首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two succulents with similar growth forms but different types of photosynthesis, Cotyledon orbiculata (crassulacean acid metabolism, CAM) and Othonna opima (C3 pathway), were investigated with respect to the modulation of water use efficiency (WUE) during the transition from the rainy season to subsequent drought. Environmental conditions were simulated in a controlled-environment experiment on the basis of data collected in the habitat of the two species in the southern Namib desert. Experiments included one or more periods of hot bergwind, which frequently occurs in this region. When water was readily available, daily net CO2 fixation was similar in the two species. This result confirms that the daily CO2 fixation of CAM plants is as high as that of morphologically similar C3 plants adapted to the same habitat. As expected, both species reduced CO2 fixation and water loss through transpiration during simulated hot bergwind periods and their WUE values increased. However, after the second hot bergwind period, nearly identical WUEs were recorded: 41.0 and 40.0 mmol mol?1 for C. orbiculata and O. opima, respectively. Therefore the statement that a CAM plant is a better ‘water saver’ than a C3 plant does not necessarily hold for CAM and C3 plants with similar growth forms growing under the same environmental conditions.  相似文献   

2.
Summary Opuntia polyacantha was collected from the shortgrass prairie in Colorado. Carbon dioxide and water vapor exchange was monitored in plants pretreated and analyzed under cool temperatures (20/15°C) and warm temperatures (35/15°C). Well watered plants under a 35/15 thermoperiod supported the fixation of atmospheric CO2 during the night, early morning, and late afternoon. Plants under a 20/15 thermoperiod exhibited CO2 uptake only during the afternoon. The fixation of CO2 at night could be stimulated or induced by decreasing the night temperature. Plants from which water was withheld two or four weeks showed a decline in CO2 fixation with the uptake at night exhibiting the greatest sensitivity. Under conditions of water stress the enhancement of CO2 uptake at night by cool night temperatures was largely lost. Plants water stressed for 4 weeks recovered rapidly upon rewatering under warm or cool temperatures. Rates of CO2 fixation were comparable to well watered plants within 24 h. The effects of temperature and water stress on gas exchange are compared to the in situ growth pattern of O. polyacantha and contrasted with the regulation of gas exchange observed in C3 and C4 grasses of the shortgrass prairie.This research was supported by funds from NSF Grants BMS 74-07894, GB-31862X, and GB-41233X  相似文献   

3.
Haberlea rhodopensis is a homoiochlorophyllous resurrection plant that shows a low rate of leaf net CO2 uptake (4–6 μmol m?2 s?1) under saturating photosynthetic photon flux densities in air (21% O2 and about 390 ppm CO2). However, leaf net CO2 uptake reaches values of 17–18 μmol m?2 s?1 under saturating CO2 and light. H. rhodopensis leaves have a very low mesophyll CO2 conductance that can partly explain the low rate of leaf net CO2 uptake in normal air. Experimental evidences suggest that mesophyll conductance is not sensitive to temperature in the 20–35 °C range. In addition, it is shown that the (1) transpiration rate of H. rhodopensis is nearly linearly related to the vapour pressure difference between the leaf and the ambient air within the interval from 0.5 kPa to 2.5 kPa at a leaf temperature of 25 °C and (2) leaf net CO2 uptake in normal air under saturating light does not change much with leaf temperature (between 20 °C and 30 °C). At a leaf relative water content of between 90% and 30%, the decrease of leaf net CO2 assimilation during drought can be explained by a decrease of leaf CO2 diffusional conductance. Accordingly the non-photochemical chlorophyll fluorescence quenching decreases only at relative water contents lower than 20%, indicating that photosynthetic activity maintains a trans-thylakoidal proton gradient over a wide range of leaf water contents. Moreover, PSII photochemistry (as estimated by the Fv/Fm ratio and the thermoluminescence B band intensity) is only affected at leaf relative water contents lower than about 20%, thus confirming that primary photosynthetic reactions are resistant to drought. Interestingly, the effect of leaf desiccation on photosynthetic capacity, measured at very high ambient CO2 molar ratios under saturating PPFD, is identical to that observed for three non-resurrection C3 mesophytes. This demonstrates that the photosynthetic apparatus of H. rhodopensis is not more resistant to desiccation when compared to other C3 plants. Since the leaf area decreases by more than 50% when the leaf relative water content is reduced to about 40% during drought it is supposed, following Farrant et al. [Farrant, J.M., Vander, W.C., Lofell, D.A., Bartsch, S., Whittaker, A., 2003. An investigation into the role of light during desiccation of three angiosperms resurrection plants. Plant Cell Environ. 26, 1275–1286], that H. rhodopensis leaf cells avoid mechanical stress.  相似文献   

