首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diel time courses of microclimate, hydration, and CO2 exchange of the basidiolichen Dictyonema glabratum and its responses to experimentally changed conditions were measured for 14 days in a clearing of a premontane, tropical rainforest (Panama). Net photosynthesis (NP) was adapted to high temperatures and there was no depression of CO2uptake at the highest thallus hydration. The presence of a CO2 concentrating mechanism was demonstrated. Decreased NP occurred after desiccation, and apparent photon yield of CO2 fixation was also sensitive to water loss. Natural NP was controlled by the interplay of thallus hydration and radiation. Regular, daily desiccation and dense cloud cover suppressed production. On average, 72 % of the diurnal photosynthetic gain was lost during the night, and there were days with negative carbon balance. Nevertheless, total carbon gain of the lichen was extremely high. A tentative estimation suggests that annual carbon gain amounts to 228 % of initial thallus carbon content. Because of their strong effect on net production, increased nocturnal temperatures as given at lower elevation, would lead to a negative carbon balance. This might explain the lack of abundance of this and other macrolichens in warmer, lowland rainforests.  相似文献   

2.
Although there is only negligible rainfall, frequent nocturnal fog, dew and high air humidity support a luxurious lichen vegetation in the coastal zone of the central Namib Desert (Namibia). In earlier publications, we have studied ecophysiological performance of a series of epilithic and terrestrial lichens. Here, we have extended this work to three epiphytic species (Heterodermia namaquana, Ramalina lacera, and Xanthoria turbinata) that inhabit the sparse perennial shrubs growing in this area. Our intention, monitoring lichen CO2 exchange, their water relations and microclimate conditions, was to determine the functional mechanisms that allow these epiphytes to exist under the special conditions of a fog desert. Measurements were conducted mainly during the spring season.The epiphytic lichens showed response patterns very similar to the epilithic and epigaeic species at the same site. Their metabolism was activated through moistening by dew and/or fog during the night and, in the very early morning, they exhibited the typical brief peak of net photosynthesis (NP) between sunrise and desiccation. The thalli were almost completely dry for the remainder of the day. Average duration of the positive NP during the morning peak was about 3 h. Dew condensation, alone, resulted in activation that provided 58–63% of integrated carbon income (ΣNP) as compared to fog (plus dew). In the late afternoon, there was a tendency for hydration to increase again, due to water vapour uptake at higher air humidity, and this allowed on some days a brief additional period of very low rates of photosynthesis shortly before sunset.Light response of photosynthesis showed “sun-plant” characteristics with saturation around 1000 μmol m−2 s−1 photosynthetically active photon flux density (PPFD). Light compensation point (LCP) of CO2 exchange after sunrise was highly dependent on actual water content (WC) for X. turbinata: at low hydration it was ca. 10 μmol m−2 s−1 PPFD whilst, at high WC, it was almost 80 μmol m−2 s−1 PPFD. In contrast, LCP of R. lacera was almost independent of WC. This phenomenon was probably due to differences in thallus structure.Maximal attained NP and daily ΣNP both showed a saturation-type response to previous maximal nocturnal WC. Neither parameter was increased substantially when higher maximal thallus WCs were produced by experimental moistening in the night. All three species, despite their different morphologies, performed optimally at the highest nocturnal moistening achieved by natural fog and were not able to make use of higher hydration.The three studied epiphytes were similar in their chlorophyll-related rates of NP. Due to lower chlorophyll content, dry weight and carbon-related NP of X. turbinata was only about one-third of that of the other two species. The average carbon income on days with fog and/or dew hydration during the spring season amounted to 2.4 and 2.1 mgC (gC)−1 day−1 (related to thallus carbon content) for H. namaquana and R. lacera, respectively. This primary production was of similar magnitude to those found for the terrestrial species at the same site.  相似文献   

