首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The estimation of the relationship between phenotype and fitness in natural populations is constrained by the distribution of phenotypes available for selection to act on. Because selection is blind to the underlying genotype, a more variable phenotypic distribution created by using environmental effects can be used to enhance the power of a selection study. I measured selection on a population of adult damselflies (Enallagma boreale) whose phenotype had been modified by raising the larvae under various levels of food availability and density. Selection on body size (combination of skeletal and mass at emergence) and date of emergence was estimated in two consecutive episodes. The first episode was survival from emergence to sexual maturity and the second was reproductive success after attaining sexual maturity. Female survival to sexual maturity was lower, and therefore opportunity for selection greater, than males in both years. Opportunity for selection due to reproductive success was greater for males. The total opportunity for selection was greater for males one year and for females the other. Survival to sexual maturity was related to mass gain between emergence and sexual maturity. Females gained more mass and survived less well than males in both years but there was no linear relationship between size at emergence and survival for females in either year. However, females in the tails of the phenotype distribution were less likely to survive than those near the mean. In contrast, small males consistently gained more mass than large males and survived less well in one year. There was significant selection on timing of emergence in both years, but the direction of selection changed due to differences in weather; early emerging females were more successful one year and late emerging males and females the other. The number of clutches laid by females was independent of body size. Because the resources used to produce eggs are acquired after emergence and this was independent of size at emergence, female fitness did not increase with size. Small males may have had lower survival to sexual maturity but they had higher mating success than large males. Resources acquired prior to sexual maturity are essential for reproductive success and may in some species alter their success in inter- and intrasexual competition. Therefore, ignoring the mortality associated with resource acquisition will give an incomplete and potentially misleading picture of selection on the phenotype.  相似文献   

2.
Previous studies have shown that at least two lineages of Enallagma damselflies (Odonata: Coenagrionidae) shifted from inhabiting lakes with fish as top predators to inhabiting ponds and lakes with large dragonflies as the top predators. In adapting to living with the new predator type, these lineages evolved much greater swimming speeds to avoid attacking dragonflies. In this paper, I test whether biochemical adaptations to fuel swimming arose in concert with previously identified morphological changes that increase swimming speed. I assayed the mass-specific enzyme activities of three enzymes involved in fueling strenuous activity: pyruvate kinase and lactate dehydrogenase (enzymes involved in glycolysis) and arginine kinase (the enzyme that recharges the ATP pool). Enzyme activities were determined for 14 Enallagma species from across the genus. Species that coexist with dragonfly predators had significantly higher mass-specific arginine kinase activities than species that coexist with fish, and the results of evolutionary contrasts analyses indicate that this difference between the two groups is the result of evolutionary change associated with the habitat shifts of lineages from fish lakes to dragonfly lakes. Although significant evolution was documented for lactate dehydrogenase and pyruvate kinase across the genus, evolutionary change in the activities of these enzymes was not consistent with adaptation to coexisting with dragonfly predators. Swimming bouts to avoid dragonfly predators last for only a few seconds, and the action of arginine kinase to phosphorylate ADP to make ATP will extend the duration of maximal exertion for swimming for a few seconds. However, much longer time periods (over 45 sec) are required to generate ATP via glycolysis. Therefore, selection may have favored adaptation only at the arginine kinase locus.  相似文献   

3.
To understand natural selection we need to integrate its measure across environments. We present a method for measuring phenotypic selection that combines the potential for both environmental variation and phenotypic plasticity. The method uses path analysis and a measure of selection that is analogous to selection on breeding values. For individuals growing in alternative environments, paths are created that represent potential changes in the environment. The probabilities for these changes are then multiplied by the path coefficients to calculate selection coefficients. Selection on plasticity is measured as the difference in selection within each environment. We illustrate these methods using data on selection in an experimental population of Arabidopsis thaliana. Individuals from 36 families were grown in one of four environments, a factorial combination of shaded/open and early/late shading. For final height of the inflorescence, there was positive selection in both the open and shaded environments and negative selection on plasticity of height. For bolting time, there was also positive selection in both environments, but no selection on plasticity. We show how to use this information to examine how selection would change with changes in environmental frequencies and their transition probabilities. These methods can be expanded to encompass continuous traits and continuous environments as well as other complexities of natural selection.  相似文献   

4.
Multiple-regression techniques for measuring phenotypic selection have been used in a large number of recent field studies. One benefit of this technique is its ability to discern the direct action of selection on traits by removing effects of correlated traits. However, covariation among traits expressed at different stages in an organism's life history is often poorly estimated because individuals that die before reaching adulthood cannot be measured as adults. Accurate estimates of trait covariances are necessary for the correct interpretation of the direct action of selection on a trait. If phenotypic characters expressed at different life-history stages are of interest, and mortality occurs between stages, the components of the selection model will be biased by not including those individuals that died (the “invisible fraction”).  相似文献   

