flow. 相似文献
8.
Alex Richter‐Boix María Quintela Marcin Kierczak Marc Franch Anssi Laurila 《Molecular ecology》2013,22(5):1322-1340
Adaptive ecological differentiation among sympatric populations is promoted by environmental heterogeneity, strong local selection and restricted gene flow. High gene flow, on the other hand, is expected to homogenize genetic variation among populations and therefore prevent local adaptation. Understanding how local adaptation can persist at the spatial scale at which gene flow occurs has remained an elusive goal, especially for wild vertebrate populations. Here, we explore the roles of natural selection and nonrandom gene flow (isolation by breeding time and habitat choice) in restricting effective migration among local populations and promoting generalized genetic barriers to neutral gene flow. We examined these processes in a network of 17 breeding ponds of the moor frog Rana arvalis, by combining environmental field data, a common garden experiment and data on variation in neutral microsatellite loci and in a thyroid hormone receptor (TRβ) gene putatively under selection. We illustrate the connection between genotype, phenotype and habitat variation and demonstrate that the strong differences in larval life history traits observed in the common garden experiment can result from adaptation to local pond characteristics. Remarkably, we found that haplotype variation in the TRβ gene contributes to variation in larval development time and growth rate, indicating that polymorphism in the TRβ gene is linked with the phenotypic variation among the environments. Genetic distance in neutral markers was correlated with differences in breeding time and environmental differences among the ponds, but not with geographical distance. These results demonstrate that while our study area did not exceed the scale of gene flow, ecological barriers constrained gene flow among contrasting habitats. Our results highlight the roles of strong selection and nonrandom gene flow created by phenological variation and, possibly, habitat preferences, which together maintain genetic and phenotypic divergence at a fine‐grained spatial scale. 相似文献
9.
The genetic diversity and population structure of Arabidopsis thaliana populations from Norway were studied and compared to a worldwide sample of A. thaliana to investigate the demographic history and elucidate possible colonization routes of populations at the northernmost species limit. We genotyped 282 individuals from 31 local populations using 149 single nucleotide polymorphism markers. A high level of population subdivision (F(ST) = 0.85 ± 0.007) was found indicating that A. thaliana is highly structured at the regional level. Significant relationships between genetic and geographical distances were found, suggesting an isolation by distance mode of evolution. Genetic diversity was much lower, and the level of linkage disequilibrium was higher in populations from the north (65-68°N) compared to populations from the south (59-62°N); this is consistent with a northward expansion pattern. A neighbour-joining tree showed that populations from northern Norway form a separate cluster, while the remaining populations are distributed over a few minor clusters. Minimal gene flow seems to have occurred between populations in different regions, especially between the geographically distant northern and southern populations. Our data suggest that northern populations represent a homogenous group that may have been established from a few founders during northward expansions, while populations in the central part of Norway constitute an admixed group established by founders of different origins, most probably as a result of human-mediated gene flow. Moreover, Norwegian populations appeared to be homogenous and isolated compared to a worldwide sample of A. thaliana, but they are still grouped with Swedish populations, which may indicate common colonization histories. 相似文献
10.
The evolution of dispersal polymorphisms in insects: The influence of habitats,host plants and mates 总被引:1,自引:0,他引:1
Robert F. Denno 《Population Ecology》1994,36(2):127-135
Wing-dimorphic, delphacid planthoppers were used to test hypotheses concerning the effects of habitat persistence and architectural complexity on the occurrence of dispersal. For reasons concerning both the durational stability of the habitat and the reduced availability of mates, selection has favored high levels of dispersal in species occupying temporary habitats. Flightlessness predominates in species occupying persistent habitats, and is promoted by a phenotypic trade-off between reproductive success and flight capability. Wings are retained in tree-inhabiting species, probably for reasons concerning the more effective negotiation of three-dimensional habitats. In contrast, flightlessness is characteristic of those species inhabiting low profile host plants. For several delphacid genera, migratory species are larger than their sedentary congeners. Because body size and fecundity are positively related in planthoppers, the large body size observed in migratory taxa may result from selection for increased fecundity in colonizing species. 相似文献
11.