3.
Although the coastal zone of the Central Namib Desert (Namibia) has negligible rainfall, frequent fog, dew and high air humidity support a luxurious lichen flora. Large areas of soil crust communities are dominated by the multibranched, fruticose Teloschistes capensis interspersed by a (still indeterminable) Ramalina species. In earlier communications, based on field measurements in autumn, we began the analysis of functional mechanisms that allow these lichens to exist under the special conditions of a fog desert. We have extended this work by monitoring lichen CO2 exchange and water relations in spring and by experiments under controlled conditions.In both seasons, nocturnal hydration, by fog and/or dew, activated dark respiration of the lichens which was followed, after sunrise, by a short period of positive net photosynthesis (NP) that continued until metabolic inactivation occurred from desiccation. Dry thalli of T. capensis were able to reactivate NP through water vapour uptake alone, beginning at an air relative humidity of 82%, i.e. at a water potential of −26.3 MPa; the moisture compensation point during desiccation was at 13% thallus water content (WC, dry weight related). Optimal WC for photosynthesis was around 100%, and both species showed a large and extended suprasaturation depression of CO2 assimilation. Light response showed “sun-plant” characteristics with saturation >1000 μmol m−2 s−1 photosynthetically active photon flux density (PPFD). However, due to rapid desiccation, the combination of light saturation with optimal WC very rarely occurred under field conditions. Light compensation point after sunrise was highly dependent on actual WC: at low hydration, it amounted to only ca. 10 μmol m−2 s−1 PPFD so that even the smallest levels of hydration could be used for carbon gain before desiccation took place again. This phenomenon was probably due to a hydration gradient in the thallus branches during transient moistening so that the outer photobiont layer was favoured in contrast to the internal mycobiont which remained dry longer and did not contribute respiratory CO2 loss. Fully hydrated thalli had light compensation points around 50 μmol m−2 s−1 PPFD. Extended desiccation of 1–3 days had no impact on the magnitude and recovery of photosynthesis but, imposed desiccation of 10 days reduced NP in lab and field experiments and caused an extended period of recovery. “Resaturation respiration” was not detected in the field data, although it was present after experimental moistening of dry thalli.In spring, the higher fog frequency and intensity increased maximal nocturnal WC, maximal attained NP as well as integrated daily carbon income (ΣNP) compared to the autumn measurements. NPmax and ΣNP depended on maximal nocturnal WC with a saturation-type response. In terms of carbon gain both species seem to be optimally adapted to nocturnal moistening up to 160% WC and were not able to make use of higher degrees of hydration, a feature that might well influence their habitat selection.Maximal daily carbon-related ΣNP for T. capensis was 4.6 mgC (gC)−1 day−1. A rough estimate of the annual (projected) area-related carbon balance (photosynthetic income minus respiratory losses) based on published fog and dew frequencies and personal observations was 15–34 mgC m−2 yr−1.  相似文献   

4.
Summary In well-watered plants of Clusia uvitana, a species capable of carbon fixation by crassulacean acid metabolism (CAM), recently expanded leaves gained 5 to 13-fold more carbon during 12 h light than during 12 h dark periods. When water was withheld from the plants, daytime net CO2 uptake strongly decreased over a period of several days, whereas there was a marked increase in nocturnal carbon gain. Photosynthetic rates in the chloroplasts were hardly affected by the water stress treatment, as demonstrated by measurements of chlorophyll a fluorescence of intact leaves, indicating efficient decarboxylation of organic acids and refixation of carbon in the light. Within a few days after rewatering, plants reverted to the original gas exchange pattern with net CO2 uptake predominantly occurring during daytime. The reversible increase in dark CO2 fixation was paralleled by a reversible increase in the content of phosphoenolpyruvate (PEP) carboxylase protein. In wellwatered plants, short-term changes in the degree of dark CO2 fixation were induced by alterations in CO2 partial pressure during light periods: a decrease from 350 to 170 bar CO2 caused nocturnal carbon gain, measured in normal air (350 bar), to increase, whereas an increase to 700 bar CO2, during the day, caused net dark CO2 fixation to cease. The increased CAM activity in response to water shortage may, at least to some extent, be directly related to the reduced carbon gain during daytime.  相似文献   

