首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drosophila subobscura and D. madeirensis are closely related species, the first distributed over a large area and the latter restricted to the island of Madeira. These species can hybridize in laboratory conditions, yielding fertile females and sterile males. Hybrid offspring show several phenotypic anomalies, including sex combs on the second and third pairs of legs in males. The extra sex comb trait is a homeotic transformation of the mesothoracic and metathoracic legs into prothoracic legs. This anomaly is observed almost exclusively in F1 males with D. madeirensis mothers. Analysis of backcross males shows that D. subobscura and D. madeirensis have diverged at a minimum of four autosomal loci affecting the extra sex comb anomaly. In addition, some incompatibility involving the X chromosome and/or a maternal effect is also implicated.  相似文献   

2.
Species hybridization, and thus the potential for gene flow, was once viewed as reproductive mistake. However, recent analysis based on large datasets and newly developed models suggest that gene exchange is not as rare as originally suspected. To investigate the history and speciation of the closely related species Drosophila subobscura, D. madeirensis, and D. guanche, we obtained polymorphism and divergence data for 26 regions throughout the genome, including the Y chromosome and mitochondrial DNA. We found that the D. subobscura X/autosome ratio of silent nucleotide diversity is significantly smaller than the 0.75 expected under neutrality. This pattern, if held genomewide, may reflect a faster accumulation of beneficial mutations on the X chromosome than on autosomes. We also detected evidence of gene flow in autosomal regions, while sex chromosomes remain distinct. This is consistent with the large X effect on hybrid male sterility seen in this system and the presence of two X chromosome inversions fixed between species. Overall, our data conform to chromosomal speciation models in which rearrangements are proposed to serve as gene flow barriers. Contrary to other observations in Drosophila, the mitochondrial genome appears resilient to gene flow in the presence of nuclear exchange.  相似文献   

3.
An ~1.6 ‐ kb fragment spanning the rp49 gene was sequenced in 16 lines of Drosophila subobscura from Madeira and in 22 lines of the endemic species D. madeirensis. Nucleotide diversity in D. subobscura from Madeira (π=0.0081) was similar to that in lines from Spain carrying the O3+4 chromosomal arrangement (π=0.0080). No significant genetic differentiation was detected between insular and continental O3+4 lines of D. subobscura. These results are compatible both with a rather recent and massive colonization, and with multiple colonization events from the continent. Nucleotide diversity in D. madeirensis (π=0.0076) was similar to that in D. subobscura, which deviates from the expectation, under strict neutrality, of a lower level of variation in an insular species with a small population size. The observed numbers of shared polymorphisms and of fixed differences between D. madeirensis and D. subobscura are compatible with the isolation model of speciation, where shared polymorphisms are due to common ancestry.  相似文献   

4.
Drosophila madeirensis is an endemic species of Madeira that inhabits the island Laurisilva forest. Nucleotide variation in D. madeirensis is analysed in six genomic regions and compared to that previously reported for the same regions in Drosophila subobscura, an abundant species in the Palearctic region that is closely related to D. madeirensis. The gene regions analysed are distributed along the O3 inversion. The O3 arrangement is monomorphic in D. madeirensis, and it was present in ancestral populations of D. subobscura but went extinct in this species after the origin of the derived OST and O3+4 arrangements. Levels of nucleotide polymorphism in D. madeirensis are similar to those present in the OST and O3+4 arrangements of D. subobscura, and the frequency spectrum is skewed towards rare variants. Purifying selection against deleterious nonsynonymous mutations is less effective in D. madeirensis. Although D. madeirensis and D. subobscura coexist at present in Madeira, no clear evidence of introgression was detected in the studied regions.  相似文献   

