首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A genetic analysis of freshwater pearl mussel Margaritifera margaritifera populations from NW Spain, a peripheral area of its European distribution, was carried out using microsatellite markers. These populations were formerly reported as genetically differentiated on the basis of growth and longevity studies. Ten loci previously characterized in populations from central Europe were used to comparatively analyze the genetic variability at the southern edge of the species’ range. Iberian pearl mussel populations showed very low genetic variability and significant high genetic differentiation. Half of the total genetic diversity observed appeared to be distributed between populations, which suggested a highly structured adaptive potential in pearl mussel at the southern peripheral distribution of the species. Population distinctiveness was evidenced by assignment tests, which revealed a high accuracy of individual assignments to their population of origin. All data suggested low effective population size and major effects of genetic drift on population genetic structure. In order to avoid further loss of genetic variation in biologically distinctive populations from NW Spain, prioritization of genetic resources of this species is required for conservation and management.  相似文献   

2.
The accelerated pace of marine biological invasions raises questions pertaining to genetic traits and dynamics underlying the successful establishment of invasive species. Current research stresses the importance of multiple introductions and prolonged gene flow as the main sources for genetic diversity, which, along with genetic drift, affect invasive species success. We here attempt to determine the relative contribution of gene flow and mutation rates as sources of genetic variability using the invasive tunicate Botryllus schlosseri as a model. The study was performed over a 13-year period in the Santa Cruz Harbor, California. With a characteristic life history of five generations/year, the Santa Cruz Botryllus population has already experienced approximately 155 generations since the onset of its invasion. The results (278 specimens, 127 scored alleles, five microsatellite loci) support limited gene flow rate (2.89?×?10?3) and relative genetic isolation. Furthermore, the study population was found to be influenced by both, genetic drift and a high mutation rate (2.47?×?10?2). These findings were supported by high fluctuations in the frequencies of microsatellite alleles, the appearance of new alleles and the loss of others. The balance between genetic drift and a high mutation rate is further elucidated by the high, stable level of genetic variation. We suggest that rapid mutation rates at the microsatellite loci reflect genome-wide phenomena, helping to maintain high genetic variability in relatively isolated populations. The potential adaptability to new environments is discussed.  相似文献   

3.
We developed microsatellite markers for the sand lizard (Lacerta agilis) to enable investigations of the genetic variability within and among populations with a heterogeneous spatial distribution in Sweden. The populations, which could not be characterized by variation in allozymes or mitochondrial DNA, had a substantial level of variability in microsatellite loci. However, the variability in Swedish populations was limited compared to a large, outbred Hungarian population. In the sand lizard, the number of (GT/CA) n repeats was approximately three times higher than that for (CT/GA) n. The number of repeats and the frequency of microsatellites were within the range reported for other species. Three of nine microsatellite loci showed alleles that could not be amplified, which is in agreement with recent reports describing microsatellite “null alleles” as a common occurrence. We discuss the caution which this calls for when calculating paternity probabilities and when estimating between-population allelic differentiation. A potential problem with different mutation rates for alleles within the same locus is discussed.  相似文献   

4.
Reintroduction of terrestrial vertebrates with the goal of ecosystem restoration typically establishes small and isolated populations that may experience reduced genetic variability due to founder effects and genetic drift. Understanding the genetic structure of these populations and maintaining adequate genetic diversity is important for long‐term restoration success. We quantified genetic variability at six microsatellite loci for a reintroduced population of Cervus elaphus (elk) restored to the tallgrass prairie ecosystem of northeastern Kansas. Allelic richness, observed and expected heterozygosity were intermediate to levels reported in other North American elk populations. Current levels of genetic variability in restored North American elk populations were not well explained by founding population size, number of founding populations, or number of years since the last translocation. Simulation results suggest that the retention of genetic variability in isolated populations is strongly influenced by mating system while also being impacted by temporal variability in population size and population growth rate. Our results have implications for understanding how translocation strategies and post‐reintroduction management may influence genetic variability in restored populations.  相似文献   