5.
CO2 exchange rate in relation to thallus water content (WC, % of dry weight) was determined for 22 species of lichens, mainly members of the genera Pseudocyphellaria and Sticta, from a temperate rainforest, Urewere National Park, New Zealand. All data were obtained in the field, either using a standard technique in which the lichens were initially wetted (soaked or sprayed, then shaken) and allowed to slowly dry, or from periodic measurements on samples that were continuously exposed in their natural habitat. A wide range of WC was found, with species varying from 357 to 3360% for maximal WC in the field, and from 86 to 1300% for optimal WC for photosynthesis. Maximal WC for lichens, wetted by the standard technique, were almost always much less than the field maxima, due to the presence of water on the thalli. The relationships between CO2 exchange rate and WC could be divided into four response types based on the presence, and degree, of depression of photosynthesis at high WC. Type A lichens showed no depression, and Type B only a little at maximal WC. Type C had a very large depression and, at the highest WC, CO2 release could occur even in the light. Photosynthetic depression commenced soon after optimal WC was reached. Type D lichens showed a similar depression but the response curve had an inflection so that net photosynthesis was low but almost constant, and never negative, at higher WC. There was little apparent relationship between lichen genus or photobiont type and the response type. It was shown that high WC does limit photosynthetic CO2 uptake under natural conditions. Lichens, taken directly from the field and allowed to dry under controlled conditions, had net photosynthesis rates that were initially strongly inhibited but rose to an optimum, before declining at low WC. The limiting effects of high WC were clearly shown when, under similar light conditions, severe photosynthetic depression followed a brief, midday, rain storm. Over the whole measuring period the lichens were rarely at their optimal WC for photosynthesis, being mostly too wet or, occasionally, too dry. Photosynthetic performance by the lichens exposed in the field was similar to that expected from the relationship between the photosynthetic rate and WC established by the standard procedure.  相似文献   

6.
Summary The survival potential of lichens in a given habitat is determined by the response of CO2 exchange to photosynthetically active radiation (PhAR), thallus temperature, and thallus relative water content (RWC). Therefore morphologically similar lichens from contrasting climatic environments 1) should differ in their CO2 exchange responses, and 2) these differences should reflect adaptations to their climatic regimes. The CO2 exchange responses of a subarctic (55°N, 67°W) Cladina stellaris (Opiz) Brodo population and a temperate (29°N, 82°W) Cladina evansii (Abb.) Hale and W. Culb, population were used to test these two related hypotheses.Infrared gas analysis with lichens collected in September–October 1975 established that the two populations differed in their responses to incident PhAR, thallus temperature, and thallus RWC. Net photosynthesis in C. stellaris had an optimum at a lower temperature and a greater relative photosynthetic capacity at low temperatures than did C. evansii. Cladina evansii maintained net photosynthesis above 35°C thallus temperature; C. stellaris did not. In both species the optimum temperature for net photosynthesis increased with increasing irradiance. The C. stellaris light saturation point was consistently lower than that of C. evansii. Both species had maximal rates of net photosynthesis at 70–80% relative water content. In C. evansii the CO2 exchange rates, expressed as percentages of the maximum rate, declined more rapidly under suboptimal conditions. The absolute CO2 exchange rates of C. evansii were greater than those of C. stellaris. At 20°C and 90–95% RWC, resaturation respiration occurred in both species and continued until 6–7 h after wetting.Contrasts in the temporal patterns of thallus condition at each collection site suggest that not all differences in the two response surfaces reflect climatic adaptation. The two populations appear well adapted to incident PhAR and thallus temperature regimes but the 70–80% RWC optimum for net photosynthesis common to both species is puzzling since their water regimes differ markedly. The overall adaptedness of the CO2 exchange responses in the two species cannot be judged without a comprehensive quantitative analysis of carbon balance under differing climatic regimes.  相似文献   

