首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multifunctional Ca2+/calmodulin-dependent protein kinase type II (CaMK II) plays a crucial role in mediation of cellular responses to rising cytosolic Ca2+ levels. We find that the novel peptide substrate PGTIEKKRSNAMKKMKSIEQHR serves as a highly potent substrate for CaMK II enzymes purified from both Drosophila and rat. The peptide is derived from a photoreceptor-specific protein, phosrestin I, of the Drosophila compound eye and is designated as phosrestide-1. Using saturating substrate concentrations, the enzymes from both species transfer the γ-phosphoryl group of ATP to phosrestide-1 at a level three to ten times greater than to the commercially available mammalian-derived CaMK II substrates, autocamtide-3 and syntide-2. This indicates a conservation of substrate preferences for CaMK II derived from distantly related species, a dipteran fly and a mammal. Although phosrestide-1 contains two potential serine residues for CaMK II phosphorylation, we find that only the C-terminal serine is phosphorylated by rat CaMK II. However, removal of the upstream sequence containing the N-terminal serine substantially reduced the potency of phosrestide-1 as a CaMK II substrate to a level comparable to that of syntide-2 or autocamtide-3. We also find that a peptide representing the N-terminal segment of phosrestide-1 does not inhibit either CaMK II. Therefore, the enhanced potency of phosrestide-1 as a CaMK II substrate is likely to be due to a preferred conformation of the peptide induced by the N-terminal segment rather than to a specific binding of the enzymes to the N-terminus of the peptide. To the best of our knowledge, phosrestide-1 is the first CaMK II substrate which is designed based on an invertebrate sequence. The high phosphorylation level of phosrestide-1 by CaMK II of mammalian origin may reflect highly conserved CaMK II signaling cascades between vertebrates and invertebrates.  相似文献   

2.
Stock strains of Eschericia coli isolated from patients with traveller's diarrhea were examined for production of heat-stable enterotoxin II (STII). Of 400 strains examined, 3 were found to produce STII. The nucleotide sequence of the STII gene of these human strains was shown to be identical to that of porcine strains. Cultured cells of these strains induced fluid accumulation in ligated mouse intestinal loops and the activity was neutralized by anti-STII antiserum. These results suggest that STII-produciing enterotoxigenic E. coli can cause human diarrhea.  相似文献   

3.
The toxic metal ion cadmium (Cd2+) induces pleiotropic effects on cell death and survival, in part through effects on cell signaling mechanisms and cytoskeletal dynamics. Linking these phenomena appears to be calmodulin‐dependent activation of the Ca2+/calmodulin‐dependent protein kinase II (CaMK‐II). Here we show that interference with the dynamics of the filamentous actin cytoskeleton, either by stabilization or destabilization, results in disruption of focal adhesions at the ends of organized actin structures, and in particular the loss of vinculin and focal adhesion kinase (FAK) from the contacts is a result. Low‐level exposure of renal mesangial cells to CdCl2 disrupts the actin cytoskeleton and recapitulates the effects of manipulation of cytoskeletal dynamics with biological agents. Specifically, Cd2+ treatment causes loss of vinculin and FAK from focal contacts, concomitant with cytoskeletal disruption, and preservation of cytoskeletal integrity with either a calmodulin antagonist or a CaMK‐II inhibitor abrogates these effects of Cd2+. Notably, inhibition of CaMK‐II decreases the migration of FAK‐phosphoTyr925 to a membrane‐associated compartment where it is otherwise sequestered from focal adhesions in a Cd2+‐dependent manner. These results add further insight into the mechanism of the CaMK‐II‐dependent effects of Cd2+ on cellular function. J. Cell. Biochem. 114: 1832–1842, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
Escherichia coli heat-stable enterotoxin II (STII) was purified to homogeneity by successive column chromatographies from the culture supernatant of a strain harboring the plasmid encoding the STII gene. The purified STII evoked a secretory response in the suckling mouse assay and ligated rat intestinal loop assay in the presence of protease inhibitor, but the response was not observed in the absence of the inhibitor. Analyses of the peptide by the Edman degradation method and fast atom bombardment mass spectrometry revealed that purified STII is composed of 48 amino acid residues and that its amino acid sequence was identical to the 48 carboxy-terminal amino acids of STII predicted from the DNA sequence (C. H. Lee, S. L. Mosely, H. W. Moon, S. C. Whipp, C. L. Gyles, and M. So, Infect. Immun. 42:264-268, 1983). STII has four cysteine residues which form two intramolecular disulfide bonds. Two disulfide bonds were determined to be formed between Cys-10-Cys-48 and Cys-21-Cys-36 by analyzing tryptic hydrolysates of STII.  相似文献   