5.
Patterns of phenotypic and genotypic variability in two populations of the moss, Funaria hygrometrica, were investigated using measurements of gametophytic and sporophytic morphology, sporophytic reproductive output, spore germination, gametophytic growth rates and tolerances of copper, cadmium, and low nutrient conditions, and electrophoretically detectable enzyme variation. The two populations differed in all traits measured, but complete monomorphism within populations at 14 enzyme loci suggested that each represented a single clone. Variability in gametophytic growth rates and responses to different experimental media, however, occurred among haploid sib families (families of meiotic progeny derived from the same sporophyte) and among sibs within families within both populations, suggesting high levels of genetic variability. Low mean reproductive output and a high level of variability among sporophytes in a mine site population probably reflected heavy metal toxicity. Based on this study, in combination with previous work on F. hygrometrica (Shaw, 19906), somatic mutation and/or nongenetic effects appear to contribute significantly to phenotypic variability in natural populations.  相似文献   

6.
微卫星标记在种群生物学研究中的应用   总被引:10,自引:0,他引:10       下载免费PDF全文
微卫星是以几个碱基 (一般为 1~ 6个 )为重复单位组成的简单的串联重复序列 ,具有丰度高、多态性高、共显性标记、选择中性、可自动检测等优点。本文着重介绍了微卫星在种群生物学研究中的应用。微卫星位点可以提供具高分辨率的遗传信息 ,这一特点使微卫星既适合于个体水平上的研究 ,又适合于种群水平上的研究。在个体水平上包括个体识别、交配系统和亲本分析、基因流等研究。微卫星是常用的个体识别手段 ,但在克隆植物遗传结构研究方面的应用还很有限 ;微卫星提高了交配系统和亲本分析、基因流等研究的准确性。在种群水平上微卫星可用于遗传结构、有效种群大小、种群的系统发育重建等研究。微卫星在很多物种 (包括珍稀物种 )的遗传结构研究中得到应用 ;利用微卫星标记确定有效种群大小、检测有效种群大小的波动可以促使我们正确理解种群遗传结构动态和种群进化过程 ;微卫星在种群的系统发育重建研究方面有很大的应用潜力。然而微卫星并不是研究所有问题的唯一选择。文中还讨论了在实际工作中应如何正确利用分子标记等问题  相似文献   

7.
Gao L 《Molecular ecology》2004,13(5):1009-1024
Oryza rufipogon Griff. is the most agriculturally important but seriously endangered wild rice species. To better estimate how genetic structure can be used to obtained a conservation perspective of the species, genetic variability at six polymorphic microsatellite DNA loci was examined. High levels of genetic variability were detected at six loci in 1245 individuals of 47 natural populations covering most of the species' range in China (overall RS = 3.0740, HO = 0.2290, HS = 0.6700). Partitioning of genetic variability (FST = 0.246) showed that most microsatellite variation was distributed within populations. Significant departures from Hardy-Weinberg expectations and very strong linkage disequilibrium indicate a high degree of inbreeding in the species and severe subdivision within populations. A mean Nm value of 0.7662 suggested a limited gene flow among the assayed populations. Our study suggests that conservation and restoration genetics should focus in particular on the maintenance of historically significant processes such as high levels of outbreeding and gene flow and large effective population size in the species.  相似文献   

8.
Kikuchi S  Isagi Y 《Heredity》2002,88(4):313-321
Magnolia sieboldii ssp. japonica, distributed mainly in western Japan, is restricted to high elevation areas (1000-2000 m above sea level) and usually forms small isolated populations. Four microsatellite loci were assayed for 19 populations from six regions spanning the range of distribution, and the levels and distribution of genetic variation were estimated. All four loci were variable, with a total of 39 alleles, but the overall level of microsatellite genetic variation was low, especially compared with a related species, M. obovata. Genetic structure in M. sieboldii was characterised by low intrapopulational genetic variation (A = 3.74 and H(o) = 0.366 on average) and high genetic differentiation even among regional populations. Highly significant isolation-by-distance (IBD) models at the short distance were detected. Genetic drift and limited gene flow was considered to be important in determining the genetic structure within regions. Total genetic differentiation was remarkably high (F(ST) = 0.488 and R(ST) = 0.538), suggesting genetic barriers among regions. Neighbour-joining dendrograms relating the 19 populations, and further analysis on the IBD models, revealed that a stepwise mutation model was more suited than an infinite allele model to explain the genetic differentiation among regions. It is suggested that mutation at microsatellite loci might be influential in generating the genetic differentiation among regions. These results showed the potential of hypervariable microsatellite loci to evaluate the effects of genetic drift and population isolation within regions, and to detect genetic distinctiveness, in spite of the loss of overall genetic variation in M. sieboldii.  相似文献   