7.
Long-term carbon exchange in a sparse, seasonally dry tussock grassland   总被引:6,自引:0,他引:6  
Rainfall and its seasonal distribution can alter carbon dioxide (CO2) exchange and the sustainability of grassland ecosystems. Using eddy covariance, CO2 exchange between the atmosphere and a sparse grassland was measured for 2 years at Twizel, New Zealand. The years had contrasting distributions of rain and falls (446 mm followed by 933 mm; long‐term mean=646 mm). The vegetation was sparse with total above‐ground biomass of only 1410 g m?2. During the dry year, leaf area index peaked in spring (November) at 0.7, but it was <0.2 by early summer. The maximum daily net CO2 uptake rate was only 1.5 g C m?2 day?1, and it occurred before mid‐summer in both years. On an annual basis, for the dry year, 9 g C m?2 was lost to the atmosphere. During the wet year, 41 g C m?2 was sequestered from the atmosphere. The net exchange rates were determined mostly by the timing and intensity of spring rainfall. The components of ecosystem respiration were measured using chambers. Combining scaled‐up measurements with the eddy CO2 effluxes, it was estimated that 85% of ecosystem respiration emanated from the soil surface. Under well‐watered conditions, 26% of the soil surface CO2 efflux came from soil microbial activity. Rates of soil microbial CO2 production and net mineral‐N production were low and indicative of substrate limitation. Soil respiration declined by a factor of four as the soil water content declined from field capacity (0.21 m3 m?3) to the driest value obtained (0.04 m3 m?3). Rainfall after periods of drought resulted in large, but short‐lived, respiration pulses that were curvilinearly related to the increase in root‐zone water content. Coupled with the low leaf area and high root : shoot ratio, this sparse grassland had a limited capacity to sequester and store carbon. Assuming a proportionality between carbon gain and rainfall during the summer, rainfall distribution statistics suggest that the ecosystem is sustainable in the long term.  相似文献   

8.
Gas exchange and dry-weight production in Opuntia ficus-indica, a CAM species cultivated worldwide for its fruit and cladodes, were studied in 370 and 750 μmol mol−1 CO2 at three photosynthetic photon flux densities (PPFD: 5, 13 and 20 mol m−2 d−1). Elevated CO2 and PPFD enhanced the growth of basal cladodes and roots during the 12-week study. A rise in the PPFD increased the growth of daughter cladodes; elevated CO2 enhanced the growth of first-daughter cladodes but decreased the growth of the second-daughter cladodes produced on them. CO2 enrichment enhanced daily net CO2 uptake during the initial 8 weeks after planting for both basal and first-daughter cladodes. Water vapour conductance was 9 to 15% lower in 750 than in 370 μmol mol−1 CO2. Cladode chlorophyll content was lower in elevated CO2 and at higher PPFD. Soluble sugar and starch contents increased with time and were higher in elevated CO2 and at higher PPFD. The total plant nitrogen content was lower in elevated CO2. The effect of elevated CO2 on net CO2 uptake disappeared at 12 weeks after planting, possibly due to acclimation or feedback inhibition, which in turn could reflect decreases in the sink strength of roots. Despite this decreased effect on net CO2 uptake, the total plant dry weight at 12 weeks averaged 32% higher in 750 than in 370 μmol mol−1 CO2. Averaged for the two CO2 treatments, the total plant dry weight increased by 66% from low to medium PPFD and by 37% from medium to high PPFD.  相似文献   

9.
Boreal peatlands store large amounts of carbon, reflecting their important role in the global carbon cycle. The short‐term exchange and the long‐term storage of atmospheric carbon dioxide (CO2) in these ecosystems are closely associated with the permanently wet surface conditions and are susceptible to drought. Especially, the single most important peat forming plant genus, Sphagnum, depends heavily on surface wetness for its primary production. Changes in rainfall patterns are expected to affect surface wetness, but how this transient rewetting affects net ecosystem exchange of CO2 (NEE) remains unknown. This study explores how the timing and characteristics of rain events during photosynthetic active periods, that is daytime, affect peatland NEE and whether rain event associated changes in environmental conditions modify this response (e.g. water table, radiation, vapour pressure deficit, temperature). We analysed an 11‐year time series of half‐hourly eddy covariance and meteorological measurements from Degerö Stormyr, a boreal peatland in northern Sweden. Our results show that daytime rain events systematically decreased the sink strength of peatlands for atmospheric CO2. The decrease was best explained by rain associated reduction in light, rather than by rain characteristics or drought length. An average daytime growing season rain event reduced net ecosystem CO2 uptake by 0.23–0.54 gC m?2. On an annual basis, this reduction of net CO2 uptake corresponds to 24% of the annual net CO2 uptake (NEE) of the study site, equivalent to a 4.4% reduction of gross primary production (GPP) during the growing season. We conclude that reduced light availability associated with rain events is more important in explaining the NEE response to rain events than rain characteristics and changes in water availability. This suggests that peatland CO2 uptake is highly sensitive to changes in cloud cover formation and to altered rainfall regimes, a process hitherto largely ignored.  相似文献   

