首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
When captured by predators, the tadpoles of some species of frogs and toads may release an alarm substance that alters the behaviour of conspecifics. Such ‘alarm response’ behaviour has been proposed as a potential mechanism whereby related conspecifics may ‘warn’ relatives of a predator's presence and thus, improve their inclusive fitness. We examined predator avoidance and alarm response behaviour in tadpoles of the Cascades frog (Rana cascadae) and tested whether such behaviour is influenced by kinship factors. Tadpoles reduced activity when in the presence of a predatory newt (Taricha granulosa). Individuals in sibling groups were more active than both solitary tadpoles and individuals in mixed groups of siblings and nonsiblings. However, we found no evidence of an alarm response in R. cascadae. Behaviour of tadpoles in groups exposed only to predators was not different from that of tadpoles in groups exposed to predators plus crushed conspecifics. Tadpoles in groups exposed to crushed tadpoles were as active as tadpoles in groups exposed to water controls, and some test individuals fed upon the dead tadpoles. Thus, while R. cascadae tadpoles reduce activity in response to newt predators, crushed tadpoles appear to initiate a feeding response rather than an alarm response as has been previously proposed.  相似文献   

2.
In many amphibian larvae a suite of morphological and behavioural characters varies together in an induced defence against predators, but it remains unclear which features are functionally related to defence. We independently manipulated behaviour and morphology in tadpoles of Hyla versicolor and assessed their consequences for swimming performance and predator escape. Data on burst swimming showed that tadpoles which accelerated rapidly were elongate, with shallow bodies and tails. Predator escape was measured by exposing tadpoles to predators (larval Anax dragonflies or larval Ambystoma salamanders) and recording time until death. Tadpoles were first reared for 30 days in ponds containing either caged Anax or no predators; individuals responded to predators by developing large brightly coloured tails and short bodies. We placed tadpoles of both morphological phenotypes into plastic tubs, and manipulated their behaviour using food and chemical cues from predators. Mortality risk experienced by the predator‐induced phenotype was about half that of the no‐predator phenotype, and risk increased with time spent swimming. An interaction between morphology and behaviour arose because increasing activity caused higher risk for tadpoles with deep tail fins but not shallow tail fins.  相似文献   

3.
Laurila A  Pakkasmaa S  Merilä J 《Oecologia》2006,147(4):585-595
Growth and development rates often differ among populations of the same species, yet the factors maintaining this differentiation are not well understood. We investigated the antipredator defences and their efficiency in two moor frog Rana arvalis populations differing in growth and development rates by raising tadpoles in outdoor containers in the nonlethal presence and absence of three different predators (newt, fish, dragonfly larva), and by estimating tadpole survival in the presence of free-ranging predators in a laboratory experiment. Young tadpoles in both populations reduced activity in the presence of predators and increased hiding behaviour in the presence of newt and fish. Older tadpoles from the slow-growing Gotland population (G) had stronger hiding behaviour and lower activity in all treatments than tadpoles from the fast-growing Uppland population (U). However, both populations showed a plastic behavioural response in terms of reduced activity. The populations differed in induced morphological defences especially in response to fish. G tadpoles responded with relatively long and deep body, short tail and shallow tail muscle, whereas the responses in U tadpoles were often the opposite and closer to the responses induced by the other predators. U tadpoles metamorphosed earlier, but at a similar size to G tadpoles. There was no evidence that growth rate was affected by predator treatments, but tadpoles metamorphosed later and at larger size in the predator treatments. G tadpoles survived better in the presence of free-ranging predators than U tadpoles. These results suggest that in these two populations, low growth rate was linked with low activity and increased hiding, whereas high growth rate was linked with high activity and less hiding. The differences in behaviour may explain the difference in survival between the populations, but other mechanisms (i.e. differences in swimming speed) may also be involved. There appears to be considerable differentiation in antipredator responses between these two R. arvalis populations, as well as with respect to different predators.  相似文献   