5.
The raw material for evolution is variation. Consequently, identifying the factors that generate, maintain, and erode phenotypic and genetic variation in ecologically important traits within and among populations is important. Although persistent directional or stabilizing selection can deplete variation, spatial variation in conflicting directional selection can enhance variation. Here, we present evidence that phenotypic variation in limber pine (Pinus flexilis) cone structure is enhanced by conflicting selection pressures exerted by its mutualistic seed disperser (Clark's nutcracker Nucifraga columbiana) and an antagonistic seed predator (pine squirrel Tamiasciurus spp.). Phenotypic variation in cone structure was bimodal and about two times greater where both agents of selection co‐occurred than where one (the seed predator) was absent. Within the region where both agents of selection co‐occurred, bimodality in cone structure was pronounced where there appears to be a mosaic of habitats with some persistent habitats supporting only the seed disperser. These results indicate that conflicting selection stemming from spatial variation in community diversity can enhance phenotypic variation in ecologically important traits.  相似文献   

6.
Gene flow is often considered to be one of the main factors that constrains local adaptation in a heterogeneous environment. However, gene flow may also lead to the evolution of phenotypic plasticity. We investigated the effect of gene flow on local adaptation and phenotypic plasticity in development time in island populations of the common frog Rana temporaria which breed in pools that differ in drying regimes. This was done by investigating associations between traits (measured in a common garden experiment) and selective factors (pool drying regimes and gene flow from other populations inhabiting different environments) by regression analyses and by comparing pairwise FST values (obtained from microsatellite analyses) with pairwise QST values. We found that the degree of phenotypic plasticity was positively correlated with gene flow from other populations inhabiting different environments (among‐island environmental heterogeneity), as well as with local environmental heterogeneity within each population. Furthermore, local adaptation, manifested in the correlation between development time and the degree of pool drying on the islands, appears to have been caused by divergent selection pressures. The local adaptation in development time and phenotypic plasticity is quite remarkable, because the populations are young (less than 300 generations) and substantial gene flow is present among islands.  相似文献   

7.
Variation in the number of vertebrae is widespread in fishes, and is partly genetic in origin. The adaptive significance of this variation was tested by exposing larvae of the threespine stickleback (Gasterosteus aculeatus) to predation by sunfish (Lepomis gibbosus). Two vertebral characters were considered: the total number (VN) and the ratio of abdominal to caudal vertebrae (VR). Predation was selective for both characters, but selection was more directly related to VR than to VN. The direction of selection depended on larval length: as length increased, optimal VR decreased. Total selection for VR was a combination of direct selection and an indirect effect of selection acting on a correlated trait, the ratio of precaudal to caudal length. Direct and indirect selection were in opposing directions at a given larval length. Variation in vertebral number may be maintained in populations partly because the strength of selection is reduced by opposing directions between direct and indirect selection, and between total selection at different larval lengths.  相似文献   

8.
The magnitude and direction of phenotypic selection on emergence date and seedling size in Erigeron annuus was measured to determine the heterogeneity of selection among sites and the proportion of fitness variance explained by seedling size and emergence date. Three disturbance treatments (open, annual vegetation, perennial vegetation) were imposed to test the hypothesis of stronger selection on seedlings in competitive environments. Selection was most heterogeneous early in the life cycle, with significant spatial heterogeneity in the magnitude of selection on a local scale. The disturbance treatments affected only fecundity selection gradients and selection was strongest in open plots. Significant variation in the sign of selection differentials on emergence date was observed for establishment and fall viability selection episodes; at later stages selection varied in magnitude but not direction. Seedlings in the earliest cohort experienced high mortality during establishment, but increased size and fecundity later in the life cycle. Both stabilizing and disruptive selection on emergence date were observed during establishment, but in general selection was purely directional. At Stony Brook most selection on emergence date operated indirectly through seedling size, whereas at the Weld Preserve direct selection was stronger. There were persistent effects of both seedling emergence date and rosette diameter on adult fitness components, and October rosette diameter explained 18% of the total phenotypic variance in fecundity. Overall, viability fitness components were much more important than fecundity selection. Winter survivorship was the single most important episode of selection.  相似文献   