5.
Restriction analysis of the genomic region containing the Adh gene and in situ hybridization assays were performed in six Drosophila species belonging to three different subgenera: D. ambigua, D. subobscura, D. madeirensis and D. guanche (sg. Sophophora); D. immigrans (sg. Drosophila); and D. lebanonensis (sg. Pholadoris). In agreement with previous observations, comparison of restriction maps of the Adh region shows that D. subobscura and D. madeirensis are very closely related. Partial homology is also observed with the rest of the obscura group species. Nevertheless, no resemblance at the restriction map level is detected when more distantly related species are compared. In D. ambigua, D. immigrans and D. lebanonensis in situ hybridization assays reveal a single chromosomal location for Adh, which in D. lebanonensis appears to be sex linked. In contrast, in D. subobscura, D. madeirensis and D. guanche multiple sites of hybridization with homologous and heterologous probes are observed. For example, in D. subobscura and D. madeirensis the functional Adh gene is located on the U chromosome and additional homologous retrosequences are found on the E chromosome.by H. Jäckle  相似文献   

6.
The sex‐ratio (SR), defined as the proportion of males, has been studied in three North American colonizing populations of Drosophila subobscura (Eureka, Davis and Gilroy). The proportion of sexes under laboratory conditions was studied using the one‐generation serial transfer technique in one‐ and two‐species populations, to infer whether biased SR affects the outcome when competing with Drosophila pseudoobscura, another member of the same group now in sympatry with D. subobscura in North America. The wild samples of D. subobscura yielded a significantly higher number of males than females during those months where the species is more abundant. However, there was no significant deviation in the 1 : 1 proportion of sexes in the descendants of D. subobscura at any of the experimental conditions. On the contrary, D. pseudoobscura produced a higher proportion of females which could be responsible for the exclusion of D. subobscura in laboratory competition experiments with overlapping generations. Thus, if sexes are equal at birth and survival is similar, the preponderance of males of D. subobscura in our wild collections could indicate greater activity and probably greater chance of dispersal of males versus females especially under favourable conditions.  相似文献   

7.
Abstract.—Drosophila subobscura and D. pseudoobscura are closely related species coexisting on the West Coast of North America, which was recently colonized by D. subobscura. In competition experiments with overlapping generations, D. subobscura is eliminated by D. pseudoobscura in a few generations at all four temperatures and two initial frequencies tested. Yet in one-species cultures, D. subobscura thrives at all experimental conditions. Single-generation competition experiments reveal lower survivorship and productivity of D. subobscura at all temperatures and frequencies. Productivity per female is dependent on the initial frequencies: greater for D. subobscura as its initial frequency becomes higher, but lower for D. pseudoobscura as its frequency becomes higher. Strains of D. subobscura from three disparate geographic origins yield similar results.  相似文献   

8.
Nucleotide variation at the nuclear ribosomal protein 49 (rp49) gene region has been analysed by fine restriction mapping in a sample of 47 lines from a population from Madeira. Five restriction-site (out of 37 sites scored) and 3 length polymorphisms have been detected, resulting in 14 different haplotypes. This population shows less variation than both continental and Canary Island populations. The population from Madeira shows some differentiation from mainland populations, which does not favor the idea of extensive migration between the continent and Madeira. Chromosomal and restriction-map variation of the rp49 region in D. subobscura populations, together with data on sequence comparison of this nuclear region in D. guanche and D. madeirensis clearly indicate that the Canary Islands underwent at least two colonization events from the nearby continent. Although the data for Madeira are compatible with a single colonization event by a continental sample polymorphic for gene arrangements O3 and O3 + 4, an alternative scenario with at least two colonization events seems more likely.  相似文献   

