首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polychaete Streblospio benedicti is unusual in that several field populations consist of individuals that exhibit either planktotrophic or lecithotrophic larval development. Planktotrophy in this species involves production of many small ova that develop into feeding larvae with a two- to three-week planktonic period. Lecithotrophy involves production of fewer, larger ova that develop into nonfeeding larvae that are brooded longer and have a brief planktonic stage. Reciprocal matings were performed to investigate genetic variance components and the correlation structure of life-history traits associated with planktotrophy and lecithotrophy. Our objective was to better understand persistence of this developmental dichotomy in Streblospio benedicti, and among marine invertebrates in general. Substantial additive genetic variation (75–98% of total) was detected for the following characters at first reproduction: female length; position of the first gametogenic setiger and first brood pouch; ovum diameter; three traits related to fecundity (numbers of ova per ovary, larvae per brood pouch, and larvae per brood); median larval planktonic period and the presence of larval swimming setae; but not for total number of brood pouches; larval length; larval feeding; and larval survivorship. Based on the unusual geographic distribution of development modes in this species, we hypothesize that the developmental traits have evolved in allopatry and have only recently come into contact in North Carolina. The high additive contribution to variance observed for many traits may be inflated due to (a) nonrandom breeding in nature, and (b) examination of only one component of an age-structured population at one time. Nuclear interaction variance and maternal variance accounted for 84% of the total variation in larval survivorship. This observation supports other empirical studies and theoretical predictions that nonadditive components of variance will increase in importance in individual traits that are most closely tied to fitness. A network of life-history trait correlations was observed that defines distinct planktotrophic and lecithotrophic trait complexes. Negative genetic correlations were present between fecundity and egg size, between fecundity and position of the first gametes, and between larval survivorship and median planktonic period. Positive genetic correlations were detected between fecundity and female size at first reproduction and between planktonic period and the presence of swimming setae. Intergenerational product-moment correlations were negative for larval length and fecundity, planktonic period and egg size, female size and larval survivorship, and fecundity and larval survivorship. If the genetic correlation structure observed in the laboratory persists in the field, it may constrain responses of individual characters to directional selection, and indirectly perpetuate the dichotomies associated with planktotrophy and lecithotrophy.  相似文献   

2.
Seasonal variations in the levels of polar steroids including polyhydroxylated steroids and related glycosides in digestive organs of the starfish Patiria (=Asterina) pectinifera have been studied. The concentration of polar steroids is related to the annual reproductive cycle of the starfish and periods of active feeding. Two peaks in concentrations of polar steroids in pyloric caeca and stomach were found, the first in winter during reorganization and the second in summer during intensive gametogenesis before spawning. Probable biological functions of polyhydroxysteroids and related glycosides are discussed. The data support the hypothesis these compounds are involved in digestion in the starfish.  相似文献   

3.
Seabreams are among the most valuable fish, not only for small-scale and semiindustrial fisheries but also for aquaculture throughout the Mediterranean. Nevertheless, their phylogenetic relationships are not at all clear. The current taxonomy is based solely on trophic morphology and rests on the assumption that each trophic type evolved only once from a less specialized ancestral condition. We analyzed a 486-bp segment of the mitochondrial 16S rDNA of all 24 seabream species described for the northeastern Atlantic and the Mediterranean to elucidate their generic and subfamily-level relationships. Three major mitochondrial lineages, each comprising species of different feeding strategy and dentition, were found that do not agree with the present taxonomic assignments. Most of the investigated genera were resolved paraphyletically, indicating that the structure and arrangement of oral teeth must have repeatedly evolved from a less specialized ancestral condition. Further, the genus Sparus was resolved as distantly related to the genus Pagrus, in that it was assigned to a different major mitochondrial lineage. Oblada melanura was consistently placed within the Diplodus radiation as sister group to Diplodus puntazzo. Our phylogenetic hypothesis thus suggests multiple independent origins of similar trophic specializations within the Sparidae and indicates that the currently recognized three or four subfamilies need to be redefined. Received: 5 October 1999 / Accepted: 9 November 1999  相似文献   