9.
The amount of gene flow is an important determinant of population structure and therefore of central importance for understanding coevolutionary processes. We used microsatellite markers to estimate population structure and gene flow rates of the great spotted cuckoo (Clamator glandarius) and its main host in Europe, the magpie (Pica pica), in a number of populations (seven and 15, respectively) across their distribution range in Europe. The genetic analysis shows that there exists a pattern of isolation by distance in both species, although the cuckoo data are only indicative due to a small sample size. Gene flow seems to be extensive between nearby populations, higher for magpies than cuckoos, and especially high for magpie populations within the area of distribution of the great spotted cuckoo. There is no correlation between genetic distances between magpie populations and genetic distances between cuckoo populations. We discuss the implications of extensive gene flow between magpie populations in sympatry with cuckoos for the population dynamics of hosts, in particular for the occurrence of egg rejection behavior in host populations and how the different rates of migration for both species can affect the dynamics of coevolutionary processes.  相似文献   

10.
Polymorphism of microsatellite markers was used to study the genetic variability and structure in natural populations of European sea bass Dicentrarchus labrax. The data consisted of six microsatellite loci analysed for 172 individuals from three samples collected in the Golfe-du-Lion (France) and one sample collected in the Golfo-de-Valencia (Spain). Our goals were (i) to assess the level of genetic variability as revealed by these markers, (ii) to estimate the genetic differentiation among natural populations within a restricted area, and (iii) to evaluate how microsatellite loci fit the predictions of the two most widely used mutation models (the infinite allele model and the stepwise mutation model). As expected, our results indicate that the genetic polymorphism is very high when compared with previously used genetic markers, the mean expected heterozygosity per locus ranging between 0.69 and 0.93. We also found that all loci but one fitted the infinite allele model better. Using this model as a lower limit, we could extrapolate from the observed diversity effective population sizes on the order of 35 000 individuals. Our results also suggest that there may be a slight genetic differentiation between the two gulfs (FST= 0.007, P < 0.05), indicating that the corresponding populations are likely to be dynamically independent. This finding for a species with high dispersal abilities, if confirmed, has important beatings on fish-stock assessment.  相似文献   

11.
Populations of the Asian black bear (Ursus thibetanus) are relatively large and continuous in central Honshu, the main island of Japan, but they are isolated in western Honshu. To clarify the degree of genetic isolation of the populations in western Honshu, we compared the genetic diversities of four populations in western Honshu with that of one of the continuous populations of central Honshu. Three of the four western Honshu populations were isolated and the other was continuous with the central Honshu populations on a geographical distribution basis. The genotypes at 10 microsatellite loci of the sampled individuals were determined and the genetic structures of the populations examined. Genetic diversities were significantly lower in the isolated populations than in the continuous populations. The continuous population in central Honshu had high levels of genetic diversity, comparable to those in populations of the American black bear (Ursus americanus) and the brown bear (Ursus arctos). The genetic distances between the two continuous populations were smallest, even though their geographic distance was largest (>200 km) among all the pairs of neighboring populations examined. Low genetic diversity within the isolated populations suggested genetic drift due to the small population size; the genetic differentiation among the populations indicated low rates of gene flow among them.  相似文献   

