首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 344 毫秒
1.
Populations of Drosophila melanogaster subjected to extreme larval (CU) or adult (UC) densities for multiple generations were assayed for a variety of life history characters. When reared under either crowded or uncrowded larval conditions, populations which had been selected to tolerate the limitation of resources imposed by extreme larval (CU) crowding, exhibited greater starvation resistance and lipid content than did populations which do not routinely undergo larval density-dependent regulation. Previous studies have shown that the CU populations do not show a correlated increase in longevity; as has been generally observed for these characteristics in age-structured populations of D. melanogaster. This suggests that density-dependent natural selection may not always shape life histories of the same characteristic in the same direction that age-specific selection does.  相似文献   

2.
Four types of laboratory populations of the bean weevil (Acanthoscelides obtectus) have been developed to study the effects of density-dependent and age-specific selection. These populations have been selected at high (K) and low larval densities (r) as well as for reproduction early (Y) and late (O) in life. The results presented here suggest that the r- and K-populations (density-dependent selection regimes) have differentiated from each other with respect to the following life-history traits: egg-to-adult viability at high larval density (K > r), preadult developmental time (r > K), body weight (r > K), late fecundity (K > r), total realized fecundity (r > K), and longevity of males (r > K). It was also found that the following traits responded in statistically significant manner in populations subjected to different age-specific selection regimes: egg-to-adult viability (O > Y), body weight (O > Y), early fecundity (Y > O), late fecundity (O > Y), and longevity of females and males (O > Y). Although several life-history traits (viability, body weight, late fecundity) responded in similar manner to both density-dependent and age-specific selection regimes, it appears that underlying genetic and physiological mechanisms responsible for differentiation of the r/K and Y/O populations are different. We have also tested quantitative genetic basis of the bean weevil life-history traits in the populations experiencing density-dependent and age-specific selection. Among the traits traded-off within age-specific selection regimes, only early fecundity showed directional dominance, whereas late fecundity and longevity data indicated additive inheritance. In contrast to age-specific selecton regimes, three life-history traits (developmental time, body size, total fecundity) in the density-sependent regimes exhibited significant dominance effects. Lastly, we have tested the congruence between short-term and long-term effects of larval densities. The comparisons of the outcomes of the r/K selection regimes and those obtained from the low- and high-larval densities revealed that there is no congruence between the selection results and phenotypic plasticity for the analyzed life-history traits in the bean weevil.  相似文献   

3.
We have previously hypothesized that density‐dependent natural selection is responsible for a genetic polymorphism in crowded cultures of Drosophila. This genetic polymorphism entails two alternative phenotypes for dealing with crowded Drosophila larval cultures. The first phenotype is associated with rapid development, fast larval feeding rates but reduced absolute viability, especially in the presence of nitrogenous wastes like ammonia. The second phenotype has associated with it the opposite set of traits, slow development, slow feeding rates and higher viability. We suggested that these traits are associated due to genetic correlations and that an important selective agent in crowded larval cultures was high levels of ammonia. To test this hypothesis we have examined viability and larval feeding rates in populations kept at low larval densities but selected directly for (i) rapid egg‐to‐adult development, (ii) tolerance of ammonia in the larval environment and (iii) tolerance of urea in the larval environment. Consistent with our hypothesis we found that (i) larvae selected for rapid development exhibited increased feeding rates, and decreased viability in food laced with ammonia or urea relative to controls, and (ii) larvae selected to tolerate either ammonia or urea in their larval environment show reduced feeding rates but elevated survival in toxin‐laced food relative to controls. It would appear that development time and larval feeding rate are important characters for larvae adapting to crowded cultures. The correlated fitness effects of these characters provide important insights into the nature of density‐dependent natural selection.  相似文献   

4.
In holometabolous animals such as Drosophila melanogaster, larval crowding can affect a wide range of larval and adult traits. Adults emerging from high larval density cultures have smaller body size and increased mean life span compared to flies emerging from low larval density cultures. Therefore, adaptation to larval crowding could potentially affect adult longevity as a correlated response. We addressed this issue by studying a set of large, outbred populations of D. melanogaster, experimentally evolved for adaptation to larval crowding for 83 generations. We assayed longevity of adult flies from both selected (MCUs) and control populations (MBs) after growing them at different larval densities. We found that MCUs have evolved increased mean longevity compared to MBs at all larval densities. The interaction between selection regime and larval density was not significant, indicating that the density dependence of mean longevity had not evolved in the MCU populations. The increase in longevity in MCUs can be partially attributed to their lower rates of ageing. It is also noteworthy that reaction norm of dry body weight, a trait probably under direct selection in our populations, has indeed evolved in MCU populations. To the best of our knowledge, this is the first report of the evolution of adult longevity as a correlated response of adaptation to larval crowding.  相似文献   