4.
One important impact of invasive species may be to modify the behaviour of native taxa. For example, the invasion of highly toxic cane toads (Bufo marinus) kills many anurophagous native predators, but other predators learn to recognize and avoid the toxic invader. We exposed native fish (northern trout gudgeons, Mogurnda mogurnda) and Dahl's aquatic frogs (Litoria dahlii) to cane toad tadpoles, then monitored the predator's responses during subsequent trials. Both the frogs and fish initially attacked toad tadpoles, but rapidly learned not to do so. Fish and adult frogs retained their aversion for at least a week, whereas recently metamorphosed frogs did not. Clearly, the spread of cane toads through tropical Australia can modify feeding responses of native aquatic predators. For predators capable of rapid avoidance learning, the primary impact of cane toads may be on foraging behaviour rather than mortality.  相似文献   

5.
The diverse benefits of group living include protection against predators through dilution effects and greater group vigilance. However, intraspecific aggregation can decrease developmental rates and survival in prey species. We investigated the impact on tadpole development and behaviour of the interaction between population density and predation risk. Spotted tree frog (Litoria spenceri: Hylidae, Dubois 1984) tadpoles were kept at one of three different densities (two tadpoles per litre, five tadpoles per litre or 10 tadpoles per litre) until metamorphosis in the presence or absence of predatory cues. We aimed to determine the influence of population density, predation and the interaction of both factors in determining growth rates in tadpoles. Tadpoles were measured weekly to assess growth and development and filmed to quantify differences in activity and feeding frequency between groups. Generally, tadpoles housed without predators had longer developmental periods when housed with a predator, but there was no effect on tail length or total length. There was no effect of either predation cues or density on percentage of individuals feeding or moving. Although the effects of the presence of predators alone may appear to be less than the effects of the presence of competitors, the prioritisation of competitiveness over predator avoidance may increase vulnerability of tadpoles to the lethal threat of predators. This is particularly important in species such as L. spenceri, which is at risk from introduced fish predators.  相似文献   

6.
Animals often alter their behaviour, morphology and physiology in the presence of predators. These induced defences can be fine‐tuned by a variety of environmental factors such as predator species, acute predation risk or food availability. It has, however, remained unclear what cues influence the extent and quality of induced defences and how the information content of these cues interact to determine the development of antipredator defences. We performed an experiment to study the significance of direct chemical cues, originating from the predators themselves, and indirect cues, released by attacked or consumed prey, for phenotypic responses in Rana dalmatina tadpoles. We reared tadpoles in the presence of caged predators (Triturus vulgaris, Aeshna cyanea) fed either one or three tadpoles every other day outside the tadpole‐rearing tanks. Fifteen hours after food provisioning, predators were put back into the tanks containing focal tadpoles either after washing (direct + digestion‐released cues) or with the water containing remnants of the prey (direct + all types of indirect cues). Our results suggest that direct cues together with digestion‐released cues can be sufficient to induce strong antipredator responses. Induced defences depended on both direct cues, affecting predator‐specific responses, and the quantity of indirect cues, resulting in graded responses to differences in predation threat. Moreover, direct and indirect cues interacted in behaviour, resulting in predator‐specific graded responses. We also observed a decrease in the extent of predator‐induced responses in large tadpoles as compared to small ones. Our results, thus, suggest that prey integrate multiple cues about predators to optimize induced defences and that this process changes during ontogeny.  相似文献   

7.
Models of defence against multiple enemies predict that specialized responses to each enemy should evolve only under restrictive conditions. Nevertheless, tadpoles of Rana temporaria can differentiate among several predator species. Small tadpoles used a refuge when Notonecta backswimmers were in the pond, but showed a weaker hiding response to adult Triturus alpestris newts and no response to aeshnid dragonfly larvae (Aeshna and Anax). All predators caused a decline in feeding and swimming activity. Large tadpoles reserved the strongest behavioural response for dragonflies, while Triturus caused no response. The shift during development suggests that tadpoles distinguished among predators, rather than exhibiting a graded dosage response to a single cue associated with predation. Information on habitat distributions of predators suggests that they are regularly encountered, which would facilitate evolution of adaptive behavioural responses. Morphological responses to all predators were similar, perhaps because similar morphologies defend against all four predators. The evolutionary maintenance of specialized responses to multiple predators may be possible because adaptive responses do not conflict and the predators themselves do not interact strongly.  相似文献   