12.
Drosophila antonietae belongs to the Drosophila buzzatii cluster, a cactophilic group of species naturally endemic to South America. Morphological and genetic analyses indicate that its populations are the most homogenous in the cluster and that the diversity observed is mainly a result of variation within populations. Seven polymorphic microsatellite loci were described for this species and used in the present study to investigate the genetic diversity of natural populations of D. antonietae by both length and sequence variation. The study aimed to understand how homoplasy and null alleles affect inferences about the population history of this species and to obtain an accurate interpretation of population inferences where these loci could be applied. The results provide useful information on the interpretation of genetic data derived from the microsatellite loci described for D. antonietae and on evolutionary aspects of cactophilic Drosophila. Importantly, the results indicate that size homoplasy and null alleles do not represent significant problems for the population genetics analyses because the large amount of variability at microsatellite loci compensate the low frequency of these problems in the populations. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 573–584.  相似文献   

13.
The distribution of genetic diversity at 10 highly polymorphic microsatellite loci within the European freshwater fish, Cottus gobio, L. was examined. The sampling range comprised a large geographical scale including lineages known to be highly divergent at both mitochondrial DNA (mtDNA) and allozymes. An analysis of genetic variability within populations showed that expected heterozygosity and allelic richness could be explained largely by current effective population sizes. Evidence was found, however, that historical processes predating the last major glaciation affected allelic richness. In addition to confirming the large-scale patterns from earlier studies, the microsatellite data revealed new insights into recent processes by analysing genetic structure within ancient lineages defined by mtDNA data. Stepwise mutation model (SMM) and nonSMM-based methods demonstrated a clear genetic structuring within the Northwestern European lineage comprising populations from Britain and Belgium, and within the Central European lineage populations from the rivers Danube, Elbe and Main. Supported by an analysis of genetic variability within populations these results showed that the bullhead populations most probably persisted throughout the last major glaciation within the British Isles and within the drainages of the rivers Elbe and Main. Such observations provide the first genetic evidence for a glacial refugium in such close proximity to the European glacial margins.  相似文献   

14.
Deciphering patterns of genetic variation within a species is essential for understanding population structure, local adaptation and differences in diversity between populations. Whilst neutrally evolving genetic markers can be used to elucidate demographic processes and genetic structure, they are not subject to selection and therefore are not informative about patterns of adaptive variation. As such, assessments of pertinent adaptive loci, such as the immunity genes of the major histocompatibility complex (MHC), are increasingly being incorporated into genetic studies. In this study, we combined neutral (microsatellite, mtDNA) and adaptive (MHC class II DLA‐DRB1 locus) markers to elucidate the factors influencing patterns of genetic variation in the African wild dog (Lycaon pictus); an endangered canid that has suffered extensive declines in distribution and abundance. Our genetic analyses found all extant wild dog populations to be relatively small (Ne < 30). Furthermore, through coalescent modelling, we detected a genetic signature of a recent and substantial demographic decline, which correlates with human expansion, but contrasts with findings in some other African mammals. We found strong structuring of wild dog populations, indicating the negative influence of extensive habitat fragmentation and loss of gene flow between habitat patches. Across populations, we found that the spatial and temporal structure of microsatellite diversity and MHC diversity were correlated and strongly influenced by demographic stability and population size, indicating the effects of genetic drift in these small populations. Despite this correlation, we detected signatures of selection at the MHC, implying that selection has not been completely overwhelmed by genetic drift.  相似文献   

15.
Peripherally isolated populations of common chaffinches (Fringilla coelebs) in the Canaries, Madeira, and Azores were compared genetically with their putative ancestral stock in Iberia and Morocco, and with a population of blue chaffinches (F. teydea) from Tenerife, using protein electrophoresis of 42 loci. The continental populations are only weakly differentiated genetically (FST = 0.092), despite distinctive subspecific differences in plumage and morphometrics between Iberia and Morocco populations. Estimated levels of gene flow among continental populations are high enough to account for their relative genetic homogeneity, and it is unlikely that homogenizing selection is operating to mimic the effects of gene flow. In contrast, the Atlantic island populations are well differentiated genetically (FST = 0.321), and have diverged considerably from their continental conspecifics. The development of significant genetic differentiation within the Canaries but not the Azores likely results from smaller population sizes, very restricted gene flow, and enhanced random drift in the former populations. There is no convincing evidence in support of stronger directional selection acting on genotypes or phenotypes to reduce within-population variability in Canaries populations as proposed by Grant (1979), although other tenets of his model of island evolution are supported by our analysis. Although genetic variability is reduced in four of the Canaries populations, only the Hierro population appears to have encountered a severe bottleneck. Yet it has not differentiated markedly from the La Palma population to which it is subspecifically allied. We conclude that gradual divergence in isolated populations of small to moderate size is the most plausible explanation for the evolution of intraspecific and interspecific diversity in Atlantic island chaffinches.  相似文献   