5.
In previous experiments we found that Drosophila melanogaster lines selected for increased adult desiccation resistance had increased resistance to other environmental stresses at the adult stage including starvation, intense 60Co-γ radiation and a toxic ethanol level. In further studies on these lines, we now show that selection did not alter resistance to desiccation and ethanol at the larval stage. As well as having a lower early fecundity, selected lines showed increased adult male longevity and increased viability at high larval densities compared with control lines. There were no changes in development time or mating success. The increased male longevity is consistent with the reduced metabolic rate of the selected lines.
A genetic correlation between resistance to different stresses was confirmed by an analysis of isofemale lines derived from a population founded by flies from a stress-resistant line and an unselected line. The results are consistent with the existence of genes segregating in natural populations conferring increased general stress resistance.  相似文献   

6.
Populations of Acanthoscelides obtectus were maintained for 7 generations in either low- or high-larval densities in order to examine whether weevils life-history traits are modified in the direction predicted by r/K-selection theory. We found that r-selected population had a higher total fecundity, earlier age at first and last reproduction, and higher intrinsic rate of growth than K-selected population. Contrary to the theory, we have no evidence that preadult developmental time and adult longevity have been molded by density-dependent selection. The analysis of genetic variation of the weevils life-history traits in responses to different larval densities in both r- and K-selection populations indicates that different set of genes determining performance in two densities of analysed fecundity indices were accumulated during the course of the r- and K-selection.  相似文献   

7.
Populations of Drosophila melanogaster were maintained for 36 generations in r- and K-selected environments in order to test the life-history predictions of theories on density-dependent selection. In the r-selection environment, populations were reduced to low densities by density-independent adult mortality, whereas populations in the K-selection environment were maintained at their carrying capacity. Some of the experimental results support the predictions or r- and K-selection theory; relative to the r-selected populations, the K-selected populations evolved an increased larval-to-adult viability, larger body size, and longer development time at high larval densities. Mueller and Ayala (1981) found that K-selected populations also have a higher rate of population growth at high densities. Other predictions of the thoery are contradicted by the lack of differences between the r and K populations in adult longevity and fecundity and a slower rate of development for r-selected individuals at low densities. The differences between selected populations in larval survivorship, larval-to-adult development time, and adult body size are strongly dependent on larval density, and there is a significant interaction between populations and larval density for each trait. This manifests an inadequacy of the theory on r- and K-selection, which does not take into account such interactions between genotypes and environments. We describe mechanisms that may explain the evolution of preadult life-history traits in our experiment and discuss the need for changes in theories of density-dependent selection.  相似文献   

8.
A long-lived (L) strain of Drosophila melanogaster, derived from a normal-lived (R) strain by artificial selection, has a significantly different adult longevity. Previous work has shown that 1) the two strains age in the same manner, 2) the major genes responsible for much of the L strain's extended longevity are located on the 3rd chromosome, and 3) the extended longevity phenotype is significantly modulated by the larval environment. In this report, we investigate the resistance of the L and R strains to the lethal effects of dietary paraquat. We show that, within the limitations of our described chromosomal and environmental manipulations, the extended longevity phenotype always accompanies the phenotype of elevated paraquat resistance. In addition, reversed selection applied to the L strain results in the simultaneous decrease of both life span and paraquat resistance. Thus, the presence or absence of the latter phenotype may be used as a bioassay for the presence or absence of the extended longevity phenotype, without any necessary implication of causality. Use of this bioassay should greatly speed up the genetic analysis of this system by allowing us to identify long-lived animals at a young age. Finally, we show that the age-related loss of elevated paraquat resistance in both strains precedes all the other age-related functional decrements which we have previously noted in this system.  相似文献   

9.
A long-lived (L) strain of Drosophila melanogaster, derived from a normal-lived (R) strain by artificial selection, has a significantly different adult longevity. Previous work has shown that (1) the two strains age in the same manner, (2) the major genes responsible for much of the L strain's extended longevity are located on the 3rd chromosome, and (3) the extended longevity phenotype is significantly modulated by the larval environment. In this report, we investigate the resistance of the L and R strains to the lethal effects of dietary paraquat. We show that, within the limitations of our described chromosomal and environmental manipulations, the extended longevity phenotype always accompanies the phenotype of elevated paraquat resistance. In addition, reversed selection applied to the L strain results in the simultaneous decrease of both life span and paraquat resistance. Thus, the presence or absence of the latter phenotype may be used as a bioassay for the presence or absence of the extended longevity phenotype, without any necessary implication of causality. Use of this bioassay should greatly speed up the genetic analysis of this system by allowing us to identify long-lived animals at a young age. Finally, we show that the age-related loss of elevated paraquat resistance in both strains precedes all the other age-related functional decrements which we have previously noted in this system.  相似文献   