4.
The water fluxes and the CO2 exchange of three leaf succulents, Othonna opima, Cotyledon orbiculata and Senecio medley-woodii, with different leaf anatomy, growth form and CO2 fixation pathways (C3, CAM) were monitored with a gas exchange cuvette which was combined with a potometric system to quantify water uptake. Measurements, which are primarily valid for plants with a sufficient water supply, were made during 6 to 10 consecutive days under constant experimental conditions. Water uptake for 24 h exceeded water loss by transpiration only for a S, medley-woodii plant with 10 expanding but only 7 mature leaves. In this case the gained water evidently is put into leaf expansion. All other plants showed balanced transpiration and water uptake rates. O. opima and C. orbiculata have a similar life form, similar water storage volumes and the same natural habitat but their diurnal water uptake patterns differ significantly. In the C3 plant O. opima water uptake increased when the transpiration increased or transpiration rates were higher than uptake rates and vice versa. On the contrary the CAM plant C. orbiculata transpired during the dark period at constant or decreasing rates but showed steadily increasing uptake rates. Senecio medley-woodii- and C. orbiculata are CAM plants with similar diurnal water uptake patterns with its maximum in uptake during or towards the end of the CO2 dark fixation period. Water uptake of C. orbiculata was at its minimum at the end of the light period despite transpiration being maximal. The results were discussed considering the different CO2 fixation pathways. In the investigated CAM succulents, C. orbiculata and S. medley-woodii, the CAM influenced water uptake throughout the whole day and not only during the CO2 dark fixation period.  相似文献   

5.
The functional state of the photosynthetic apparatus of flowering homoiochlorophyllous desiccation tolerant plant Haberlea rhodopensis during dehydration and subsequent rehydration was investigated in order to characterize some of the mechanisms by which resurrection plants survive drought stress. The changes in the CO2 assimilation rate, chlorophyll fluorescence parameters, thermoluminescence, fluorescence imaging and electrophoretic characteristics of the chloroplast proteins were measured in control, moderately dehydrated (50% water content), desiccated (5% water content) and rehydrated plants. During the first phase of desiccation the net CO2 assimilation decline was influenced by stomatal closure. Further lowering of net CO2 assimilation was caused by both the decrease in stomatal conductance and in the photochemical activity of photosystem II. Severe dehydration caused inhibition of quantum yield of PSII electron transport, disappearance of thermoluminescence B band and mainly charge recombination related to S2QA takes place. The blue and green fluorescence emission in desiccated leaves strongly increased. It could be suggested that unchanged chlorophyll content and amounts of chlorophyll–proteins, reversible modifications in PSII electron transport and enhanced probability for non-radiative energy dissipation as well as increased polyphenolic synthesis during desiccation of Haberlea contribute to drought resistance and fast recovery after rehydration.  相似文献   

6.
Abstract

Ecological aspects of C3, C4 and CAM photosynthetic pathways. - Three different photosynthetic CO2 fixation pathways are known to occur in higher plants. However all three pathways ultimately depend on the Calvin-Benson cycle for carbon reduction. The oxygenase activity of RuBP carboxilase is responsible for photorespiratory CO2 release. Both C4 and CAM pathways behave as a CO2 concentrating mechanism which prevent photorespiration. The CO2-concentrating mechanism in C4 plants is based on intracellular symplastic transport of C4 dicarboxylic acids from mesophyll-cells to the adjacent bundle-sheath cells. On the contrary in CAM plants the CO2-concentrating mechanism is based on the intracellular transport of malic acid into and out of the vacuole.

The C4 photosynthetic pathway as compared to the C3 pathway permits higher rates of CO2 fixation in high light and high temperature environments at low costs in terms of water loss, given the stability of the photosynthetic apparatus under such conditions.

CAM is interpreted as an adaptation to arid environments because it enables carbon assimilation to take place at very low water costs during the night when the evaporative demand is low. Nevertheless many aquatic species of Isoetes and some relatives are CAM, suggesting the adaptive role of CAM to environments which become depleted in CO2.