5.
Abstract The protein binding Escherichia coli heat-stable enterotoxin II (STII) was isolated from cell membranes of mouse intestine. The binding of 125I-labeled STII to the proteins was inhibited by unlabeled STII, showing that it is specific. Proteins cross-linked with 125I-STII were purified by column chromatography on hydroxyapatite and TSK gel. Analyses of the purified protein by SDS-polyacrylamide gel electrophorosis and gel filtration showed that the molecular mass was 25 kDa.  相似文献   

6.
Heparin and endogenous heparinoids inhibit the proliferation of smooth muscle cells, including renal mesangial cells; multiple effects on signaling pathways are well established, including effects on PKC, Erk, and CaMK‐II. Many studies have used heparin at concentrations of 100 µg/ml or higher, whereas endogenous concentrations of heparinoids are much lower. Here we report the effects of low‐concentration (1 µg/ml) heparin on activation of several kinases and subsequent induction of the c‐fos gene in mesangial cells in response to the calcium ionophore, ionomycin, in the absence of serum factors. Ionomycin rapidly increases the phosphorylation of CaMK‐II (by 30 s), and subsequently of the EGF receptor (EGFR), c‐Src, and Erk 1/2. Low‐dose heparin suppresses the ionomycin‐dependent phosphorylation of EGFR, c‐Src, and Erk 1/2, but not of CaMK‐II, whereas inhibition of activated CaMK‐II reduces phosphorylation of EGFR, c‐Src, and Erk. Our data support a mechanism whereby heparin acts at the cell surface to suppress downstream targets of CaMK‐II, including EGFR, leading in turn to a decrease in Erk‐ (but not c‐Src‐) dependent induction of c‐fos. J. Cell. Physiol. 224: 484–490, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Many of the cellular responses to Ca++ signaling are modulated by a family of multifunctional Ca++/calmodulin dependent protein kinases (CaMKs): CaMK I, CaMK II and CaMK IV. In order to further understand the role of CaMKs, we investigated the kinetic mechanism of CaMK II isozymes in comparison with those of CaMK I and CaMK IV by analyzing their steady state kinetics using phospholamban as a phosphoacceptor. The results indicated that (a) the CaMK family’s reaction mechanisms were of the sequential type in which all substrates must bind to enzyme before any product is released; (b) CaMK I and CaMK IV exhibited random sequential mechanism where either phospholamban or ATP can bind to the free enzyme; (c) the data of product inhibition for CaMK IIs best fit with an Ordered Bi Bi mechanism in which phospholamban is the first substrate to bind and ADP is the last product to be released; and (d) the constant α (ratio of apparent dissociation constants for binding peptide in the presence and absence of the second ligand) of all isozymes for ATP and peptide was higher than 1 indicating that the binding of phospholamban to CaMK decreased the enzyme’s affinity toward ATP.  相似文献   

8.
Genistein has been reported to potentiate glucose-stimulated insulin secretion (GSIS). Inhibitory activity on tyrosine kinase or activation of protein kinase A (PKA) was shown to play a role in the genistein-induced potentiation effect on GSIS. The aim of the present study was to elucidate the mechanism of genistein-induced potentiation of insulin secretion. Genistein augmented insulin secretion in INS-1 cells stimulated by various energy-generating nutrients such as glucose, pyruvate, or leucine/glutamine (Leu/Gln), but not the secretion stimulated by depolarizing agents such as KCl and tolbutamide, or Ca2+ channel opener Bay K8644. Genistein at a concentration of 50 μM showed a maximum potentiation effect on Leu/Gln-stimulated insulin secretion, but this was not sufficient to inhibit the activity of tyrosine kinase. Inhibitor studies as well as immunoblotting analysis demonstrated that activation of PKA was little involved in genistein-induced potentiation of Leu/Gln-stimulated insulin secretion. On the other hand, all the inhibitors of Ca2+/calmodulin kinase II tested, significantly diminished genistein-induced potentiation. Genistein also elevated the levels of [Ca2+]i and phospho-CaMK II. Furthermore, genistein augmented Leu/Gln-stimulated insulin secretion in CaMK II-overexpressing INS-1 cells. These data suggest that the activation of CaMK II played a role in genistein-induced potentiation of insulin secretion.  相似文献   