Merrill A. Peterson 《Evolution; international journal of organic evolution》1996,50(5):1990-1999
The relationship between gene flow and geographic proximity has been assessed for many insect species, but dispersal distances are poorly known for most of these. Thus, we are able to assess the concordance between vagility and gene flow for only a few species. In this study, I documented variation at six allozyme loci among Washington and Oregon populations of the sedentary, patchily distributed, lycaenid butterfly, Euphilotes enoptes (Boisduval) to assess whether the relationship between gene flow and geographic distance is consistent with the dispersal biology of this species. Both a phenogram based on genetic distances between populations and a regression analysis of gene flow estimates on geographic distances showed a pattern consistent with genetic isolation by distance. Many estimates of gene flow among pairs of populations separated by more than 100 km exceeded the equivalent of 10 individuals exchanged per generation, a value much greater than would be predicted from the limited dispersal ability of this species. However, based on the allozyme data, genetic neighborhood size was estimated to be approximately 39 individuals, a value that is consistent with poor vagility. The results of this study speak to the power of stepping-stone gene flow among populations and are compared to the results of other studies that have examined the relationship between dispersal and gene flow in sedentary insects. 相似文献
12.
Invasions by pest organisms are among the main challenges for sustainable crop protection. They pose a serious threat to crop production by introducing a highly unpredictable element to existing crop protection strategies. The western flower thrips Frankliniella occidentalis (Insecta, Thysanoptera) managed to invade ornamental greenhouses worldwide within < 25 years. To shed light on possible genetic and/or ecological factors that may have been responsible for this invasion success, we studied the population genetic structure of western flower thrips in its native range in western North America. Analysis of nucleotide sequence variation and variation at microsatellite loci revealed the existence of two habitat‐specific phylogenetic lineages (ecotypes) with allopatric distribution. One lineage is associated with hot/dry climates, the second lineage is restricted to cool/moist climates. We speculate that the ecological niche segregation found in this study may be among the key factors determining the invasion potential of western flower thrips. 相似文献
13.
JULIE A. LEE-YAW REW DAVIDSON† BRAD H. MCRAE‡ DAVID M. GREEN§ 《Molecular ecology》2009,18(9):1863-1874
Understanding factors that influence population connectivity and the spatial distribution of genetic variation is a major goal in molecular ecology. Improvements in the availability of high-resolution geographic data have made it increasingly possible to quantify the effects of landscape features on dispersal and genetic structure. However, most studies examining such landscape effects have been conducted at very fine (e.g. landscape genetics) or broad (e.g. phylogeography) spatial scales. Thus, the extent to which processes operating at fine spatial scales are linked to patterns at larger scales remains unclear. Here, we test whether factors impacting wood frog dispersal at fine spatial scales are correlated with genetic structure at regional scales. Using recently developed methods borrowed from electrical circuit theory, we generated landscape resistance matrices among wood frog populations in eastern North America based on slope, a wetness index, land cover and absolute barriers to wood frog dispersal. We then determined whether these matrices are correlated with genetic structure based on six microsatellite markers and whether such correlations outperform a landscape-free model of isolation by resistance. We observed significant genetic structure at regional spatial scales. However, topography and landscape variables associated with the intervening habitat between sites provide little explanation for patterns of genetic structure. Instead, absolute dispersal barriers appear to be the best predictor of regional genetic structure in this species. Our results suggest that landscape variables that influence dispersal, microhabitat selection and population structure at fine spatial scales do not necessarily explain patterns of genetic structure at broader scales. 相似文献
14.