8.
The ability of prey to detect predators directly affects their probability of survival. Chemical cues are known to be important for predator detection in aquatic environments, but the role of other potential cues is controversial. We tested for changes in behaviour of Rana temporaria tadpoles in response to chemical, visual, acoustic, and hydraulic cues originating from dragonfly larvae (Aeshna cyanea) and fish (Gasterosteus aculeatus). The greatest reduction in tadpole activity occurred when all cues were available, but activity was also significantly reduced by visual cues only. We did not find evidence for tadpoles lowering their activity in response to acoustic and hydraulic cues. There was no spatial avoidance of predators in our small experimental containers. The results show that anuran larvae indeed use vision for predator detection, while acoustic and hydraulic cues may be less important. Future studies of predator‐induced responses of tadpoles should not only concentrate on chemical cues but also consider visual stimuli. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

9.
Many species alter their activity, microhabitat use, morphology and life history in response to predators. Predation risk is related to predator size and palatability of prey among others factors. We analyzed the predation risk of three species of tadpoles that occur in norwestern Patagonia, Argentina: Pleurodema thaul, Pleurodema bufoninum and Rhinella spinulosa. We sampled aquatic insect predators in 18 ponds to determine predator–tadpole assemblage in the study area. In laboratory conditions, we analysed the predation rate imposed by each predator on each tadpole species at different tadpole sizes. Finally, we tested whether tadpoles alter their activity in the presence of chemical and visual cues from predators. Small P. thaul and P. bufoninum tadpoles were the most vulnerable prey species, while small R. spinulosa tadpoles were only consumed by water bugs. Dragonflies and water bugs were the most dangerous tadpole predators. Small P. thaul tadpoles reduced their activity when they were exposed to all predators, while large tadpoles only reduced the activity in the presence of large predators (dragonfly larvae and water bugs). Small P. bufoninum tadpoles reduced the activity when they were exposed to beetle larvae and dragonfly larvae, while large tadpoles only reduced activity when they were exposed to larger predators (water bugs and dragonfly larvae). R. spinulosa tadpoles were the less sensitive to presence of predators, only larger tadpoles responded significantly to dragonfly larvae by reducing their activity. We conclude that behavioural responses of these anuran species were predator-specific and related to the risk imposed by each predator.  相似文献   

10.
Tadpoles risk attack from both aquatic and aerial predators. We investigated how body size and group size influenced the behaviour of tadpoles before and during a predatory attack from above to test the predictions of the theoretical economic escape model. We examined escape (swimming) response of small and large Cuban tree frog (Osteopilus septentrionalis) tadpoles kept under three density treatments and predicted that increased group size, body size and depth in the water column would all reduce perceived risk and, therefore, escape responses to simulated predation. Compared with the lower density groups, tadpoles in higher density groups moved shorter distances, and many individuals did not even move away in response to being touched. Contrary to our predictions based on the economic escape model, smaller tadpoles (which should be more vulnerable to a greater suite of predators) were less reactive than larger tadpoles, and this result may reflect different costs of escape. Finally, although tadpoles might be exposed to a wider range of predator species (aerial as well as aquatic predators), we found no effect of initial depth on escape responses. In conclusion, it appears that the main benefit of increased group density in O. septentrionalis tadpoles is likely to be predator dilution, and that variation in densities of tadpoles influences the escape behaviour of individual tadpoles, regardless of tadpole size.  相似文献   

11.
Invasive species capable of recognizing potential predators may have increased establishment rates in novel environments. Individuals may retain historical predator recognition and invoke innate responses in the presence of taxonomically or ecologically similar predators, generalize antipredator responses, or learn to avoid risky species in novel environments. Invasive amphibians in aquatic environments often use chemical cues to assess predation risk and learn to avoid novel predators via direct experience and/or associated chemical cues. Ontogeny may also influence recognition; experience with predators may need to occur at certain developmental stages for individuals to respond correctly. We tested predator recognition in invasive American bullfrog ( Lithobates catesbeianus) tadpoles that varied in experience with fish predators at the population and individual scale. We found that bullfrog tadpoles responded to a historical predator, largemouth bass ( Micropterus salmoides), only if the population was locally sympatric with largemouth bass. Individuals from a population that did not co‐occur with largemouth bass did not increase refuge use in response to either largemouth bass chemical cues alone or chemical cues with diet cues (largemouth bass fed bullfrog tadpoles). To test whether this behavioral response was generalized across fish predators, we exposed tadpoles to rainbow trout ( Oncorhynchus mykiss) and found that tadpoles could not recognize this novel predator regardless of co‐occurrence with other fish species. These results suggest that environment may be more important for predator recognition than evolutionary history for this invasive species, and individuals do not retain predator recognition or generalize across fish predators.  相似文献   