4.
Numerous gross morphological attributes are shared among unrelated free‐living bryozoans revealing convergent evolution associated with functional demands of living on soft sediments. Here, we show that the reproductive structures across free‐living groups evolved convergently. The most prominent convergent traits are the collective reduction of external brood chambers (ovicells) and the acquisition of internal brooding. Anatomical studies of four species from the cheilostome genera Cupuladria and Discoporella (Cupuladriidae) show that these species incubate their embryos in internal brooding sacs located in the coelom of the maternal nonpolymorphic autozooids. This sac consists of a main chamber and a narrow neck communicating to the vestibulum. The distal wall of the vestibulum possesses a cuticular thickening, which may further isolate the brood cavity. The presence of this character in all four species strongly supports grouping Cupuladria and Discoporella in one taxon. Further evidence suggests that the Cupuladriidae may be nested within the Calloporidae. Based on the structure of brooding organs, two scenarios are proposed to explain the evolution of the internal brooding in cupuladriids. The evolution of brood chambers and their origin in other free‐living cheilostomes is discussed. Unlike the vast majority of Neocheilostomina, almost all free‐living cheilostomes possess nonprominent chambers for embryonic incubation, either endozooidal and immersed ovicells or internal brooding sacs, supporting the idea that internal embryonic incubation is derived. We speculate that prominent skeletal brood chambers are disadvantageous to a free‐living mode of life that demands easy movement through sediment in instable sea‐floor settings. J. Morphol., 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Life history diversity and evolution in the Asterinidae   总被引:3,自引:1,他引:2  
Asterinid sea stars have the greatest range of life historiesknown for the Asteroidea. Larval form in these sea stars hasbeen modified in association with selection for planktonic,benthic, or intergonadal developmental habitats. Life historydata are available for 31 species and molecular data for 28of these. These data were used to assess life history evolutionand relationships among asterinid clades. Lecithotrophy is prevalentin Asterinidae, with at least 6 independent origins of thisdevelopmental mode. Morphological differences in the attachmentcomplex of brachiolaria larvae were evident among species withplanktonic lecithotrophy. Some features are clade specific whileothers are variable within clades. Benthic brachiolariae aresimilar in Aquilonastra and Parvulastra with tripod-shaped larvae,while the bilobed sole-shaped larvae of Asterina species appearunique to this genus. Multiple transitions and pathways havebeen involved in the evolution of lecithotropy in the Asterinidae.Although several genera have a species with a planktonic feedinglarva in a basal phylogenetic position, relative to specieswith planktonic or benthic lecithotrophy, there is little evidencefor the expected life history transformation series from planktonicfeeding, to planktonic non-feeding, to benthic non-feeding development.Intragonadal development, a life history pattern unique to theAsterinidae, arose three times through ancestors with benthicor pelagic lecithotrophy. Evolution of lecithotrophy appearsmore prevalent in the Asterinidae than other asteroid families.As diverse modes of development are discerned in cryptic speciescomplexes, new insights into life history evolution in the Asterinidaeare being generated.  相似文献   

6.
Summary

Viviparity, where the embryos develop in the female reproductive system, is a rare form of reproduction in marine invertebrates, being described in only 14 species of echinoderm. In the intraovarian brooding sea cucumber, Leptosynapta clarki Heding 1928 (cf., Sewell et al. 1995), we used direct evidence (changes in energetic content) to show that significant additional nutrients are provided to the embryos during viviparous development (matrotrophy). In the transition from a structure used to produce gametes to a long-term brooding structure there are visual, histological and transmission electron microscopy (TEM) changes in the structure of the ovarian wall. Changes occur primarily in the cells of the visceral peritoneum and involve an increase in size of the connective tissue/genital haemal sinus (CT/GHS). In the latter part of the brooding period the visceral peritoneum returns to a flattened form, and new oocytes develop along the tubule wall. Similar changes in the intraovarian brooding sea cucumber Oneirophanta mutabilis affinis lead us to suggest that there is a role for the genital haemal sinus in providing nutrition during the brooding period in viviparous echinoderms. Future research is suggested to focus on changes in the ovarian wall structure during the different phases of reproduction (gamete production/brooding) in these species.  相似文献   

7.
While the majority of marine bivalves are oviparous, the two freshwater families among the order Veneroida, i.e. Corbiculidae and Sphaeriidae, comprise species with ovoviviparous and viviparous reproduction. Within the Corbiculidae, the genus Corbicula, which is well‐known for its invasive and, thus, ecologically important representatives, is characterized by (i) a wide range of limnic habitats, inhabiting both brackish water and freshwater environments, and (ii) contrasting modes of reproduction, including ‘planktonic’ development via a free‐swimming larva vs. intrabranchial incubation (brooding) of shelled juveniles. The present investigation of five species of Corbicula from the Indonesian islands Sumatra and Sulawesi, which were hitherto not studied anatomically, adds to the diversity in reproductive patterns in this genus. As a unique feature among Corbicula we here report on two newly observed modes of brooding in species endemic to Sulawesi, (i) tetragenous brooding (i.e. in both demibranchs) in Corbicula possoensis Sarasin & Sarasin, 1898 from Lake Poso, and (ii) prolonged incubation in the maternal gills, with juvenile shells reaching up to 1.3 mm in length and with a well‐developed hinge in C. linduensis Bollinger, 1914 from the Lindu River system. In contrast, a third method is seen in the following taxa that incubate their young in their inner demibranchs only until the stage of juveniles with straight‐hinged shells (D‐shaped): C. matannensis Sarasin & Sarasin, 1898 from Lake Matano and Lake Mahalona, C. loehensis Kruimel, 1913 from Lake Masapi (all on Sulawesi) and C. moltkiana Prime, 1878 from Lakes Maninjau and Singkarak (on Sumatra). Details of the anatomical and histological features of ctenidia are described for each type of brooding, and some trends in the evolution of reproductive strategies within the Corbiculidae are discussed, comparing them with those known from other limnic molluscs.  相似文献   