Plants are sessile organisms, often characterized by limited dispersal. Seeds and pollen are the critical stages for gene flow. Here we investigate spatial genetic structure, gene dispersal and the relative contribution of pollen vs seed in the movement of genes in a stable metapopulation of the white campion Silene latifolia within its native range. This short-lived perennial plant is dioecious, has gravity-dispersed seeds and moth-mediated pollination. Direct measures of pollen dispersal suggested that large populations receive more pollen than small isolated populations and that most gene flow occurs within tens of meters. However, these studies were performed in the newly colonized range (North America) where the specialist pollinator is absent. In the native range (Europe), gene dispersal could fall on a different spatial scale. We genotyped 258 individuals from large and small (15) subpopulations along a 60 km, elongated metapopulation in Europe using six highly variable microsatellite markers, two X-linked and four autosomal. We found substantial genetic differentiation among subpopulations (global FST=0.11) and a general pattern of isolation by distance over the whole sampled area. Spatial autocorrelation revealed high relatedness among neighboring individuals over hundreds of meters. Estimates of gene dispersal revealed gene flow at the scale of tens of meters (5–30 m), similar to the newly colonized range. Contrary to expectations, estimates of dispersal based on X and autosomal markers showed very similar ranges, suggesting similar levels of pollen and seed dispersal. This may be explained by stochastic events of extensive seed dispersal in this area and limited pollen dispersal. 相似文献
15.
We examined the genetic structure of natural populations of the European wood mouse Apodemus sylvaticus at the microgeographic (<3 km) and macrogeographic (>30 km) scales. Ecological and behavioural studies indicate that this species exhibits considerable dispersal relative to its home-range size. Thus, there is potential for high gene flow over larger geographic areas. As levels of population genetic structure are related to gene flow, we hypothesized that population genetic structuring at the microgeographic level should be negligible, increasing only with geographic distance. To test this, four sites were sampled within a microgeographic scale with two additional samples at the macrogeographic level. Individuals ( n =415) were screened and analysed for seven polymorphic microsatellite loci. Contrary to our hypothesis, significant levels of population structuring were detected at both scales. Comparing genetic differentiation with geographic distance suggests increasing genetic isolation with distance. However, this distance effect was non-significant being confounded by surprisingly high levels of differentiation among microgeographic samples. We attribute this pattern of genetic differentiation to the effect of habitat fragmentation, splitting large populations into components with small effective population sizes resulting in enhanced genetic drift. Our results indicate that it is incorrect to assume genetic homogeneity among populations even where there is no evidence of physical barriers and dispersal can occur freely. In the case of A. sylvaticus , it is not clear whether dispersal does not occur across habitat barriers or behavioural dispersal occurs without consequent gene flow. 相似文献
16.
Anna-Bella Failloux Michel Raymond re Ung Christine Chevillon Nicole Pasteur 《Biological journal of the Linnean Society. Linnean Society of London》1997,60(1):107-118
The population structure of the Polynesian mosquito Aedes polynesiensis was investigated using electrophoretic data from two polymorphic protein loci. Considerable differentiation was observed both within and between islands in different archipelagos (Society, Tuamotu, Austral). Gene flow evaluated by Fst estimates was independent of geographic distance between islands but related to commercial traffic intensity. The results are discussed in view of recent findings on the variability of susceptibility to insecticides and of suitability as a vector for the nematode Wuchereria bancrofti. 相似文献
17.
SARA BERGEK MATS BJÖRKLUND 《Biological journal of the Linnean Society. Linnean Society of London》2009,96(4):746-758
The level of gene flow is an important factor influencing genetic differentiation between populations. Typically, geographic distance is considered to be the major factor limiting dispersal and should thus only influence the degree of genetic divergence at larger spatial scales. However, recent studies have revealed the possibility for small-scale genetic differentiation, suggesting that the spatial scale considered is pivotal for finding patterns of isolation by distance. To address this question, genetic and morphological differentiation were studied at two spatial scales (range 2–13 km and range 300 m to 2 km) in the perch ( Perca fluviatilis L.) from the east coast archipelago of Sweden, using seven microsatellite loci and geometric morphometrics. We found highly significant genetic differentiation between sampled locations at both scales. At the larger spatial scale, the distance per se was not affecting the level of divergence. At the small scale, however, we found subtle patterns of isolation by distance. In addition, we also found morphological divergence between locations, congruent with a spatial separation at a microgeographic scale, most likely due to phenotypic plasticity. The present study highlights the importance of geographical scale and indicates that there might be a disparity between the dispersal capacity of a species and the actual movement of genes. Thus, how we view the environment and possible barriers to dispersal might have great implications for our ability to fully understand the evolution of genetic differentiation, local adaptation, and, in the end, speciation. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 746–758. 相似文献
18.