9.
Adaptive genetic differentiation and adaptive phenotypic plasticity can increase the fitness of plant lineages in heterogeneous environments. We examine the relative importance of genetic differentiation and plasticity in determining the fitness of the annual plant, Erodium cicutarium, in a serpentine grassland in California. Previous work demonstrated that the serpentine sites within this mosaic display stronger dispersal‐scale heterogeneity than nonserpentine sites. We conducted a reciprocal transplant experiment among six sites to characterize selection on plasticity expressed by 180 full‐sibling families in response to natural environmental heterogeneity across these sites. Multivariate axes of environmental variation were constructed using a principal components analysis of soil chemistry data collected at every experimental block. Simple linear regressions were used to characterize the intercept, and slope (linear and curvilinear) of reaction norms for each full‐sibling family in response to each axis of environmental variation. Multiple linear regression analyses revealed significant selection on trait means and slopes of reaction norms. Multivariate analyses of variance demonstrated genetic differentiation between serpentine and nonserpentine lineages in the expression of plasticity in response to three of the five axes of environmental variation considered. In all but one case, serpentine genotypes expressed a stronger adaptive plastic response than nonserpentine genotypes.  相似文献   

10.
Comparative studies tend to differ from optimality and functionality studies in how they treat adaptation. While the comparative approach focuses on the origin and change of traits, optimality studies assume that adaptations are maintained at an optimum by stabilizing selection. This paper presents a model of adaptive evolution on a macroevolutionary time scale that includes the maintenance of traits at adaptive optima by stabilizing selection as the dominant evolutionary force. Interspecific variation is treated as variation in the position of adaptive optima. The model illustrates how phylogenetic constraints not only lead to correlations between phylogenetically related species, but also to imperfect adaptations. From this model, a statistical comparative method is derived that can be used to estimate the effect of a selective factor on adaptive optima in a way that would be consistent with an optimality study of adaptation to this factor. The method is illustrated with an analysis of dental evolution in fossil horses. The use of comparative methods to study evolutionary trends is also discussed.  相似文献   

11.
12.
We examined phenotypic selection exerted by natural enemies on the gall-making fly Eurosta solidaginis in an extensive field study of 16 populations, spanning four generations. Gall-makers that induce small galls are vulnerable to the attack of Eurytoma gigantea. This imposes upward directional selection on gall size. Insectivorous birds, predominantly the downy woodpecker, are more likely to attack larvae that induce large galls than small ones, and this imposes downward directional selection. We used path analysis to explore the relative contributions of these natural enemies to the net directional selection on gall size. The path models further examined several ecological factors that influence selection intensity through their effects on parasitoid and bird attack rates. Net directional selection varied more strongly with E. gigantea attack than bird attack. Competitive interactions among birds and the three parasitoid species, including E. gigantea, were evidenced by low winter bird attack rates in fields where a high proportion of galls contained the overwintering parasitoids. Eurytoma gigantea attack was heavier in fields where mean gall size was small and bird attack heavier in fields where mean gall size was large. Neither birds nor E. gigantea showed simple density-dependent attack. Data suggested a form of frequency-dependent attack by birds but not by E. gigantea.  相似文献   

13.
Direct measurements of phenotypic selection by parasitoids on quantitative traits in herbivorous insects have been rare. I analysed episodes of phenotypic selection on the timing of life-history events in a multivoltine leafmining moth, Phyllonorycter mespilella, and assessed the importance of hymenopterous parasitoids as selective influences. Phyllonorycter mespilella has two consecutive stages of larval development, the sap-feeding (SF) and tissue-feeding (TF) stages. Adult parasitoids host feed predominantly on SF larvae, and oviposit predominantly on TF larvae. Oviposition attack on TF larvae caused positive directional selection on the date of transition to the the TF stage (TF date) in the third generation of P. mespilella in one population in 1991. Overwinter mortality caused negative directional selection on TF date in the third generation in a second population in 1993. No directional or variance selection on TF date was detected in the second population in the second generation of 1993. Parasitoid females accepted SF larvae for oviposition more often in the fall generation than in summer generations in both populations. The relative frequencies of SF and TF larvae may alter the pattern of oviposition attack by parasitoids, and thus the form of phenotypic selection on TF date.  相似文献   

14.
捕食风险对高原鼠兔食物大小选择的影响   总被引:9,自引:0,他引:9  
边疆晖  周文扬 《兽类学报》1999,19(4):254-261
文章报道了捕食风险条件下高原鼠兔对食物大小选择的格局。在实验箱中放置艾虎以改变捕食风险水平, 食物按体积大小分为4种食物项目, 并测定各项目摄入率和取食单个食物项目的进食时间, 结果表明, 摄入率与进食时间依食物项目体积的增大而增加。将大食物与小食物项目配对并供高原鼠兔选择时, 食物项目的利用率视环境状况而不同。捕食风险处理中, 小食物利用率依其进食时间的减少而增加, 其程度与所配对的食物项目的摄入率和进食时间有关。在捕食风险的作用下, 高原鼠兔的食物选择格局反映了能量摄取与风险避免间的权衡。  相似文献   