10.
A collection of forty populations were used to study the phenotypic adaptation of Drosophila melanogaster larvae to urea‐laced food. A long‐term goal of this research is to map genes responsible for these phenotypes. This mapping requires large numbers of populations. Thus, we studied fifteen populations subjected to direct selection for urea tolerance and five controls. In addition, we studied another twenty populations which had not been exposed to urea but were subjected to stress or demographic selection. In this study, we describe the differentiation in these population for six phenotypes: (1) larval feeding rates, (2) larval viability in urea‐laced food, (3) larval development time in urea‐laced food, (4) adult starvation times, (5) adult desiccation times, and (6) larval growth rates. No significant differences were observed for desiccation resistance. The demographically/stress‐selected populations had longer times to starvation than urea‐selected populations. The urea‐adapted populations showed elevated survival and reduced development time in urea‐laced food relative to the control and nonadapted populations. The urea‐adapted populations also showed reduced larval feeding rates relative to controls. We show that there is a strong linear relationship between feeding rates and growth rates at the same larval ages feeding rates were measured. This suggests that feeding rates are correlated with food intake and growth. This relationship between larval feeding rates, food consumption, and efficiency has been postulated to involve important trade‐offs that govern larval evolution in stressful environments. Our results support the idea that energy allocation is a central organizing theme in adaptive evolution.  相似文献   

11.
An intensive study of longevity, female fecundity, and male reproductive behavior in Drosophila melanogaster was undertaken in order to establish whether late-life fitness characters in short-lived populations might be affected by the increase in deleterious alleles due to random genetic drift. We also sought to determine whether selection for late-life fertility could eliminate alleles that produce a decline in later fitness components in short-lived populations, as predicted by the mutation accumulation hypothesis for the evolution of aging. These experiments employed long-lived (O) populations, short-lived (B) populations, and hybrids made from crosses of independent lines from within the O and B populations. No detectable longevity differences were seen between hybrid B males and females and purebred B males and females. Reproduction in aged B purebred females was significantly less than in hybrid females at 3 wk of age only. A full diallel cross of the five replicate B lines showed a steady increase in hybrid male reproductive performance after the first week of adult life, relative to the parental lines. A full diallel cross of the five replicate O lines revealed no significant increase in hybrid O age-specific male reproductive success compared with the purebred O lines when assayed over the first 5 wk of adult life. The results on male reproductive behavior are consistent with the idea that relaxed age-specific selection in the B populations has been accompanied by an increase in deleterious, recessive traits that exhibit age-specific expression. Consequently, we conclude that a mutation accumulation process has been at least partly responsible for the age-specific decline in male B virility relative to that of the O populations.  相似文献   

12.
Drosophila melanogaster populations subjected to extreme larval crowding (CU lines) in our laboratory have evolved higher larval feeding rates than their corresponding controls (UU lines). It has been suggested that this genetically based behavior may involve an energetic cost, which precludes natural selection in a density-regulated population to simultaneously maximize food acquisition and food conversion into biomass. If true, this stands against some basic predictions of the general theory of density-dependent natural selection. Here we investigate the evolutionary consequences of density-dependent natural selection on growth rate and body size in D. melanogaster. The CU populations showed a higher growth rate during the postcritical period of larval life than UU populations, but the sustained differences in weight did not translate into the adult stage. The simplest explanation for these findings (that natural selection in a crowded larval environment favors a faster food acquisition for the individual to attain the same final body size in a shorter period of time) was tested and rejected by looking at the larva-to-adult development times. Larvae of CU populations starved for different periods of time develop into comparatively smaller adults, suggesting that food seeking behavior in a food depleted environment carries a higher cost to these larvae than to their UU counterparts. The results have important implications for understanding the evolution of body size in natural populations of Drosophila, and stand against some widespread beliefs that body size may represent a compromise between the conflicting effects of genetic variation in larval and adult performance.  相似文献   