12.
Many organisms use chemical cues from a variety of sources to mediate predator avoidance. Response to heterospecific alarm cues has been demonstrated for tadpoles within but not among taxa and alarm response behavior has seldom been examined under field conditions. This study examined the response of three sympatric amphibian larvae and predaceous larval Dytiscus sp. (diving beetle) to damage-release signals in natural ponds by using capture rates from treated funnel traps as an index of larval behavior. Hyla regilla (Pacific tree frog) tadpoles avoided traps treated with either crushed conspecifics or with Rana aurora (red-legged frog) tadpoles but the larger ranids and Ambystoma macrodactylum (long-toed salamander) did not respond to either treatment. H. regilla tadpoles were likely susceptible to any potential predators of ranid tadpoles in these ponds and this result is consistent with the hypothesis that a response to heterospecific alarm occurs in sympatric prey with shared predators.  相似文献   

13.
P. Eklöv 《Oecologia》2000,123(2):192-199
Chemical signals are used as information by prey to assess predation risk in their environment. To evaluate the effects of multiple predators on prey growth, mediated by a change in prey activity, I exposed small and large bullfrog (Rana catesbeiana) larvae (tadpoles) to chemical cues from different combinations of bluegill sunfish (Lepomis macrochirus) and larval dragonfly (Anax junius) predators. Water was regularly transferred from predation trials (outdoor experiment) to aquaria (indoor experiment) in which activity and growth of tadpoles was measured. The highest predation mortality of small bullfrog larvae in the outdoor experiment was due to Anax, and it was slightly lower in the presence of both predators, probably resulting from interactions between predators. There was almost no mortality of prey with bluegill. The activity and growth of small bullfrog larvae was highest in the absence of predators and lowest in the presence of Anax. In the presence of bluegill only, or with both predators, the activity and growth of small bullfrog tadpoles was intermediate. Predators did not affect large tadpole activity and growth. Regressing mortality of small bullfrog tadpoles against activity and growth of bullfrog tadpoles revealed a significant effect for small bullfrog larvae but a non-significant effect for large bullfrog larvae. This shows that the response of bullfrog tadpoles to predators is related to their own body size. The experiment demonstrates that chemical cues are released both as predator odor and as alarm substances and both have the potential to strongly alter the activity and growth of prey. Different mechanisms by which chemical cues may be transmitted to species interactions in the food web are discussed. Received: 28 June 1999 / Accepted: 15 November 1999  相似文献   

14.
Red swamp crayfish Procambarus clarkii, a widespread invasive alien crayfish, represents a serious threat for several freshwater species, including amphibians, which are declining at a global scale. As a shared coevolutionary history is the main factor determining the emergence of antipredator responses, Anuran tadpoles may not be able to cope effectively with this introduced predator. We performed two experiments to assess agile frog's (Rana dalmatina) defensive responses to both P. clarkii and native dragonfly larvae (Anax imperator). First, we conditioned embryos (collected from two ponds 30 km away from each other) with predators’ chemical cues to explore possible variation in hatching time caused by predation risk. In the second experiment, to evaluate how predators’ diet affects tadpole behavior, we conditioned tadpoles for a 5‐week period with cues from tadpole‐fed and gammarid‐fed predators and recorded behavioral and morphological responses. Embryos did not alter hatching time in the presence of any predator cue, while tadpoles from both populations strongly reduced activity and visibility when raised in the presence of tadpole‐fed dragonfly larvae. Morphological changes were less straightforward and were induced only in one population, for which broader tails and a slight increase in body size of tadpoles exposed to tadpole‐fed predators were observed. The lack of defensive responses in crayfish‐exposed tadpoles suggests that the spreading of this invasive species in agricultural lowlands of northern Italy may represent a further threat to their conservation.  相似文献   