The photosynthetic carbon fixation pathway certainly contributes to the ecological success of plants in different environments. However the distribution of plants may also reflect their biological history. On the other hand plants with different photosynthetic pathways coexist in many communities and tend to share resources in time. In any case some generalizations are possible: C4 plants enjoy an ecological advantage in hot, moist, high light regions while the majority of species in desert environments are C3; CAM plants are more frequent in semiarid regions with seasonal rainfall, coastal fog deserts, and in epiphytic habitats in tropical rain forests.  相似文献   

7.
The induction kinetics of the 680 nm chlorophyll fluorescence were measured on attached leaves of Kalanchoë daigremontiana R. Hamet et Perr. (CAM plant), Sedum telephium L. and Sedum spectabile Bor. (C3 plant in spring, CAM plant in summer) and Raphanus sativus L. (C3 plant) at three different times during a 12/12 h day/night cycle. During the fluorescence transient the fluorescence intensity at the O, P and T-level (fO, fmax, fst,) was different for the plant species tested; this may be due to their different leaf structure, pigment composition and organization of their photosystems. The kinetics of the fluorescence induction depended on the time of preillumination or dark adaptation during the light/dark cycle but not on the type of primary CO2 fixation mechanism (C3 and CAM). For dark adapted leaves measured either at the end of the dark phase or after dark adaptation of plants taken from the light phase a higher P-level fluorescence, a higher variable fluorescence (P-O) and a larger complementary area were found than for leaves of plants taken directly from the light phase. This indicates the presence of largely oxidized photosystem 2 acceptor pools during darkness. During the light phase the fluorescence decline after the P-level was faster than during the dark phase; from this we conclude that the light adaptation of the photosynthetic apparatus (state 1state 2 transition, pH) during the induction period proceeded faster in plants taken from the light phase than in plants taken from the dark phase.Abbreviations C3 plant plant with primary CO2 fixation on ribulose-1,5-bis-phosphate (Calvin-Benson cycle) - CAM Crassulacean Acid Metabolism  相似文献   

8.
Because of their unique tolerance to desiccation, the so‐called resurrection plants can be considered as excellent models for extensive research on plant reactions to environmental stresses. The vegetative tissues of these species are able to withstand long dry periods and to recover very rapidly upon re‐watering. This study follows the dynamics of key components involved in leaf tissue antioxidant systems under desiccation in the resurrection plant Haberlea rhodopensis and the related non‐resurrection species Chirita eberhardtii. In H. rhodopensis these parameters were also followed during recovery after full drying. A well‐defined test system was developed to characterise the different responses of the two species under drought stress. Results show that levels of H2O2 decreased significantly both in H. rhodopensis and C. eberhardtii, but that accumulation of malondialdehyde was much more pronounced in the desiccation‐tolerant H. rhodopensis than in the non‐resurrection C. eberhardtii. A putative protective role could be attributed to accumulation of total phenols in H. rhodopensis during the late stages of drying. The total glutathione concentration and GSSG/GSH ratio increased upon complete dehydration of H. rhodopensis. Our data on soluble sugars suggest that sugar ratios might be important for plant desiccation tolerance. An array of different adaptations could thus be responsible for the resurrection phenotype of H. rhodopensis.  相似文献   

9.
The relic endemic nature of Haberlea rhodopensis, which grows in Balkan Peninsula, in combination with its high vegetative desiccation-tolerance, makes this species a good model to study mechanisms behind plant adaptation to severe drought stress. The aim of this study was to evaluate the antioxidant protection provided by Superoxide dismutase (SOD) and Peroxidase (PO) in H. rhodopensis after exposure to and recovery from dehydration at different developmental stages. During dehydration the electrolyte leakage from leaf tissue increased more significantly in post-flowering plants than in flowering plants, while upon subsequent rehydration this parameter showed a very fast decrease to the basic value of fresh leaves and did not depend on developmental stage. Like other higher plant species, SOD and PO demonstrated in H. rhodopensis an ability to adjust their activity very promptly to changing water supply. In addition, the leaves of this resurrection species retained significant activities of SOD and PO even in air-dried state, considered as the most severe form of water stress. The enhanced activity of antioxidant enzymes may either enable the scavenging of the active oxygen species produced at very severe water deficit, and/or carry a potential for resurrection on subsequent rehydration. Upon stress treatment total activities of both enzymes were higher in flowering than post-flowering plants which reveals that developmental stage might be a factor affecting plant stress tolerance. This work identified for the first time SOD isoforms of H. rhodopensis. Native PAGE showed at least six multiple isoforms in the protein extract from leaf tissue of flowering plants, and the differential visualization revealed that four of them were Cu, Zn-SOD isoforms, one was Mn-SOD and one Fe-SOD. These findings provide a good starting point for future study of the SOD gene family of this rare resurrection plant at the molecular level.  相似文献   