9.
It is well established that brief episodes of ischemia/reperfusion (I/R) [preconditioning (PC)] protect the myocardium from the damage induced by subsequent more prolonged I/R. However, the signaling pathways activated during PC or I/R are not well characterized. In this study, the role of Ras-GTPase, tyrosine kinases (TKs), epidermal growth factor receptor (EGFR) and Ca2 +/calmodulin-dependent protein kinase II (CaMK II) in mediating PC in a perfused rat heart model was investigated. A 40-min episode of global ischemia in perfused rat hearts produced significantly impaired cardiac function, measured as left ventricular developed pressure (Pmax) and left ventricular end-diastolic pressure (LVEDP), and impaired coronary hemodynamics, measured as coronary flow (CF) and coronary vascular resistance (CVR). PC significantly enhanced cardiac recovery after I/R. Combination of PC and FPT III (Ras-GTPase inhibitor FPT III; 232 ng/min for 6 days) treatment did not produce any additive benefits as compared to PC alone. In contrast, PC-induced improvements in cardiac function after I/R were significantly attenuated by pretreatment with genistein (1mg/kg/day for 6 days), a broad-spectrum inhibitor of TKs, or AG1478 (1mg/kg/day for 6 days), a specific inhibitor of EGFR tyrosine kinase or KN-93 (578 ng/min for 6 days), a CaMK II inhibitor, before PC. These observations suggest that PC and FPT III pretreatment may produce cardioprotection via similar mechanisms. Present results also indicate that activation of TKs and specifically activation of EGFR-mediated TKs and CaMK II-mediated regulation of calcium homeostasis are part of the PC mechanisms that improve recovery after I/R. (Mol Cell Biochem 268: 175–183, 2005)  相似文献   

10.
Roots of many species respond to gravity (gravitropism) and grow downward only if illuminated. This light-regulated root gravitropism is phytochrome-dependent, mediated by calcium, and inhibited by KN-93, a specific inhibitor of calcium/calmodulin-dependent protein kinase II (CaMK II). A cDNA encoding MCK1, a maize homolog of mammalian CaMK, has been isolated from roots of maize (Zea mays L.). The MCK1 gene is expressed in root tips, the site of perception for both light and gravity. Using the [35S]CaM gel-overlay assay we showed that calmodulin-binding activity of the MCK1 is abolished by 50 M KN-93, but binding is not affected by 5 M KN-93, paralleling physiological findings that light-regulated root gravitropism is inhibited by 50 M KN-93, but not by 5 M KN-93. KN-93 inhibits light-regulated gravitropism by interrupting transduction of the light signal, not light perception, suggesting that MCK1 may play a role in transducing light. This is the first report suggesting a physiological function for a CaMK homolog in light signal transduction.Abbreviations CaM calmodulin - CaMK (II) Ca2+/calmodulin-dependent protein kinase (II) - CBP CaM-binding protein - CDPK Ca2+-dependent protein kinase - MCK1 maize homolog of mamalian CaMK This work is supported by the National Aeronautics and Space Administration grant No: NAGW 238.  相似文献   