10.
Gerhard Zotz  Klaus Winter 《Planta》1993,191(3):409-412
Diel (24 h) courses of net CO2 exchange of leaves were determined in eight species of tropical rainforest plants on Barro Colorado Island, Panama, during 1990 and 1991. The species included three canopy trees, one liana, two epiphytes and one hemiepiphyte. One of the species studied was growing in a rain-forest gap. Daily carbon gain varied considerably across species, leaf age, and season. The analysis of data for all plants from 64 complete day/night cycles revealed a linear relationship between the diurnal carbon gain and the maximum rate of net CO2 uptake, Amax. Nocturnal net carbon loss was about 10% of diurnal carbon gain and was positively related to Amax. We conclude that short-term measurements of light-saturated photosynthesis, performed at periodic intervals throughout the season, allow the annual leaf carbon balance in these rain-forest plants to be predicted.  相似文献   

11.
The effects of elevated CO2 on tropical ecosystems were studied in the artificial rain forest mesocosm at Biosphere 2, a large-scale and ecologically diverse experimental facility located in Oracle, Arizona. The ecosystem responses were assessed by comparing the whole-system net gas exchange (NEE) upon changing CO2 levels from 900 to 450 ppmV. The day-NEE was significantly higher in the elevated CO2 treatment. In both experiments, the NEE rates were similar to values observed in natural analogue systems. Variations in night-NEE, reflecting both soil CO2 efflux and plants respiration, covaried with temperature but showed no clear correlation with atmospheric CO2 levels. After correcting for changes in CO2 efflux we show that the rain forest net photosynthesis increased in response to increasing atmospheric CO2. The photosynthetic enhancement was expressed in higher quantum yields, maximum assimilation rates and radiation use efficiency. The results suggest that photosynthesis in large tropical trees is CO2 sensitive, at least following short exposures of days to weeks. Taken at face value, the data suggest that as a result of anthropogenic emissions of CO2, tropical rain forests may shift out of steady state, and become a carbon sink at least for short periods. However, a better understanding of the unique conditions and phenomena in Biosphere 2 is necessary before these results are broadly useful.  相似文献   

12.
Abstract: Lichens, being poikilohydric, have varying thallus water contents (WC) and show a complex interaction between net photosynthesis (NP) and WC. NP can be depressed at low WC (desiccation effects) and, in some species, also at high WC. In the latter case the depression is normally ascribed to increased CO2 diffusion resistances through water blockage. Recently, an earlier explanation, that the depression at high WC is due to recycling of CO2 from increased dark respiration processes (DR), has been given renewed prominence. The two explanations were distinguished by the concurrent use of gas exchange and chlorophyll fluorescence techniques to investigate NP: WC relationships in the lichens Peltigera leucophlebia (green algal) and P. neckeri (cyanobacterial). Both species had a distinct optimal WC for NP with depressed values at low and high WC. The maximal quantum yield for both CO2 fixation (initial slope of light response curves of NP) and photosystem II (fluorescence signals of dark-adapted thalli) was depressed only at low WC and remained high at optimal and greater WC. In contrast, the relative electron transport rate (ETR, derived from fluorescence signals of thalli in the light) tracked NP and was depressed at low and high WC. The depression of both NP and ETR at high WC (not that at low WC) could be prevented by using elevated external CO2 concentrations. A single, linear relationship was found between all values of gross photosynthesis (NP + DR) and ETR regardless of external CO2 concentration or WC. Our results show that, for these lichens, the depression in NP at high WC is a real fall in photosynthetic rate of the photobionts and is not due to recycling of CO2. The removal of the depression in NP and ETR at high WC by using elevated external CO2 levels allows us to conclude that an additional CO2 diffusion resistance is present.  相似文献   