15.
In natural systems, organisms are frequently exposed to spatial and temporal variation in predation risk. Prey organisms are known to develop a wide array of plastic defences to avoid being eaten. If inducible plastic defences are costly, prey living under fluctuating predation risk should be strongly selected to develop reversible plastic traits and adjust their defences to the current predation risk. Here, we studied the induction and reversibility of antipredator defences in common frog Rana temporaria tadpoles when confronted with a temporal switch in predation risk by dragonfly larvae. We examined the behaviour and morphology of tadpoles in experimental treatments where predators were added or withdrawn at mid larval development, and compared these to treatments with constant absence or presence of predators. As previous studies have overlooked the effects that developing reversible anti‐predator responses could have later in life (e.g. at life history switch points), we also estimated the impact that changes in antipredator responses had on the timing of and size at metamorphosis. In the presence of predators, tadpoles reduced their activity and developed wider bodies, and shorter and wider tails. When predators were removed tadpoles switched their behaviour within one hour to match that found in the constant environments. The morphology matched that in the constant environments in one week after treatment reversal. All these responses were highly symmetrical. Short time lags and symmetrical responses for the induction/reversal of defences suggest that a strategy with fast switches between phenotypes could be favoured in order to maximise growth opportunities even at the potential cost of phenotypic mismatches. We found no costs of developing reversible responses to predators in terms of life‐history traits, but a general cost of the induction of the defences for all the individuals experiencing predation risk during some part of the larval development (delayed metamorphosis). More studies examining the reversibility of plastic defences, including other type of costs (e.g. physiological), are needed to better understand the adaptive value of these flexible strategies.  相似文献   

16.
Most anurans of the species-rich community of the Comoé National Park (Ivory Coast) use ephemeral savannah ponds to spawn. Owing to the great risk of desiccation and the large number of predators, the mortality for tadpoles is very high in these ponds. Therefore, colonization of other spawning habitats might be highly advantageous. Such spawning sites are presented by the Comoé river, which is characterized by frequent and unpredictable changes of the water level. Only Bufo maculatus (Anura: Bufonidae) and one other bufonid species breed in small and shallow inlets and puddles created by the rising and falling of the predator-rich Comoé river. We observed that predatory fish advanced to the spawning sites of the toads, when the water level rose. If the toad larvae were attacked by these predators, they formed dense aggregations of up to several thousand individuals. These aggregations were maintained for longer periods on one place at the river's edge where they are inaccessible to the larger predators. In field experiments we ascertained that this aggregation behaviour in tadpoles was caused by a combination of two stimuli: first, a chemical cue from injured tadpoles and second, a mechanical stimulus caused by rapid movements of aquatic predators. Initial trials indicated that tadpoles aggregating at the bank were, however, disadvantaged compared with free-swimming larvae in having slower growth and an increased risk of desiccation. This is presumably why aggregations broke up within 24 h after the predators had left these puddles, as the water level fell. At this point these tadpoles either spread out or formed loose swarms near the bottom of the puddles. This swarming behaviour differed considerably from that induced by aquatic predators.  相似文献   

17.
Peter Eklöv  Earl E. Werner 《Oikos》2000,88(2):250-258
This study examined the effects of multiple predators on size‐specific behavior and mortality of two species of anuran larvae. Particularly, we focused on how trait changes in predators and prey may be transmitted to other species in the food web. In laboratory experiments, we examined the effects of bluegill sunfish, Lepomis macrochirus, and the odonate larva Anax junius on behavior and mortality of tadpoles of the bullfrog, Rana catesbeiana, and the green frog R. clamitans. Experiments were conducted with predators alone and together to assess effects on behavior and mortality of the tadpoles. The experiments were replicated on five size classes of the tadpoles to evaluate how responses varied with body size.
Predation rates by Anax were higher on bullfrogs than on green frogs, and both bullfrogs and green frogs suffered greater mortality from Anax than from bluegill. Bluegill only consumed green frogs. Predation rates by both predators decreased with increasing tadpole size and decreased in the non‐lethal (caged) presence of the other predator. Both anuran larvae decreased activity when exposed to predators. Bullfrogs, however, decreased activity more in the presence of Anax than in the presence of bluegill, whereas green frogs decreased activity similarly in the presence of both predators. The largest size class of green frogs, but not of bullfrogs, exhibited spatial avoidance of bluegill. These responses were directly related to the risk posed by the different predators to each anuran species. Anax activity (speed and move frequency) also was higher when alone than in the non‐lethal presence of bluegill. We observed decreased predation rate of each predator in the non‐lethal presence of the other, apparently caused by two different mechanisms. Bluegill decreased Anax mortality on tadpoles by restricting the Anax activity. In contrast, Anax decreased bluegill mortality on tadpoles by reducing tadpole activity. We discuss how the activity and spatial responses of the tadpoles interact with palatability and body size to create different mortality patterns in the prey species and the implications of these results to direct and indirect interactions in this system.  相似文献   