9.
In hybrids between the sibling species D. buzzatii and D. koepferae, both sexes are more or less equally viable in the F1: However, backcross males to D. buzzatii are frequently inviable, apparently because of interspecific genetic incompatibilities that are cryptic in the F1. We have performed a genetic dissection of the effects of the X chromosome from D. koepferae. We found only two cytological regions, termed hmi-1 and hmi-2, altogether representing 9% of the whole chromosome, which when introgressed into D. buzzatii cause inviability of hybrid males. Observation of the pattern of asynapsis of polytene chromosomes (incomplete pairing, marking introgressed material) in females and segregation analyses were the technique used to infer the X chromosome regions responsible for this hybrid male inviability. The comparison of these results with those previously obtained with the same technique for hybrid male sterility in this same species pair indicate that in the X chromosome of D. koepferae there are at least seven times more regions that produce hybrid male sterility than hybrid male inviability. We have also found that the inviability brought about by the introgression of hmi-1 is suppressed by the cointrogression of two autosomal sections from D. koepferae. Apparently, these three regions conform to a system of species-specific complementary factors involved in an X-autosome interaction that, when disrupted in backcross hybrids by recombination with the genome of its sibling D. buzzatii, brings about hybrid male inviability.  相似文献   

10.
Abstract.— Drosophila yakuba is a species widespread in Africa, whereas D. santomea, its newly discovered sister species, is endemic to the volcanic island of São Tomé in the Gulf of Guinea. Drosophila santomea probably formed after colonization of the island by its common ancestor with D. yakuba. The two species differ strikingly in pigmentation: D. santomea, unlike the other eight species in the D. melanogaster subgroup, almost completely lacks dark abdominal pigmentation. D. yakuba shows the sexually dimorphic pigmentation typical of the group: both sexes have melanic patterns on the abdomen, but males are much darker than females. A genetic analysis of this species difference using morphological markers shows that the X chromosome accounts for nearly 90% of the species difference in the area of abdomen that is pigmented and that at least three genes (one on each major chromosome) are involved in each sex. The order of chromosome effects on pigmentation area are the same in males and females, suggesting that loss of pigmentation in D. santomea may have involved the same genes in both sexes. Further genetic analysis of the interspecific difference between males in pigmentation area and intensity using molecular markers shows that at least five genes are responsible, with no single locus having an overwhelming effect on the trait. The species difference is thus oligogenic or polygenic. Different chromosomal regions from each of the two species influenced pigmentation in the same direction, suggesting that the species difference (at least in males) is due to natural or sexual selection and not genetic drift. Measurements of sexual isolation between the species in both light and dark conditions show no difference, suggesting that the pigmentation difference is not an important cue for interspecific mate discrimination. Using DNA sequence differences in nine noncoding regions, we estimate that D. santomea and D. yakuba diverged about 400,000 years ago, a time similar to the divergences between two other well‐studied pair of species in the subgroup, both of which also involved island colonization.  相似文献   

11.
Yamada H  Matsuda M  Oguma Y 《Genetica》2002,116(2-3):225-237
Sexual isolation has been considered one of the primary causes of speciation and its genetic study has the potential to reveal the genetics of speciation. In Drosophila, the importance of courtship songs in sexual isolation between closely related species has been well investigated, but studies analysing the genetic basis of the difference in the courtship songs associated with sexual isolation are less well documented. Drosophila ananassae and Drosophila pallidosa are useful for studies of sexual isolation, because of their sympatric distribution and absence of postmating isolation. Courtship songs are known to play a crucial role in sexual isolation between these two species, and the female discrimination behaviour against the courting male has been revealed to be controlled by a very narrow region on the second chromosome. In this study we investigated the genetic basis controlling the song differences associated with their sexual isolation, using intact and wingless males with chromosomes substituted between species. The results obtained from F1 hybrid males between these species indicate the dominance of the song characters favoured by D. pallidosa females. In addition, the results obtained from backcross F2 males indicate that chromosome 2 had a major effect on the control of the song characters associated with sexual isolation.  相似文献   