13.
Gas exchange was measured in two subalpine herbs during alternating periods of sun and shade that simulated natural cloud patterns. Stomatal conductance (g) in the subalpine herb Helianthella quinquenervis was reduced by as much as 75% during 5-min shade periods that ranged in photosynthetic photon flux density (PPFD) from 100 to 1,100 μmol m–2 sec–1. In contrast, responses in g in another herb, Frasera speciosa, to fluctuations in sunlight were small, apparently due to slower stomatal responses. Based on an earlier hypothesis that water stress may strongly influence nonsteady state gas exchange responses to fluctuations in PPFD, net photosynthesis and g were measured in these herbs as seasonal water stress increased and compared with responses in irrigated plants. Stomatal conductance was relatively unresponsive to changes in PPFD in F. speciosa regardless of water stress. In contrast, substantial decreases in g occurred for H. quinquenervis during shade only when this species experienced water stress later in the season. Little response in g was measured early in the season or in irrigated plants. The seasonal shift in nonsteady state responses in H. quinquenervis from little response in g to shade when plants were nonstressed to more rapid reductions in g as water stress increased would maximize carbon gain early in the season when soil water was abundant while conserving water during periods of soil drought.  相似文献   

14.
Otto L. Lange 《Oecologia》1980,45(1):82-87
Summary Net photosynthesis (10 klx light intensity, 150 E m-2 s-1 PAR) and dark respiration of the lichen Ramalina maciformis at different temperatures are measured in relation to thallus water content. Both first increase with increasing hydration. Dark respiration then remains constant with increased water content until thallus saturation. In contrast, a further increase in water content leads to a depression of net photosynthesis, as shown in previous studies, after a maximum of CO2 uptake has been attained. However, the extent of this depression depends strongly on temperature. In saturated thalli (160% water content in relation to lichen dry weight) the depression amounts to about 15% and 63% of the maximum unsaturated rate at 5°C and 25°C thallus temperature, respectively. The moisture compensation-point of net photosynthesis is also decisively determined by temperature (for 0°C at 20% water content; for 25°C at 15%), and the water content that allows maximum rates of CO2 uptake (for 0°C at 80%; for 25°C at less than 40% water content). An electrical analogue of CO2 exchange in a lichen thallus is presented, and it is suggested that the experimental results may be interpreted in terms of temperature-dependent CO2 diffusion resistances in imbibed lichen thalli.  相似文献   

15.
Bryophytes blanket the floor of temperate rainforests in New Zealand and may influence a number of important ecosystem processes, including carbon cycling. Their contribution to forest floor carbon exchange was determined in a mature, undisturbed podocarp‐broadleaved forest in New Zealand, dominated by 100–400‐year‐old rimu (Dacrydium cupressimum) trees. Eight species of mosses and 13 species of liverworts contributed to the 62% cover of the diverse forest floor community. The bryophyte community developed a relatively thin (depth <30 mm), but dense, canopy that experienced elevated CO2 partial pressures (median 46.6 Pa immediately below the bryophyte canopy) relative to the surrounding air (median 37.6 Pa at 100 mm above the canopy). Light‐saturated rates of net CO2 exchange from 14 microcosms collected from the forest floor were highly variable; the maximum rate of net uptake (bryophyte photosynthesis – whole‐plant respiration) per unit ground area at saturating irradiance was 1.9 μmol m?2 s?1 and in one microcosm, the net rate of CO2 exchange was negative (respiration). CO2 exchange for all microcosms was strongly dependent on water content. The average water content in the microcosms ranged from 1375% when fully saturated to 250% when air‐dried. Reduction in water content across this range resulted in an average decrease of 85% in net CO2 uptake per unit ground area. The results from the microcosms were used in a model to estimate annual carbon exchange for the forest floor. This model incorporated hourly variability in average irradiance reaching the forest floor, water content of the bryophyte layer, and air and soil temperature. The annual net carbon uptake by forest floor bryophytes was 103 g m?2, compared to annual carbon efflux from the forest floor (bryophyte and soil respiration) of ?1010 g m?2. To put this in perspective of the magnitude of the components of CO2 exchange for the forest floor, the bryophyte layer reclaimed an amount of CO2 equivalent to only about 10% of forest floor respiration (bryophyte plus soil) or ~11% of soil respiration. The contribution of forest floor bryophytes to productivity in this temperate rainforest was much smaller than in boreal forests, possibly because of differences in species composition and environmental limitations to photosynthesis. Because of their close dependence on water table depth, the contribution of the bryophyte community to ecosystem CO2 exchange may be highly responsive to rapid changes in climate.  相似文献   