13.
In this study we examined the direct and correlated responses for fast and slow preadult development time in three laboratory populations of the bean weevil (Acanthoscelides obtectus). The first population (“base,” B) has experienced laboratory conditions for more than 10 years; the second (“young,” Y) and the third (“old,” O) populations were selected for early and late reproduction, respectively, before the onset of the present experiments. All three populations are successfully selected for both fast and slow preadult development. The realized heritabilities are very similar in all populations, suggesting a similar level of the additive genetic variance for preadult development. We studied the correlated responses on the following life-history traits: egg-to-adult viability, wet body weight, early fecundity, late fecundity, total realized female fecundity, and adult longevity. All life-history traits examined here, except for the egg-to-adult viability, are affected by selection for preadult development in at least in one of the studied populations. In all three populations, beetles selected for slow preadult development are heavier and live longer than those from the fast-selected lines. The findings with respect to adult longevity are unexpected, because the control Y and O populations, selected for short- and long-lived beetles, respectively, do not show significant differences in preadult development. Thus, our results indicate that some kind of asymmetrical correlated responses occur for preadult development and adult longevity each time that direct selection has been imposed on one or the other of these two traits. In contrast to studies with Drosophila, it appears that for insect species that are aphagous as adults, selection for preadult development entails selection for alleles that also change the adult longevity, but that age-specific selection (applied in the Y and O populations) mostly affects the alleles that have no significant influence on the preadult development. Implications of these findings on the developmental and evolutionary theories of aging are also discussed.  相似文献   

14.
The effects of adult crowding on two components of fitness were studied in three sets of Drosophila melanogaster populations, subjected to life-stage-specific, density-dependent natural selection in the laboratory for over 50 generations. Three days of crowding, early in adult life, were observed to increase mortality significantly during the episode of crowding, as well as decrease subsequent fecundity. Populations selected for adaptation to high adult densities suffered significantly lower mortality during episodes of adult crowding, as compared to populations selected specifically for adaptation to larval crowding, as well as control populations typically maintained at low larval and adult densities. Moreover, populations adapted to larval crowding seemed to be adversely affected by adult crowding to a greater extent than the controls, raising the possibility of trade-offs between adaptations to larval and adult crowding, respectively. Preliminary evidence suggests that the populations adapted to adult crowding may have evolved a propensity to stay away from the food medium, which is where most deaths occur when adults are crowded in culture vials. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
A selection experiment using Drosophila melanogaster revealed a strong trade-off between adult weight and larval development time (LDT), supporting the view that antagonistic pleiotropy for these two fitness traits determines mean adult size. Two experimental lines of flies were selected for a shorter LDT (measured from egg laying to pupation). After 15 generations LDT was reduced by an average of 7.9%. The response appeared to be controlled primarily by autosomal loci. A correlated response to the selection was a reduction in adult dry weight: individuals from the selected populations were on average 15.1% lighter than the controls. The lighter females of the selected lines showed a 35% drop in fecundity, but no change in longevity. Thus, there is no direct relationship between LDT and adult longevity. The genetic correlation between weight and LDT, as measured from their joint response to selection, was 0.86. Although there was weak evidence for dominance in LDT, there was none for weight, making it unlikely that selection acting on this antagonistic pleiotropy could lead to a stable polymorphism. In all lines, sex differences in weight violated expectations based on intrasex genetic correlations: Females, being larger than males, ought to require a longer LDT, whereas there was a slight trend in the opposite direction. Because the sexual dimorphism in size was not significantly altered by selection, it appears that the controlling loci are either invariant or have very limited pleiotropic effect on developmental time. It is suggested that they probably control some intrinsic, energy-intensive developmental process in males.  相似文献   

16.
We investigated the genetic basis of adult behavioral response and larval physiological tolerance to permethrin within two diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), populations from Wooster and Celeryville, OH, with different average levels of larval tolerance. The adult behavioral response was measured as oviposition site preference and was investigated using full-sib design and parent-offspring regression. Additive genetic variance (0.134 +/- 0.02) and the heritability (h2 = 0.31 +/- 0.08) for the behavioral response was significant for the Celeryville population, suggesting that in this population, a high proportion of phenotypic variation for adult behavioral response to permethrin was heritable genetic variation. The larval physiological response was measured with a topical application bioassay and was investigated using a half-sib design. Significant additive genetic variances and heritabilities for physiological tolerance to permethrin were detected in both populations. The genetic correlation between adult behavioral response and larval physiological tolerance to permethrin were negative, but significant only in the Celeryville population; indicating that adults from this population that are more behaviorally responsive produced offspring that are more susceptible to permethrin. Our findings have implications for the evolution and management of insecticide resistance in the diamondback moth. The adult behavioral response can lower the exposure of larvae to the insecticide, lowering selection pressure for physiological resistance in larvae. Furthermore, to the extent that the adult behavioral response increases fitness, it can indirectly select for larval susceptibility because of the negative correlation between the two traits.  相似文献   