11.
Properties of systemically applied angiotensin II in stimulating water intake of normally hydrated ducks were studied and the results compared with properties of angiotensin II-responsive neurons of the subfornical organ which are considered as targets for circulating angiotensin, II acting as a dipsogen. Following intravenous infusion of hypertonic saline (2000 mosmol·kg-1 at 0.3 ml·min-1 for 1 h), intravenous infusion of 0.3 ml·min-1 isotonic saline with angiotensin II (200 ng·min-1), starting 1 h later, stimulated drinking in each case at an angiotensin II plasma level of about 1400 pg·ml-1. Without hypertonic priming, the same angiotensin II infusion did not stimulate drinking in each experiment; however, if effective, repeated infusions of ANGII induced stable dipsogenic responses. Angiotensin II infusions did not alter plasma levels of antidiuretic hormone. Sar1-Ile8-angiotensin II, a non-selective angiotensin II antagonist, acted weakly as a partial agonist when injused at a dose 200-fold higher than angiotensin II and effectively blocked the dipsogenic action of angiotensin II; this corresponds to the inhibition of angiotensin II-induced excitation by Sar1-Ile8-angiotensin II observed in duck subfornical organ neurons. DuP 753 (losartan), an angiotensin II antagonist specifically blocking AT1 receptors in mammals, had equivocal effects on angiotensin II-induced drinking in ducks at rates 50- and 200-fold higher than angiotensin II, which corresponds to the weak inhibitory action of this compound on angiotensin II-induced neuronal excitation in the duck SFO. Blood pressure was only marginally elevated by the applied angiotensin II dose and Sar1-Ile8-angiotensin II had no effect.Abbreviations ANGII angiotensin II - AVT arginine vasotocin - DuP 753 losartan - EDTA ethylene diamine tetra-acetic acid - HR heart rate - ICV intracerebroventricular - IV intravenous - MAP mean arterial pressure - SARILE Sar1-Ile8-angiotensin II - SFO subfornical organ  相似文献   

12.
Cadmium is a toxic metal with pleiotropic effects on cell death and survival. The mesangial cell is particularly responsive to Cd's effects on kinase signaling pathways and cytoskeletal dynamics. Here we show that CaMK‐II is a participant in the cytoskeletal effects of Cd2+. A major mesangial cell isoform, CaMK‐IIδ, was identified in pellets of DNase I pull‐downs and cytosolic immunoprecipitates of G‐actin. CaMK‐IIδ was also present in Triton X‐100‐insoluble cytoskeletal preparations and translocated to the cytoskeleton in a concentration‐dependent manner in Cd‐treated cells. Translocation was suppressed by KN93, an inhibitor of CaMK‐II phosphorylation. In vitro actin polymerization studies indicated that recombinant CaMK‐IIδ sequestered actin monomer. Cytoskeletal preparations from Cd‐treated cells decrease the rate of polymerization, but KN93 co‐treatment prevents this effect. Over‐expressed CaMK‐IIδ also translocated to the cytoskeleton upon Cd exposure, and this was prevented by KN93. Conversely, siRNA silencing of CaMK‐IIδ increases the effect of cytoskeletal extracts on actin polymerization, and abrogates the effect of Cd. The actin capping and severing protein, gelsolin, translocates to the cytoskeleton in the presence of Cd2+, dependent upon the phosphorylation of CaMK‐II, and is recovered together with actin and CaMK‐IIδ in G‐actin pull‐downs and F‐actin sedimentation. Translocation is accompanied by generation of a 50 kDa gelsolin fragment whose appearance is prevented by KN93 and CaMK‐IIδ silencing. We conclude that cytoskeletal effects of Cd in mesangial cells are partially mediated by Cd‐dependent activation of CaMK‐IIδ, binding of CaMK‐IIδ and gelsolin to actin filaments, and cleavage of gelsolin. J. Cell. Physiol. 228: 78–86, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Necroptosis-mediated cell death is an important mechanism in intracerebral hemorrhage (ICH)-induced secondary brain injury (SBI). Our previous study has demonstrated that receptor-interacting protein 1 (RIP1) mediated necroptosis in SBI after ICH. However, further mechanisms, such as the roles of receptor-interacting protein 3 (RIP3), mixed lineage kinase domain-like protein (MLKL), and Ca2+/calmodulin-dependent protein kinase II (CaMK II), remain unclear. We hypothesized that RIP3, MLKL, and CaMK II might participate in necroptosis after ICH, including their phosphorylation. The ICH model was induced by autologous blood injection. First, we found the activation of necroptosis after ICH in brain tissues surrounding the hematoma (propidium iodide staining). Meanwhile, the phosphorylation and expression of RIP3, MLKL, and CaMK II were differently up-regulated (western blotting and immunofluorescent staining). The specific inhibitors could suppress RIP3, MLKL, and CaMK II (GSK'872 for RIP3, necrosulfonamide for MLKL, and KN-93 for CaMK II). We found the necroptosis surrounding the hematoma and the concrete interactions in RIP3-MLKL/RIP3-CaMK II also both decreased after the specific intervention (co-immunoprecipitation). Then we conducted the short-/long-term neurobehavioral tests, and the rats with specific inhibition mostly had better performance. We also found less blood–brain barrier (BBB) injury, and less neuron loss (Nissl staining) in intervention groups, which supported the neurobehavioral tests. Besides, oxidative stress and inflammation were also alleviated with intervention, which had significant less reactive oxygen species (ROS), tumor necrosis factor (TNF)-α, lactate dehydrogenase (LDH), Iba1, and GFAP surrounding the hematoma. These results confirmed that RIP3-phosphorylated MLKL and CaMK II participate in ICH-induced necroptosis and could provide potential targets for the treatment of ICH patients.