16.
To understand the impact of various factors on the maintenance of genetic variation in natural populations, we need to focus on situations where at least some of these factors are removed or controlled. In this study, we used highly variable, presumably neutral, microsatellite and mtDNA markers to assess the nature of genetic variation in 14 island and two mainland populations of the Australian bush rat, where there is no migration between islands. Thus we are controlling for selection and gene flow. Both marker sets revealed low levels of diversity within the small island populations and extreme differentiation between populations. For six microsatellite loci, all of the small island populations had less genetic variation than the mainland populations; reduction in allelic diversity was more pronounced than loss of heterozygosity. Kangaroo Island, the large island population, had similar levels of diversity to the mainland populations. A 442 base pair (bp) section of the mtDNA control region was screened for variation by outgroup heteroduplex analysis/temperature gradient gel electrophoresis (OHA/TGGE). Only three of the 13 small island populations showed haplotypic diversity: Gambier (2), Waldegrave (2), and Eyere (3). The level of haplotypic diversity in the small island populations was similar to that on the mainland, most likely reflecting a recent population bottleneck on the mainland. In contrast, Kangaroo Island had 9 mtDNA haplotypes. The dominant factor influencing genetic diversity on the islands was island size. No correlation was detected between genetic diversity and the time since isolation or distance form the mainland. The combination of genetic drift within and complete isolation among the small island populations has resulted in rapid and extreme population divergence. Population pair-wise comparisons of allele frequency distributions showed significant differences for all populations for all loci (F st = 0.11–0.84, R st = 0.07–0.99). For the mtDNA control region, 92.6% of variation was apportioned between populations; only the Pearson islands shared a haplotype. Mantel tests of pair-wise genetic distance with pair-wise geographic distance showed no significant geographical clustering of haplotypes. However, population substructuring was detected within populations where sampling was conducted over a broader geographical range, as indicated by departures from Hardy-Weinberg equilibrium. Thus substructuring in the ancestral population cannot be ruled out. The dominant evolutionary forces on the islands, after the initial founder event, are stochastic population processes such as genetic drift and mutation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The purpose of this study was to assess the relative roles of population size and geographic isolation in determining population-genetic structure. Using electrophoretic techniques to quantify allozymic variation at 16 genetic loci, we measured genic variation within and among 16 natural populations of the California fan palm (Washingtonia filifera). Genotypes were determined for every individual in each population so that parametric values rather than sample estimates for measures of genic variability were obtained. Palm populations displayed low levels of within-population variability. The proportion of polymorphic loci and observed heterozygosity were 0.098 and 0.009 per population, respectively. Population size displayed a significant positive correlation with proportion of polymorphic loci, but not with observed heterozygosity. Low levels of genetic differentiation among populations were demonstrated by an F-statistic analysis and the computation of genetic similarity values. A hierarchical analysis of gene diversity revealed that only about 2% of the total gene diversity in W. filifera resides as among-population diversity. Climatic and geological changes since the Pliocene have eliminated widespread palm populations, and the species is presently restricted to isolated locations around the Colorado Desert. Existing populations in southern California are either relicts or recent recolonizations resulting from the dispersal of seeds from a refugium population in Baja California, Mexico. The observed patterns of low within- and low among-population genic diversity seem most consistent with a recent colonization by fan palms. It is hypothesized that stochastic processes reduced levels of genic variability in this refugium population during its formation. Dispersal of seeds from this refugium into suitable habitats in the Colorado Desert would produce populations with low variability and high genetic similarity because of their common ancestry. However, low intrapopulation variability and genetic homogeneity across populations could be the product of uniform selection pressures favoring a narrow array of specialized genotypes in either relict or colonizing populations.  相似文献   