16.
Long-term and direct measurements of CO2 and water vapour exchange are needed over forested ecosystems to determine their net annual fluxes of carbon dioxide and water. Such measurements are also needed to parameterize and test biogeochemical, ecological and hydrological assessment models. Responding to this need, eddy covariance measurements of CO2 and water vapour were made ever a deciduous forest growing near Oak Ridge, TN, between April 1993 and April 1994. Periodic measurements were made of leaf area index, stomatal resistance, soil moisture and pre-dawn leaf water potential to characterize the gas exchange capacity of the canopy. Four factors had a disproportionate influence on the seasonal variation of CO2 flux densities. These factors were photon flux densities (during the growing season), temperature (during the dormant season), leaf area index and the occurrence of drought The drought period occurred during the peak of the growing season and caused a significant decline in daily and hourly CO2 flux densities, relative to observations over the stand when soil moisture was plentiful. The annual net uptake of carbon was calculated by integrating flux measurements and filling missing and spurious data with the relations obtained between measured CO2 fluxes and environmental forcing variables. The net flux of carbon for the period between April 1993 and April 1994 was -525 g C m?2 y?1. This value represents a net flux of carbon from the atmosphere and into the forest. The net annual carbon exchange of this southern temperate broadleaved forest exceeded values measured over a northern temperate forest (which experiences a shorter growing season and has less leaf area) by 200 g C m?2 y?1 (cf. Wofsy et al 1993). The seasonal variation of canopy evaporation (latent heat flux) was controlled mostly by changes in leaf area and net radiation. A strong depression in evaporation rates was not observed during the drought Over a broadleaved forest large vapour pressure deficits promote evaporation and trees in a mixed stand are able to tap a variety of deep and shallow water sources.  相似文献   

17.
Tropical peatlands, which coexist with swamp forests, have accumulated vast amounts of carbon as soil organic matter. Since the 1970s, however, deforestation and drainage have progressed on an enormous scale. In addition, El Niño and Southern Oscillation (ENSO) drought and large‐scale fires, which grow larger under the drought condition, are accelerating peatland devastation. That devastation enhances decomposition of soil organic matter and increases the carbon release to the atmosphere as CO2. This phenomenon suggests that tropical peatlands have already become a large CO2 source, but related quantitative information is limited. Therefore, we evaluated the CO2 balance of a tropical peat swamp forest in Central Kalimantan, Indonesia, using 3 years of CO2 fluxes measured using the eddy covariance technique from 2002 through 2004. The forest was disturbed by drainage; consequently, groundwater level (GL) was reduced. The net ecosystem CO2 production (NEP) measurements showed seasonal variation, which was slightly positive or almost zero in the early dry season, and most‐negative late in the dry season or early the rainy season. This seasonality is attributable to the seasonal pattern of climate, tree phenology and fires. Slightly positive NEP resulted from smaller ecosystem respiration (RE) and larger gross primary production (GPP) under conditions of high photosynthetic photon flux density (PPFD) and large leaf area index (LAI). The most‐negative NEP resulted from smaller GPP and larger RE. The smaller GPP was related to high vapor pressure deficit (VPD), small LAI and low PPFD because of smoke from fires. The larger RE was related to low GL. Annual NEP values were estimated respectively as −602, −382 and −313 g C m−2 yr−1 for 2002, 2003 and 2004. These negative NEP values show that the tropical peat swamp forest, disturbed by drainage, functioned as a CO2 source. That source intensity was highest in 2002, an ENSO year, mainly because of low PPFD caused by dense smoke emitted from large fires.  相似文献   