  相似文献   


14.
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) was used to quantify the phosphopeptide produced by calcium/calmodulin-dependent protein kinase II (CaMK II). MALDI-TOF measurements were performed in a linear and positive ion mode with delayed extraction excited at various laser powers and at different sampling positions, i.e., different loci of laser illumination. We find that the ratio of the peak area of the substrate (S) to that of its monophosphorylated form (SP) for a given mixture is constant, independent of the laser powers and/or of the sample loci illuminated by the laser. We also find that the fraction of phosphorylation determined by MALDI-TOF, orfMALDI-TOF, is proportionally smaller than that determined by HPLC, orfHPLC; the ratiofMALDI-TOF/fHPLCwas 0.797 ± 0.0229 (99% confidence limit,n= 7) for a 30-mer peptide substrate used in this study. A low mass gate, which turns off the detector temporarily, improved the ratiofMALDI-TOF/fHPLCto 0.917 ± 0.0184 (99% confidence limit,n= 7). Our interpretation of this result is that the reduction of the phosphopeptide peak in the MALDI-TOF measurement is likely to be caused by a temporal loss of detector function rather than by a lower efficiency of ionization for the phosphopeptide compared with its parent species. In these measurements the experimental errors, up to the 50% phosphorylation state, were less than 5%. After an adjustment made based on thefMALDI-TOF/fHPLCratio of 0.917, MALDI-TOF gave an accurate measurement for the kinetics of the CaMK II phosphorylation reaction. Since only a small volume of the reaction mixture, typically containing 3 to 50 pmol of substrate, is required for the MALDI-TOF measurement, this method can be adapted to a nonradioactive microscale assay for CaMK II and also for other protein kinases.  相似文献   

15.
In the corals Acropora spp., eggs secrete substances that induce sperm motility regulation. An elevation of intracellular pH ([pH]i) and a regulation of intracellular Ca2+ concentration ([Ca2+]) are involved in the sperm motility regulation cascade. However, the detailed molecular aspects of flagellar motility regulation have not been fully demonstrated in Acropora. In this study, we determined the presence and roles of both calmodulin (CaM) and calcium/calmodulin dependent-protein kinase (CaMK) in the sperm flagellar motility regulation of Acropora. A 45Ca2+-overlay assay and an immunoblot analysis showed that sperm contain an acidic 16-kDa protein that was CaM, and an immunoblot analysis revealed the presence of CaMK in coral sperm. In addition, a specific inhibitor of CaMK, KN-93, and a CaM antagonist, W-7, inhibited sperm motility activation induced by NH4Cl treatment. NH4Cl treatment causes an increase in intracellular [pH]i of sperm, suggesting that CaM and CaMK are involved in sperm motility initiation caused by an increase in [pH]i. The involvement of CaM and CaMK in motility regulation in coral highlights the importance of these molecules throughout the animal kingdom.  相似文献   

16.
17.

Purpose

To investigate the mechanism of the anti-epileptic effect of Ganoderma lucidum polysaccharides (GLP), the changes of intracellular calcium and CaMK II α expression in a model of epileptic neurons were investigated.