18.
Many organisms use inducible defenses as protection against predators. In animals, inducible defenses may manifest as changes in behavior, morphology, physiology, or life history, and prey species can adjust their defensive responses based on the dangerousness of predators. Analogously, prey may also change the composition and quantity of defensive chemicals when they coexist with different predators, but such predator‐induced plasticity in chemical defenses remains elusive in vertebrates. In this study, we investigated whether tadpoles of the common toad (Bufo bufo) adjust their chemical defenses to predation risk in general and specifically to the presence of different predator species; furthermore, we assessed the adaptive value of the induced defense. We reared tadpoles in the presence or absence of one of four caged predator species in a mesocosm experiment, analyzed the composition and quantity of their bufadienolide toxins, and exposed them to free‐ranging predators. We found that toad tadpoles did not respond to predation risk by upregulating their bufadienolide synthesis. Fishes and newts consumed only a small percentage of toad tadpoles, suggesting that bufadienolides provided protection against vertebrate predators, irrespective of the rearing environment. Backswimmers consumed toad tadpoles regardless of treatment. Dragonfly larvae were the most voracious predators and consumed more predator‐naïve toad tadpoles than tadpoles raised in the presence of dragonfly cues. These results suggest that tadpoles in our experiment had high enough toxin levels for an effective defense against vertebrate predators even in the absence of predator cues. The lack of predator‐induced phenotypic plasticity in bufadienolide synthesis may be due to local adaptation for constantly high chemical defense against fishes in the study population and/or due to the high density of conspecifics.  相似文献   

19.
Summary The effects of tadpole body size, tadpole sibship, and fish body size on predation of gray treefrog tadpoles, Hyla chrysoscelis, were studied in laboratory and artificial pond experiments. Tadpole body size had a significantly positive effect on the survival of tadpoles in all experiments. The relationship between tadpole biomass eaten and biomass available suggested that fish were not satiated when consuming the largest tadpoles. Large tadpoles were probably better able to evade predators. A difference in survival among full sib families of tadpoles was only present in one family, suggesting that genetic differences in predator avoidance behavior or palatability were probably secondarily important to body size per se. Fish body size had a significantly negative effect on the survival of tadpoles. Larger fish consumed a larger number and proportion of tadpoles as well as greater biomass. These results indicate that environmental factors affecting the growth rate of tadpoles cand dramatically alter their vulnerability to gape-limited predators.  相似文献   

20.
In nature, prey are exposed to multiple predators simultaneously. We examined the effects of the cues of two potential predators, mosquitofish and odonate larvae, individually and in combination on the behavior of green frog (Rana clamitans) tadpoles. In addition to examining the behavioral response of green frog tadpoles to multiple predators, we examined variation in behavior among tadpoles from different egg masses (i.e. different sibships). Sibships differed in activity level and there was a significant predator cue by sibship interaction. Two sibships were relatively more active in the control and odonate predator cue treatments but showed reduced activity in treatments containing mosquitofish cues, whereas the remaining sibships showed consistently low levels of activity in all predator cue treatments, including the control. The use of the vegetated side of the aquarium did not differ between tadpoles exposed to the different predator cues. Sibship had no effect on tadpoles’ use of the vegetated side of the aquarium, and there was no interaction between sibship and predator cue. Our results suggest that green frogs did not respond to simultaneous exposure to multiple predator cues any differently than they did to exposure to individual predator cues. More importantly, our results suggest variation, possibly genetically based, in behavioral responses of tadpoles to predators, and thus selection on these behaviors is possible. Of particular interest is that there was variation in behavioral responses to a non‐native predator (Gambusia affinis), suggesting an evolutionary response to an invasive predator is possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号