10.
Summary Mesembryanthemum crystallinum L., an inducible crassulacean acid metabolism (CAM) plant, was grown for approximately 5 weeks following germination in well-watered, non-saline soil in a controlled-environment chamber. During this time, plants were characterized by C3 photosynthetic carbon metabolism. After the initial 5 weeks, CAM was induced by a combination of high soil salinity and reduced soil water content. One group of plants was allowed to engage in CAM by being continuously exposed to normal CO2-containing air (about 350–400 ppm). A second group of plants was deprived of ambient CO2 each night (12 h dark period) until completion of their life cycle, thereby minimizing potential carbon gain via dark CO2 fixation. The capacity to express CAM under conditions of drought and salinity stress markedly improved reproductive success: plants kept in normal CO2-containing air produced about 10 times more seeds than plants kept in CO2-free air during dark periods. Seeds from plants deprived of ambient CO2 overnight had more negative 13C values than seeds from plants kept in normal air.  相似文献   

11.
Young leaves of salt-depleted Aeluropus litoralis Parl. plants show CO2 fixation by the C3-carbon fixation pathway. No detectable activity of phosphoenol pyruvate (PEP) carboxylase was found. When A. litoralis plants were exposed to a NaCl solution, the leaves showed a high activity of PEP carboxylase as well as a significant CO2 fixation by the C4-pathway. — Also in Zea mays L. and Chloris gayana Kunth., the presence of NaCl in the medium influences the balance between phosphoenol pyruvate carboxylase and ribulose-1,5-diphosphate carboxylase.  相似文献   

12.
Photosynthesis in C3 plants is CO2 limited and therefore any increase in Rubisco carboxylation substrate may increase net CO2 fixation, unless plants experience acclimation or other limitations. These aspects are largely unexplored in grapevine. Photosynthesis analysis was used to assess the stomatal, mesophyll, photochemical and biochemical contributions to the decreasing photosynthesis observed in Tempranillo grapevines (Vitis vinifera) from veraison to ripeness, modulated by CO2, temperature and water availability. Photosynthesis and photosystem II photochemistry decreased from veraison to ripeness. The elevated CO2 and temperature increased photosynthesis, but transiently, in both well irrigated (WI) and water‐stressed plants. Photosynthetic rates were maxima 1 week after the start of elevated CO2 and temperature treatments, but differences with treatments of ambient conditions disappeared with time. There were not marked changes in leaf water status, leaf chlorophyll or leaf protein that could limit photosynthesis at ripeness. Leaf total soluble sugars remained at ripeness as high as 2 weeks after the start of treatments. On the other hand, and as expected, CO2 diffusional limitations impaired photosynthesis in grapevine plants grown under water scarcity, stomatal and mesophyll conductances to CO2 decreased and in turn low chloroplastic CO2 concentrations limited photosynthetic CO2 fixation. In summary, photochemistry and photosynthesis from veraison to ripeness in Tempranillo grapevine were dominated by a developmental‐related decreasing trend that was only transiently influenced by elevated CO2 concentrations.  相似文献   

13.
The variations of δ13C in leaf metabolites (lipids, organic acids, starch and soluble sugars), leaf organic matter and CO2 respired in the dark from leaves of Nicotiana sylvestris and Helianthus annuus were investigated during a progressive drought. Under well‐watered conditions, CO2 respired in the dark was 13C‐enriched compared to sucrose by about 4‰ in N. sylvestris and by about 3‰ and 6‰ in two different sets of experiments in H. annuus plants. In a previous work on cotyledonary leaves of Phaseolus vulgaris, we observed a constant 13C‐enrichment by about 6‰ in respired CO2 compared to sucrose, suggesting a constant fractionation during dark respiration, whatever the leaf age and relative water content. In contrast, the 13C‐enrichment in respired CO2 increased in dehydrated N. sylvestris and decreased in dehydrated H. annuus in comparison with control plants. We conclude that (i) carbon isotope fractionation during dark respiration is a widespread phenomenon occurring in C3 plants, but that (ii) this fractionation is not constant and varies among species and (iii) it also varies with environmental conditions (water deficit in the present work) but differently among species. We also conclude that (iv) a discrimination during dark respiration processes occurred, releasing CO2 enriched in 13C compared to several major leaf reserves (carbohydrates, lipids and organic acids) and whole leaf organic matter.  相似文献   