17.
Starvation resistance is closely associated with fitness in natural populations of many organisms. It often co-varies with longevity and is a relevant target for understanding the evolution of aging. We selected for increased starvation resistance in the seasonally polyphenic butterfly Bicyclus anynana in a warm, wet-seasonal environment over 17 generations. We measured the response to selection for two selected lines compared to that of an unselected stock. Results show an increase in survival under adult starvation of 50%-100%. In addition, selection lines showed an increase in life span under normal adult feeding of 30%-50%. Female reproduction was changed toward laying fewer but larger eggs. The results indicate a sex-specific response to selection: females reallocated resources toward a more durable body, whereas males appeared to increase starvation resistance through changed metabolic rate. The phenotype produced by artificial selection resembles the form that occurs in the cool, dry-season environment, which suggests that selection has targeted the regulatory mechanisms for survival that are also involved in the suite of traits (including starvation resistance) central to the adaptive plastic response of this butterfly to seasonal conditions. In general, these results imply that the regulation of life span involves mechanisms of phenotypic plasticity.  相似文献   

18.
Aedes (Ochlerotatus) albifasciatus(Macquart 1838) (Diptera: Culicidae) is a neotropical flood water mosquito, incriminated as the main vector of the western equine encephalitis virus, and which affects beef and milk production in central Argentina. The short time required to hatch and develop from egg to adult, usually in temporary pools, suggests a strategy which allows for exploitation of transient pools, thus evading predation and interspecific competition. Under these conditions intra specific competition could represent a major density-dependent source of larval mortality, but the relative importance of density-dependent regulation of mosquito populations has generated controversy. Therefore we examined the effects of larval density on basic population characteristics of Ae. albifasciatusin the laboratory. Larvae were obtained by synchronous hatching of eggs laid by field-trapped females. Emerging larvae (L1) were used to build cohorts of different initial densities, kept in plastic trays with 400 ml of distilled water, and food supplied daily during the first 10 days (0.1 g per larvae day–1). Age-specific development time and specific and relative mortality were estimated, and their relation to initial larval density was assessed through linear and non-linear regressions and correlation analysis. First hatching was registered 3 h after flooding the eggs. Higher levels of pre-adult mortality were detected in groups with higher densities. Specific mortality and average time to enter a stage of L1 to L3 could directly be related to initial larval density, but no significant relations were found for L4 and pupae. Results suggest that crowding could be a factor capable of regulating the density of natural populations of Ae. albifasciatus.  相似文献   

19.
Maternal effects often affect fitness traits, but there is little experimental evidence pertaining to their contribution to response to selection imposed by novel environments. We studied the evolution of maternal effects in Drosophila populations selected for tolerance to chronic larval malnutrition. To this end, we performed pairwise reciprocal F1 crosses between six selected (malnutrition tolerant) populations and six unselected control populations and assessed the effect of cross direction on larval growth and developmental rate, adult weight and egg‐to‐adult viability expressed under the malnutrition regime. Each pair of reciprocal crosses revealed large maternal effects (possibly including cytoplasmic genetic effects) on at least one trait, but the magnitude, sign and which traits were affected varied among populations. Thus, maternal effects contributed significantly to the response to selection imposed by the malnutrition regime, but these changes were idiosyncratic, suggesting a rugged adaptive landscape. Furthermore, although the selected populations evolved both faster growth and higher viability, the maternal effects on growth rate and viability were negatively correlated across populations. Thus, genes mediating maternal effects can evolve to partially counteract the response to selection mediated by the effects of alleles on their own carriers’ phenotype, and maternal effects may contribute to evolutionary trade‐offs between components of offspring fitness.  相似文献   

20.
In this study we show for the first time that moderate high larval density induces Hsp70 expression in Drosophila melanogaster larvae. Larval crowding led to both increased mean and maximal longevity in adults of both sexes. Two different measures of heat-stress resistance increased in adult flies developed at high density compared to flies developed at low density. The hardening-like effect of high larval density carried over to the adult life stage. The hardening memory (the period of increased resistance after hardening) was long compared to hardening of adult flies, and possibly lasts throughout life. The increase in resistance in adults following development at high larval density seemed not to be connected to Hsp70 itself, since Hsp70 expression level in adult flies after hardening was independent of whether larvae developed at low or high densities. More likely, Hsp70 may be one of many components of the stress response resulting in hardening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号