8.
When the level of gene flow among populations depends upon the geographic distance separating them, genetic differentiation is relatively enhanced. Although the larval dispersal capabilities of marine organisms generally correlate with inferred levels of average gene flow, the effect of different modes of larval development on the association between gene flow and geographic distance remains unknown. In this paper, I examined the relationship between gene flow and distance in two co-occurring solitary corals. Balanophyllia elegans broods large, nonfeeding planulae that generally crawl only short distances from their place of birth before settling. In contrast, Paracyathus stearnsii free-spawns and produces small planktonic larvae presumably capable of broad dispersal by oceanic currents. I calculated F-statistics using genetic variation at six (P. stearnsii) or seven (B. elegans) polymorphic allozyme loci revealed by starch gel electrophoresis, and used these F-statistics to infer levels of gene flow. Average levels of gene flow among twelve Californian localities agreed with previous studies: the species with planktonic, feeding larvae was less genetically subdivided than the brooding species. In addition, geographic isolation between populations appeared to affect gene flow between populations in very different ways in the two species. In the brooding B. elegans, gene flow declined with increasing separation, and distance explained 31% of the variation in gene flow. In the planktonically dispersed P. stearnsii distance of separation between populations at the scale studied (10–1000 km) explained only 1% of the variation in gene flow between populations. The mechanisms generating geographic genetic differentiation in species with different modes of larval development should vary fundamentally as a result of these qualitative differences in the dependence of gene flow on distance.  相似文献   

9.
Observations were made of 33 species of brittlestars (3980 specimens) from specific substrata collected in four zones on the Belize Barrier Reef, Caribbean Sea. The body size of most species of brittlestars with planktonic larvae differs significantly among different substrata. Generally, individuals from the calcareous alga Halimeda opuntia are smallest, those found in corals (Porites porites, Madracis mirabilis, and Agaricia tenuifolia) are larger, and those from coral rubble are the largest. This suggests that brittlestars with planktonic larvae move to new microhabitats as they grow. In contrast, most brooding and fissiparous species are relatively small and their size-distributions are similar among all substrata. Halimeda harbours denser concentrations of brittlestars and more small and juvenile individuals than the other substrata. Juveniles of the brooding and fissiparous species are most common in Halimeda on the Back Reef whereas juveniles developing from planktonic larvae are most common in Halimeda patches in deeper water. Fissiparity and brooding may be means for individuals (genomes) of small, apomictic species to reach large size (and correspondingly high fecundities) in patchy microhabitats that select for small body sizes. Small brittlestar species and juveniles are most numerous in the microhabitats called refuge-substrata, such as Halimeda, which may repel predators and reduce environmental stress. Whether young brittlestars are concentrated in refuge-substrata through settlement behavior, migration, or differential survival remains unknown. Experiments revealed that coral polyps kill small brittlestars, perhaps accounting for the rarity of small and juvenile brittlestars in coral substrata.  相似文献   