14.
The review of publications concerning the impact of increasing CO2 concentration in the Earths atmosphere (Ca) on higher terrestrial plants. The physiological changes in plants induced by increasing Ca, including growth and biochemical composition, the characteristics of photosynthesis and respiration, as well as the molecular mechanisms of the regulation of the activity of most important biosynthetic enzymes at early and late stages of the exposure to elevated Ca are under consideration. Various concepts of metabolic regulation during acclimation to increasing CO2 concentration are critically reviewed. The pathways of possible involvement of carbonic anhydrase-mediated systems of CO2 transport and concentration during C3 photosynthesis of higher plants, the metabolic and signal mechanisms of photosynthesis inhibition by carbohydrates and the role of ethylene at elevated Ca are presented. The effect of elevated Ca on plant development and source-sink relations, as well as its interaction with other environmental factors, such as mineral, primarily nitrogen nutrition, light, temperature, and water regime, are discussed in with the context of potential forecasting of the consequences of increase in Ca and temperature for the activities of various higher plant forms in the rapidly changing climate.Translated from Fiziologiya Rastenii, Vol. 52, No. 1, 2005, pp. 129–145.Original Russian Text Copyright © 2005 by Romanova.  相似文献   

15.
Summary Gas exchange characteristics of droughted and rewatered Portulacaria afra were studied during the seasonal shift from CAM to C3 photosynthesis. 14CO2 uptake, stomatal conductance, and total titratable acidity were determined for both irrigated and 2, 4, and 7.5 month waterstressed plants from summer 1984 to summer 1985. Irrigated P. afra plants were utilizing the CAM pathway throughout the summer and shifted to C3 during the winter and spring. Beginning in September, P. afra plants shifted from CAM to CAM-idling after 2 months of water-stress. When water-stress was initiated later in the fall, exogenous CO2 uptake was still measurable after 4 months of drought. After 7.5 months of stress, exogenous CO2 uptake was absent. The shift from CAM to CAM-idling or C3 in the fall and winter was related to when water stress was initiated and not to the duration of the stress. Gas exchange resumed within 24 h of rewatering regardless of the duration of the drought. In the winter and spring, rewatering resulted in a full resumption of daytime CO2 uptake. Whereas during the summer, rewatering quickly resulted in early morning CO2 uptake, but nocturnal CO2 uptake through the CAM pathway was observed after 7 days. Gas exchange measurements, rewatering characteristics, and transpirational water loss support the hypothesis that the C3 pathway was favored during the winter and spring. The CAM pathway was functional during the summer when potential for water loss was greater. Our investigations indicate that P. afra has a flexible photosynthetic system that can withstand long-term drought and has a rapid response to rewatering.  相似文献   

16.
Summary In well-watered plants of Clusia uvitana, a species capable of carbon fixation by crassulacean acid metabolism (CAM), recently expanded leaves gained 5 to 13-fold more carbon during 12 h light than during 12 h dark periods. When water was withheld from the plants, daytime net CO2 uptake strongly decreased over a period of several days, whereas there was a marked increase in nocturnal carbon gain. Photosynthetic rates in the chloroplasts were hardly affected by the water stress treatment, as demonstrated by measurements of chlorophyll a fluorescence of intact leaves, indicating efficient decarboxylation of organic acids and refixation of carbon in the light. Within a few days after rewatering, plants reverted to the original gas exchange pattern with net CO2 uptake predominantly occurring during daytime. The reversible increase in dark CO2 fixation was paralleled by a reversible increase in the content of phosphoenolpyruvate (PEP) carboxylase protein. In wellwatered plants, short-term changes in the degree of dark CO2 fixation were induced by alterations in CO2 partial pressure during light periods: a decrease from 350 to 170 bar CO2 caused nocturnal carbon gain, measured in normal air (350 bar), to increase, whereas an increase to 700 bar CO2, during the day, caused net dark CO2 fixation to cease. The increased CAM activity in response to water shortage may, at least to some extent, be directly related to the reduced carbon gain during daytime.  相似文献   