Abstract In order to clarify the genetic diversity and population structure of Ranunculus japonicus , allozymic analysis was conducted on 60 populations in southwestern Japan. Considerable genetic variati ons were detected among the populations of R. japonicus . The genetic diversities within species ( H es = 0.215) and within populations ( H ep = 0.172) were slightly higher than those of other perennial herbs with widespread distribution and outcrossing plants. Significantly higher values of fixation index were detected in some populations, which might have arisen from restricted mating partners. The majority of genetic variation (approx. 80%) resided within a population and a moderate level of genetic differentiation ( G ST = 0.203) was observed among populations. The F ST value (0.203) suggests the existence of a substantial population structure in this species. The highly significant correlation between geographic distance and F ST values indicates that isolation by distance has played an important role in the construction of the genetic structure of this species. 相似文献
19.
Pogson GH Taggart CT Mesa KA Boutilier RG 《Evolution; international journal of organic evolution》2001,55(1):131-146
Genetic isolation by distance (IBD) has rarely been described in marine species with high potential for dispersal at both the larval and adult life-history stages. Here, we report significant relationships between inferred levels of gene flow and geographic distance in the Atlantic cod, Gadus morhua, at 10 nuclear restriction-fragment-length-polymorphism (RFLP) loci at small regional scales in the western north Atlantic region (< 1,600 km) that mirror those previously detected over its entire geographic range (up to 7,300 km). Highly significant allele frequency differences were observed among eight northwestern Atlantic populations, although the mean FST for all 10 loci was only 0.014. Despite this weak population structuring, the distance separating populations explained between 54% and 62% of the variation in gene flow depending on whether nine or 10 loci were used to estimate Nm. Across the species' entire geographic range, highly significant differences were observed among six regional populations at nine of the 10 loci (mean FST = 0.068) and seven loci exhibited significant negative relationships between gene flow and distance. At this large geographic scale, natural selection acting in the vicinity of one RFLP locus (GM798) had a significant effect on the correlation between gene flow and distance, and eliminating it from the analysis caused the coefficient of determination to increase from 17% to 62%. The role of vicariance was assessed by sequentially removing populations from the analysis and was found to play a minor role in contributing to the relationship between gene flow and distance at either geographic scale. The correlation between gene flow and distance detected in G. morhua at small and large spatial scales suggests that dispersal distances and effective population sizes are much smaller than predicted for the species and that the recent age of populations, rather than extensive gene flow, may be responsible for its weak population structure. Our results suggest that interpreting limited genetic differences among populations as reflecting high levels of ongoing gene flow should be made with caution. 相似文献
20.
- Spatial population structure plays an important role in species persistence, evolution and conservation. Benthic stream fishes are diverse and frequently imperilled, yet the determinants and spatial scaling of their population structure are understudied.
- We investigated the range‐wide population genetic structure of Roanoke logperch (Percina rex), an endangered, benthic stream fish of the eastern United States. Fish were sampled from 35 sites and analysed at 11 microsatellite DNA loci. Clustering models were used to sort individuals into genetically cohesive groups and thereby estimate the spatial scaling of population structure. We then used Bayesian generalized linear mixed models (BGLMMs) to test alternative hypotheses about the environmental factors most responsible for generating structure, as measured by the differentiation statistic FST.
- Clustering models delineated seven discrete populations, whose boundaries coincided with agents of fragmentation, including hydroelectric dams and tailwaters. In the absence of hydrological barriers, gene flow was extensive throughout catchments, whereas there was no evidence for contemporary dispersal between catchments across barriers.
- In the best‐supported BGLMM, FST was positively related to the spatial distance and degree of hydrological alteration between sites and negatively related to genetic diversity within sites. Whereas the effect of tailwaters was equivocal, dams strongly influenced differentiation: the effect of a dam on FST was comparable to that of a between‐site distance of over 1200 km of unimpounded river. Overall, the effect of distance‐mediated dispersal was negligible compared to the combined effects of fragmentation and genetic drift.
- The contemporary population structure of P. rex comprises a few geographically extensive ‘islands’ that are fragmented by hydroelectric projects. This information clarifies the importance of a catchment‐scale perspective on conserving the species and suggests that its recovery may require genetic and/or demographic reconnection of presently isolated populations.