Method

Primary hippocampal neurons were divided into: 1) Control group, neurons were cultured with Neurobasal medium, for 3 hours; 2) Model group I: neurons were incubated with Mg2+ free medium for 3 hours; 3) Model group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with the normal medium for a further 3 hours; 4) GLP group I: neurons were incubated with Mg2+ free medium containing GLP (0.375 mg/ml) for 3 hours; 5) GLP group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with a normal culture medium containing GLP for a further 3 hours. The CaMK II α protein expression was assessed by Western-blot. Ca2+ turnover in neurons was assessed using Fluo-3/AM which was added into the replacement medium and Ca2+ turnover was observed under a laser scanning confocal microscope.

Results

The CaMK II α expression in the model groups was less than in the control groups, however, in the GLP groups, it was higher than that observed in the model group. Ca2 + fluorescence intensity in GLP group I was significantly lower than that in model group I after 30 seconds, while in GLP group II, it was reduced significantly compared to model group II after 5 minutes.

Conclusion

GLP may inhibit calcium overload and promote CaMK II α expression to protect epileptic neurons.  相似文献   

18.
Intravenous infusion of angiotensin II ([Asn1 Val5]‐Ang II) at 10?9 mol min?1 kg?1 body mass produced a significant antidiuresis in river lamprey Lampetra fluviatilis, captured during upstream migration and maintained in fresh water. Although the renin‐angiotensin hormonal system (RAS) is now recognized in jawless fishes, until this study, the role of homologous Ang II in L. fluviatilis kidney function had not been examined. This study provides the first evidence for an antidiuretic action of Ang II in cyclostomes and, in evolutionary terms, suggests a renal function for the RAS in early vertebrates.  相似文献   

19.
Ishizuka T  Ozawa A  Goshima H  Watanabe Y 《Life sciences》2012,90(17-18):637-648
AimsAs the clinical use of induced pluripotent stem (iPS) cells may have the potential to overcome current obstacles in stem cell-based therapy, the molecular mechanisms that regulate the proliferation of iPS cells are of great interest. However, to our knowledge, no previous studies have examined whether stimulation with nicotinic acetylcholine receptor (nAchR) enhances the growth of iPS cells. In the present study, we examined the involvement of nAchR in the proliferation of mouse iPS cells.Main methodsWe performed immunofluorescence staining to determine whether mouse iPS cells could express nAchRs. Mouse iPS cells were treated with nicotine for 24 h under feeder-free conditions in the presence of leukemia inhibitory factor (LIF). The DNA synthesis was examined by the BrdU incorporation assay. Intracellular calcium levels were measured using Fluo-4-acetoxymethyl (a cell-permeable calcium indicator). In addition, we examined the involvement of the CaMKП pathway in nicotine-enhanced proliferation of mouse iPS cells.Key findingsThe fluorescence images revealed that α4-nAchR and α7-nAchR are expressed on mouse iPS cells. Treatment of the cells with 300 nM nicotine significantly increases DNA synthesis. This is significantly inhibited by pretreatment with antagonists of α4-nAchR and α7-nAchR or a CaMKП inhibitor. In addition, treatment with nicotine increases the intracellular Ca2+ level dose-dependently in mouse iPS cells. Treatment with nicotine significantly enhances CaMKП phosphorylation.SignificanceThe present study indicates that stimulation of α4-nAchR and α7-nAchR may lead to a significant increase in the rate of mouse iPS cell proliferation through enhancement of the CaMKП signaling pathway.  相似文献   

20.
Qiao LY  Chen XF  Gu BX  Wang TX  Du YC 《生理学报》1998,50(2):132-138
大鼠皮下注射加压素(AVP)(4-8)1h后,大脑皮层中Ca^2+/CaM依赖的蛋白激酶Ⅱ自身磷酸化程度与对照组比较增高192%,P〈0.001;海马中增高40%,P〈0.05。CaMKⅡ的自身磷酸化程度依赖于Ca^2+及CaM浓度。在用抗 CaMKⅡα单克隆抗体对给药1h组样品和对照组样品进行免疫印迹检测时,发现皮下注射AVP(4-8)1h后,大脑皮层中CaMKⅡα亚基的蛋白量没有明显差异。AV  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号