15.
In the hummingbird-pollinated herb Ipomopsis aggregata, selection through male function during pollination favors wide corolla tubes. We explored the mechanisms behind this selection, using phenotypic selection analysis to compare effects of corolla width on two components of male pollination success, pollinator visit rate and pollen exported per visit. During single visits by captive hummingbirds, flowers with wider corollas exported more pollen, and more dye used as a pollen analogue, to stigmas of recipient flowers. Corolla width was less strongly related to visit rate in the field, and had no direct effect on visit rate after nectar production and corolla length were controlled for. Moreover, the phenotypic selection differential was 80% higher for the effect on pollen exported per visit, suggesting that this is the more important mechanism of selection.  相似文献   

16.
We know very little about the genetic basis of adaptation. Indeed, we can make no theoretical predictions, however heuristic, about the distribution of phenotypic effects among factors fixed during adaptation nor about the expected “size” of the largest factor fixed. Study of this problem requires taking into account that populations gradually approach a phenotypic optimum during adaptation via the stepwise substitution of favorable mutations. Using Fisher's geometric model of adaptation, I analyze this approach to the optimum, and derive an approximate solution to the size distribution of factors fixed during adaptation. I further generalize these results to allow the input of any distribution of mutational effects. The distribution of factors fixed during adaptation assumes a pleasingly simple, exponential form. This result is remarkably insensitive to changes in the fitness function and in the distribution of mutational effects. An exponential trend among factors fixed appears to be a general property of adaptation toward a fixed optimum.  相似文献   

17.
To investigate the potential response to natural selection of reaction norms for age and size at maturity, fresh body weight at eclosion was mass selected under rich and poor larval food conditions in Drosophila melanogaster. The sensitivity of dry weight at eclosion to the difference between rich and poor larval food was selected using differences in sensitivities among families. For both experiments, the correlated response to selection of age at eclosion was examined. The flies were derived from wild populations and had been mass cultured in the lab for more than six months before the experiments started. These flies responded to selection on body weight upwards and downwards on both rich and poor larval food. Selection on increased or decreased sensitivity of body weight was also successful in at least one direction. Sensitivity was reduced by selection upwards in a poor environment and downwards in a rich environment.  相似文献   

18.
19.
Proof for predation as an agent shaping evolutionary trait diversification is accumulating, however, our understanding how multiple antipredator traits covary due to phenotypic differentiation is still scarce. Species of the dragonfly genus Leucorrhinia underwent shifts from lakes with fish as top predators to fishless lakes with large dragonfly predators. This move to fishless lakes was accompanied by a partial loss and reduction of larval spines. Here, we show that Leucorrhinia also reduced burst swimming speed and its associated energy fuelling machinery, arginine kinase activity, when invading fishless lakes. This results in patterns of positive phylogenetic trait covariation between behavioral and morphological antipredator defense (trait cospecialization) and between behavioral antipredator defense and physiological machinery (trait codependence). Across species patterns of trait covariation between spine status, burst swimming speed and arginine kinase activity also matched findings within the phenotypically plastic L. dubia. Our results highlight the importance of predation as a factor affecting patterns of multiple trait covariation during phenotypic diversification.  相似文献   

20.
The sensitivity of genotypic expression to the environment can be depicted as the reaction norm, which is defined as the array of phenotypes produced by a single genotype over a range of environments. We studied selection on reaction norms of the gall-inducing insect Eurosta solidaginis (Diptera; Tephritidae), which attacks tall goldenrod Solidago altissima (Compositae). Gall size was treated as a component of insect phenotype and attributes of the host plant as environmental influences on gall development. Genetic differences in the response of gall size to plant lag time (the number of days before a plant responds to the gall maker) were examined. Reaction norms for full-sib families of flies were quantified as linear functions; the elevation of the function denoted gall size produced by the family averaged across all plants, and the function's slope denoted family sensitivity to lag time. Expected fitness of each family was regressed over reaction norm elevation and slope to yield selection gradients on these reaction norm parameters. Directional selection on gall size averaged across environments is four times stronger than selection on sensitivity. Yet, genetic variation for sensitivity contributes more than twice as much to gall phenotypic variance as family mean gall size. Our results suggest that selection on environmental sensitivity will be weak for populations restricted to a narrow segment of an environmental gradient, but strong for broadly distributed species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号