18.
Correlated dispersal paths between two or more individuals are widespread across many taxa. The population genetic implications of this collective dispersal have received relatively little attention. Here we develop two‐sample coalescent theory that incorporates collective dispersal in a finite island model to predict expected coalescence times, genetic diversities, and F‐statistics. We show that collective dispersal reduces mixing in the system, which decreases expected coalescence times and increases FST. The effects are strongest in systems with high migration rates. Collective dispersal breaks the invariance of within‐deme coalescence times to migration rate, whatever the deme size. It can also cause FST to increase with migration rate because the ratio of within‐ to between‐deme coalescence times can decrease as migration rate approaches unity. This effect is most biologically relevant when deme size is small. We find qualitatively similar results for diploid and gametic dispersal. We also demonstrate with simulations and analytical theory the strong similarity between the effects of collective dispersal and anisotropic dispersal. These findings have implications for our understanding of the balance between drift–migration–mutation in models of neutral evolution. This has applied consequences for the interpretation of genetic structure (e.g., chaotic genetic patchiness) and estimation of migration rates from genetic data.  相似文献   

19.
Temporal evolution of genetic variability may have far-reaching consequences for a diverse array of evolutionary processes. Within the polders of the Bay of Mont-Saint-Michel (France), populations of the land snail Helix aspersa are characterized by a metapopulation structure with occasional extinction processes resulting from farming practices. A temporal survey of genetic structure in H . aspersa was carried out using variability at four microsatellite loci, in ten populations sampled two years apart. Levels of within-population genetic variation, as measured by allelic richness, H e or F is , did not change over time and similar levels of population differentiation were demonstrated for both sampling years. The extent of genetic differentiation between temporal samples of the same population established (i) a stable structure for six populations, and (ii) substantial genetic changes for four populations. Using classical F -statistics and a maximum likelihood method, estimates of the effective population size ( N e) illustrated a mixture of stable populations with high N e, and unstable populations characterized by very small N e estimates (of 5–11 individuals). Owing to human disturbances, intermittent gene flow and genetic drift are likely to be the predominant evolutionary processes shaping the observed genetic structure. However, the practice of multiple matings and sperm storage is likely to provide a reservoir of variability, minimizing the eroding genetic effects of population size reduction and increasing the effective population size.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 89–102.  相似文献   

20.
The effect of population size on population genetic diversity and structure has rarely been studied jointly with other factors such as the position of a population within the species’ distribution range or the presence of mutualistic partners influencing dispersal. Understanding these determining factors for genetic variation is critical for conservation of relict plants that are generally suffering from genetic deterioration. Working with 16 populations of the vulnerable relict shrub Cneorum tricoccon throughout the majority of its western Mediterranean distribution range, and using nine polymorphic microsatellite markers, we examined the effects of periphery (peripheral vs. central), population size (large vs. small), and seed disperser (introduced carnivores vs. endemic lizards) on the genetic diversity and population structure of the species. Contrasting genetic variation (HE: 0.04–0.476) was found across populations. Peripheral populations showed lower genetic diversity, but this was dependent on population size. Large peripheral populations showed high levels of genetic diversity, whereas small central populations were less diverse. Significant isolation by distance was detected, indicating that the effect of long‐distance gene flow is limited relative to that of genetic drift, probably due to high selfing rates (FIS = 0.155–0.887), restricted pollen flow, and ineffective seed dispersal. Bayesian clustering also supported the strong population differentiation and highly fragmented structure. Contrary to expectations, the type of disperser showed no significant effect on either population genetic diversity or structure. Our results challenge the idea of an effect of periphery per se that can be mainly explained by population size, drawing attention to the need of integrative approaches considering different determinants of genetic variation. Furthermore, the very low genetic diversity observed in several small populations and the strong among‐population differentiation highlight the conservation value of large populations throughout the species’ range, particularly in light of climate change and direct human threats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号