12.
While females often reject courtship attempts by heterospecific males, reproductive interference by harassment from such males can nonetheless occur, potentially reducing female fitness. Such effects may be profound following a range expansion, when males from a new species may suddenly encounter (and perhaps even become abundant relative to) females of related native species. Drosophila subobscura recently invaded North America and may impact native species through reproductive interference and other processes. We test for the potential for reproductive interference by D. subobscura males on D. persimilis females in the laboratory. D. subobscura males aggressively copulated with D. persimilis females, including many females that exhibit rejection behaviors. Despite females attempting to dismount the males, the heterospecific copulations are on average longer than conspecific copulations, and females exhibit some reluctance to remate with conspecific males following this harassment. Females confined with both conspecific and heterospecific males produce fewer adult progeny than those with either conspecific males only or with conspecific males and distantly related D. simulans males that do not engage in female harassment. Overall, our results illustrate how reproductive interference by an invasive species can have negative effects on resident natural populations.  相似文献   

13.
14.
Matings between Drosophila simulans females and males of the sibling species D. mauritiana are of abnormally short duration. These rapid matings interrupt the transfer of sperm, leading to substantial reproductive isolation in interspecific as compared to intraspecific copulations. Genetic analysis of this behavior shows that it is influenced much more by the male than the female genotype, with genes from D. simulans being dominant. In males, shortened copulation is caused by interspecific divergence at a minimum of three loci, with one gene on each of the major chromosomes. This is an underestimate of the true number of loci affecting the trait, which could be much larger. The two autosomes have the largest effect, whereas that of the X chromosome is much smaller. The genetic architecture of copulation duration and the larger effect of male than female genotype suggest that females can detect and discriminate against differences in male genitalia.  相似文献   

15.
Inversion polymorphism in populations of D. subobscura from a beech forest on Jastrebac mountain was studied in June 1990, 1993, and 1994, respectively. The same analysis was performed in 1990 for D. subobscura populations in a beech forest and an oak forest in the same region. Statistically significant differences in the frequencies of the gene arrangements of A1, J and U chromosome were observed during the period of investigation. A tendency towards a decrease in the frequency of the standard gene arrangements was found for all chromosomes, but was particularly evident with chromosomes A and J. The frequency of the gene arrangements A1 A2, J1 and U1–2+6 increased at the same time. Differences in the frequency of the gene arrangements of A, J and U chromosomes were also observed when the populations from two ecologically different habitats (beech and oak forest) were compared in 1990.  相似文献   

16.
Heat‐shock (HS) assays to understand the connection between standing inversion variation and evolutionary response to climate change in Drosophila subobscura found that “warm‐climate” inversion O3+4 exhibits non‐HS levels of Hsp70 protein like those of “cold‐climate” OST after HS induction. This was unexpected, as overexpression of Hsp70 can incur multiple fitness costs. To understand the genetic basis of this finding, we have determined the genomic sequence organization of the Hsp70 family in four different inversions, including OST, O3+4 , O3+4+8 and O3+4+16 , using as outgroups the remainder of the subobscura species subgroup, namely Drosophila madeirensis and Drosophila guanche. We found (i) in all the assayed lines, the Hsp70 family resides in cytological locus 94A and consists of only two genes, each with four HS elements (HSEs) and three GAGA sites on its promoter. Yet, in OST, the family is comparatively more compact; (ii) the two Hsp70 copies evolve in concert through gene conversion, except in D. guanche; (iii) within D. subobscura, the rate of concerted evolution is strongly structured by inversion, being higher in OST than in O3+4 ; and (iv) in D. guanche, the two copies accumulated multiple differences, including a newly evolved “gap‐type” HSE2. The absence of concerted evolution in this species may be related to a long‐gone‐unnoticed observation that it lacks Hsp70 HS response, perhaps because it has evolved within a narrow thermal range in an oceanic island. Our results point to a previously unrealized link between inversions and concerted evolution, with potentially major implications for understanding genome evolution.  相似文献   

17.
The actin genes of D. subobscura and D. madeirensis were mapped by in situ hybridization, using a D. melanogaster probe. Six loci were detected, and they were strikingly similar in chromosomal location to the six actin loci previously characterized in D. melanogaster.  相似文献   