18.
The high-arctic environment is an environment where the consequences of global warming may be significant. In this paper we report on findings on carbon dioxide and water vapour fluxes above a sedge-dominated fen at Zackenberg (74°28′N, 20°34′ W) in The National Park of North and East Greenland. Eddy covariance measurements were initiated at the start of the growing season and terminated shortly before its end lasting 45 days. The net CO2 flux during daytime reaches a high of 10 μmol m–2s–1, and around the summer solstice, net CO2 assimilation occurred at midnight, resulting in net carbon gain during the night. The measured carbon dioxide fluxes compare well to estimates based on the photosynthesis model by Collatz et al. (1991 ). The total growing-season net ecosystem CO2 exchange was estimated to be 96 g C m–2 based on the carbon dioxide model and micrometeorological data. Finally, the combined CO2 assimilation and soil respiration models are used for examining the dependence of the carbon dioxide budget on temperature. The ecosystem is found to function optimally given the present temperature conditions whereas either an increase or a decrease in temperature would reduce the ecosystem CO2 accumulation. An increase in temperature by 5 °C would turn the ecosystem into a carbon dioxide source.  相似文献   

19.
Tropical floodplain lake ecosystems are recognized as important sources of carbon (C) from the water to the atmosphere. They receive large amounts of organic matter and nutrients from the watershed, leading to intense net heterotrophy and carbon dioxide (CO2) emission from open waters. However, the role of extensive stands of floating macrophytes colonizing floodplains areas is still neglected in assessments of net ecosystem exchange of CO2 (NEE). We assessed rates of air-lake CO2 flux using static chambers in both open waters and waters covered by the widespread floating aquatic macrophyte (water hyacinth; Eichornia sp.) in two tropical floodplain lakes in Pantanal, Brazil during different hydrological seasons. In both lakes, areas colonized by floating macrophytes were a net CO2 sink during all seasons. In contrast, open waters emitted CO2, with higher emissions during the rising and high water periods. Our results indicate that the lake NEE can be substantially overestimated (fivefold or more in the studied lakes) if the carbon fixation by macrophytes is not considered. The contribution of these plants can lead to neutral or negative NEE (that is, net uptake of CO2) on a yearly basis. This highlights the importance of floating aquatic macrophytes for the C balance in shallow lakes and extensive floodplain areas.  相似文献   

20.
Simultaneous measurements of net CO2 exchange, water vapor exchange, and leaf water relations were performed in Mesembryanthemum crystallinum during the development of crassulacean acid metabolism (CAM) in response to high NaCl salinity in the rooting medium. Determinations of chlorophyll a fluorescence were used to estimate relative changes in electron transport rate. Alterations in leaf mass per unit area, which—on a short-term basis—largely reflect changes in water content, were recorded continuously with a beta-gauge. Turgor pressure of mesophyll cells was determined with a pressure probe. As reported previously (K Winter, DJ von Willert [1972] Z Pflanzenphysiol 67: 166-170), recently expanded leaves of plants grown under nonsaline conditions showed gas-exchange characteristics of a C3 plant. Although these plants were not exposed to any particular stress treatment, water content and turgor pressure regularly decreased toward the end of the 12 hour light periods and recovered during the following 12 hours of darkness. When the NaCl concentration of the rooting medium was raised to 400 millimolar, in increments of 100 millimolar given at the onset of the photoperiods for 4 consecutive days, leaf water content and turgor pressure decreased by as much as 30 and 60%, respectively, during the course of the photoperiods. These transient decreases probably triggered the induction of the biochemical machinery which is required for CAM to operate. After several days at 400 millimolar NaCl, when leaves showed features typical of CAM, overall turgor pressure and leaf mass per unit area had increased above the levels before onset of the salt treatment, and diurnal alterations in leaf water content were reduced. Net carbon gain during photoperiods and average intercellular CO2 partial pressures at which net CO2 uptake occurred, progressively decreased upon salinization. Reversible diurnal depressions in leaf conductance and net CO2 uptake, with minima recorded in the middle of the photoperiods, preceded the occurrence of nocturnal net CO2 uptake. During these reductions, intercellular CO2 partial pressure and rates of photosynthetic electron transport decreased. With advancing age, leaves of plants grown under nonsaline conditions exhibited progressively greater diurnal reductions in turgor pressure and developed a low degree of CAM activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号