17.
18.
Six open‐top chambers were installed on the shortgrass steppe in north‐eastern Colorado, USA from late March until mid‐October in 1997 and 1998 to evaluate how this grassland will be affected by rising atmospheric CO2. Three chambers were maintained at current CO2 concentration (ambient treatment), three at twice ambient CO2, or approximately 720 μmol mol?1 (elevated treatment), and three nonchambered plots served as controls. Above‐ground phytomass was measured in summer and autumn during each growing season, soil water was monitored weekly, and leaf photosynthesis, conductance and water potential were measured periodically on important C3 and C4 grasses. Mid‐season and seasonal above‐ground productivity were enhanced from 26 to 47% at elevated CO2, with no differences in the relative responses of C3/C4 grasses or forbs. Annual above‐ground phytomass accrual was greater on plots which were defoliated once in mid‐summer compared to plots which were not defoliated during the growing season, but there was no interactive effect of defoliation and CO2 on growth. Leaf photosynthesis was often greater in Pascopyrum smithii (C3) and Bouteloua gracilis (C4) plants in the elevated chambers, due in large part to higher soil water contents and leaf water potentials. Persistent downward photosynthetic acclimation in P. smithii leaves prevented large photosynthetic enhancement for elevated CO2‐grown plants. Shoot N concentrations tended to be lower in grasses under elevated CO2, but only Stipa comata (C3) plants exhibited significant reductions in N under elevated compared to ambient CO2 chambers. Despite chamber warming of 2.6 °C and apparent drier chamber conditions compared to unchambered controls, above‐ground production in all chambers was always greater than in unchambered plots. Collectively, these results suggest increased productivity of the shortgrass steppe in future warmer, CO2 enriched environments.  相似文献   

19.
The desiccation-tolerant plants of the R. serbica and R. nathaliae are resurrection plants which are able to fully recover their physiological function after anabiosis. A comparison of chlorophyll fluorescence imaging and photosynthetic pigment contents responses of R. serbica and, for the first time, R. nathaliae to dehydration and rehydration were investigated. For this purpose, plants after collection from their natural habitats were kept fully watered for 14 days at natural condition. The experiment was conducted with mature leaves of both species. R. serbica and R. nathaliae plants were dehydrated to 5.88 % and 7.87 % relative water content (RWC) by withholding water for 15 days, afterwards the plants were rehydrated for 72 hours to 94.67 % and 97.02 % RWC. During desiccation, R. serbica plants preserved the chlorophyll content about 84 %, while R. nathaliae about 90 %. During dehydration when RWC were more than 40 %, photochemical efficiency of PSII for photochemistry, the Fv/Fm ratio, decreased about 40 % in R. nathaliae plants, but a strong reduction with 60 % was recorded for R. serbica. Following rehydration, the Fv/Fm ratio recovered more rapidly in R. nathaliae. The higher photosynthetic rates could also be detected via imaging the chlorophyll fluorescence decrease ratio Rfd, which possessed higher values after rehydration leaves of R. nathaliae as compared to R. serbica. The results showed that the photosynthetic activity and chlorophyll contents after rehydration are recovered more rapidly in R. nathaliae in comparison to R. serbica.  相似文献   

20.
The response curves of leaf photosynthesis to varying light, temperature and leaf-to-air vapour pressure deficit were measured in the C3 plants Flaveria pringlei and Oryza sativa in normal air with a computerized open infrared gas analysis (IRGA) system, and the photochemical efficiency of photosystem II, described as (1–F,/F′m) after Genty. Briantais & Baker (1989, Biochimica et Biophysica Acta 990, 87–92), was simultaneously measured with a modulated fluorometer. A model was written for rates of CO2 fixation as a function of the true rate of O2 evolution measured by fluorescene analysis (Jo2), mesophyll conductance and intercellular CO2 partial pressure. A second model was developed for rates of CO2 fixation as a function of Jo2, mesophyll conductance and stomatal conductance. In the latter case, leaf stomatal conductance was simulated using the stomatal model proposed by Leuning (1995, Plant, Cell and Environment 18 , 339–355). The rates of CO2 fixation predicted from the models were similar to rates measured by IRGA. The results indicate that there is potential to measure CO2 fixation in C3 plants by combining the non-invasive measurement of Jo2 by chlorophyll fluorescence analysis with the stomatal conductance model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号