18.
We carried out a three‐tiered genetic analysis of egg‐to‐adult development time and viability in ancestral and derived populations of cactophilic Drosophila mojavensis to test the hypothesis that evolution of these life‐history characters has shaped premating reproductive isolation in this species. First, a common garden experiment with 11 populations from Baja California and mainland Mexico and Arizona reared on two host species revealed significant host plant X region and population interactions for viability and development time, evidence for host plant adaptation. Second, replicated line crosses with flies reared on both hosts revealed autosomal, X chromosome, cytoplasmic, and autosome X cactus influences on development time. Viability differences were influenced by host plants, autosomal dominance, and X chromosomal effects. Many of the F1, F2, and backcross generations showed evidence of heterosis for viability. Third, a QTL analysis of male courtship song and epicuticular hydrocarbon variation based on 1688 Baja × mainland F2 males also revealed eight QTL influencing development time differences. Mainland alleles at six of these loci were associated with longer development times, consistent with population‐level differences. Eight G × E interactions were also detected caused by longer development times of mainland alleles expressed on a mainland host with smaller differences among Baja genotypes reared on the Baja host plant. Four QTL influenced both development time and epicuticular hydrocarbon differences associated with courtship success, and there was a significant QTL‐based correlation between development time and cuticular hydrocarbon variation. Thus, the regional shifts in life histories that evolved once D. mojavensis invaded mainland Mexico from Baja California by shifting host plants were genetically correlated with variation in cuticular hydrocarbon‐based mate preferences.  相似文献   

19.
Abstract.— .Drosophila yakuba is widespread in Africa, whereas D. santomea, its newly discovered sister species, is endemic to the volcanic island of São Tomé in the Gulf of Guinea. Drosophila santomea probably formed after colonization of the island by a D. yakuba‐like ancestor. The species presently have overlapping ranges on the mountain Pico do São Tome, with some hybridization occurring in this region. Sexual isolation between the species is uniformly high regardless of the source of the populations, and, as in many pairs of Drosophila species, is asymmetrical, so that hybridizations occur much more readily in one direction than the other. Despite the fact that these species meet many of the conditions required for the evolution of reinforcement (the elevation of sexual isolation by natural selection to avoid maladaptive interspecific hybridization), there is no evidence that sexual isolation between the species is highest in the zone of overlap. Sexual isolation is due to evolutionary changes in both female preference for heterospecific males and in the vigor with which males court heterospecific females. Heterospecific matings are also slower to take place than are homospecific matings, constituting another possible form of reproductive isolation. Genetic studies show that, when tested with females of either species, male hybrids having a D. santomea X chromosome mate much less frequently with females of either species than do males having a D. yakuba X chromosome, suggesting that the interaction between the D. santomea X chromosome and the D. yakuba genome causes behavioral sterility. Hybrid F1 females mate readily with males of either species, so that sexual isolation in this sex is completely recessive, a phenomenon seen in other Drosophila species. There has also been significant evolutionary change in the duration of copulation between these species; this difference involves genetic changes in both sexes, with at least two genes responsible in males and at least one in females.  相似文献   

20.
Understanding how species form is a fundamental question in evolutionary biology. Identifying the genetic bases of barriers that prevent gene flow between species provides insight into how speciation occurs. Here, I analyze a poorly understood reproductive isolating barrier, prezygotic reproductive isolation. I perform a genetic analysis of prezygotic isolation between two closely related species of Drosophila, D. mauritiana and D. sechellia. I first confirm the existence of strong behavioral isolation between D. mauritiana females and D. sechellia males. Next, I examine the genetic basis of behavioral isolation by (1) scanning an existing set of introgression lines for chromosomal regions that have a large effect on isolation; and (2) mapping quantitative trait loci (QTL) that underlie behavioral isolation via backcross analysis. In particular, I map QTL that determine whether a hybrid backcross female and a D. sechellia male will mate. I identify a single significant QTL, on the X chromosome, suggesting that few major-effect loci contribute to behavioral isolation between these species. In further work, I refine the map position of the QTL to a small region of the X chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号