10.
R. N. Hughes 《Hydrobiologia》1995,309(1-3):1-14
Applicability of life-history theory to higher levels of comparison (from populations, through ecotypes to sibling species) was investigated in rough periwinkles, whose life histories have diversified since colonization of the North Atlantic by an oviparous ancestor in the upper Pliocene. Comparisons were made among populations of the ovoviviparous Littorina saxatilis, between L. saxatilis and its ecotype, L. neglecta (with an annual life history) and between the sibling species L. saxatilis and L. arcana, the latter of which retains the ancestral oviparity. Resource-allocation priority, reproductive effort and related trade offs were compared between the ecotypes and the sibling species by measuring changes in flesh mass and reproductive output in snails subjected to different degrees of food deprivation, and by measuring mortality rate of snails stressed by desiccation, high temperature and low salinity. Body size had a marked effect on all parameters, but after statistically removing this effect there remained no significant differences in allocation among ecotypes or species. Published demographical data were reviewed for correlations between habitat, mortality regime and life-history characteristics. Populations of L. saxatilis varied principally in size at birth and in adult size. Theoretical premises based on density-dependent versus density-independent mortality regimes could not explain these trends. Instead, size at birth may have reflected the mechanical, physiological or biological nature of mortality risk rather than its density dependence or independence. Adult size reflected the available sizes of crevices used for shelter and perhaps also the quality of feeding conditions. Radiation of life histories within the rough periwinkles is interpreted as a series of adaptations to a progressively wider range of habitats. The transition from oviparity to ovoviviparity allows colonization of estuaries, saltmarshes and pebble beaches too hazardous for naked egg masses. The transition from a perennial to an annual life history in barnacle ecotypes follows from allometric re-scaling of morphological and physiological parameters, enabling reproduction and brooding to occur at the small body size necessary for life within empty barnacle tests. This suite of adaptations allows exploitation of a relatively benign microhabitat that occurs almost ubiquitously on exposed rocky shores of the temperate North Atlantic. The persistence of oviparous forms, presumably in the face of competition from sympatric ovoviviparous forms, remains unexplained.  相似文献   

11.
The Cryptasterina group of asterinid sea stars in Australasia comprises cryptic species with derived life histories. C. pentagona and C. hystera have planktonic and intragonadal larvae, respectively. C. pentagona has the gonochoric, free-spawning mode of reproduction with a planktonic lecithotrophic brachiolaria larva. C. hystera is hermaphroditic with an intragonadal lecithotrophic brachiolaria, and the juveniles emerge through the gonopore. Both species have large lipid-rich buoyant eggs and well-developed brachiolariae. Early juveniles are sustained by maternal nutrients for several weeks while the digestive tract develops. C. hystera was reared in vitro through metamorphosis. Its brachiolariae exhibited the benthic exploration and settlement behavior typical of planktonic larvae, and they attached to the substratum with their brachiolar complex. These behaviors are unlikely to be used in the intragonadal environment. The presence of a buoyant egg and functional brachiolaria larva would not be expected in an intragonadal brooder and indicate the potential for life-history reversal to a planktonic existence. Life-history traits of species in the Cryptasterina group are compared with those of other asterinids in the genus Patiriella with viviparous development. Modifications of life-history traits and pathways associated with evolution of viviparity in the Asterinidae are assessed, and the presence of convergent adaptations and clade-specific features associated with this unusual mode of parental care are examined.  相似文献   

12.
Many factors, both environmental and biotic, have been suggested to facilitate or hinder the evolution of viviparity (live-bearing) in reptiles. Viviparity has evolved recently within the Australian scincid lizard Lerista bougainvillii and the species includes oviparous, viviparous, and reproductively intermediate (with prolonged egg retention) populations; thus, it offers an exceptional opportunity to evaluate the validity of these hypotheses. We carried out such tests by (i) comparing environmental conditions over the geographic ranges occupied by oviparous, viviparous, and intermediate populations (to identify possible selective forces for the evolution of viviparity), and (ii) comparing morphological, reproductive and ecological traits of L. bougainvillii with those of other sympatric scincid species (to identify traits that may have predisposed this taxon to the evolution of viviparity). The areas occupied by viviparous L. bougainvillii are significantly colder than those occupied by both their intermediate and oviparous conspecifics, in accord with the “cold-climate” hypothesis for reptilian viviparity. Rainfall is similar over the ranges of the three forms. Climatic unpredictability (as assessed by the magnitude of year-to-year thermal variation) is lower for viviparous animals, in contradiction to published speculations. Comparison with 31 sympatric scincid species showed that L. bougainvillii is not atypical for most of the traits we measured (e.g., body size, clutch size, thermal preferenda and tolerances). However, oviparous L. bougainvillii do display several traits that have been suggested to facilitate the evolution of viviparity. For example, pregnancy does not reduce locomotor ability of females; the lizards are semi-fossorial; even the oviparous females produce only a single clutch of eggs per year; and they ovulate relatively late in summer, so that the time available for incubation is limited.  相似文献   

13.
A comparison was made of the evolutionary patterns among larviparous and oviparous species of the family Ostreidae. The data reveal that larviparous species have experienced a wider range of environmental variables, life history traits, and levels of genetic variation than have oviparous species. Non-parametric correlation coefficients were obtained among fifteen variables (i.e., two genetic, four environmental and nine life-history variables). Among the life-history variables, mode of larval development, fecundity, egg size, initial size of the planktonic larva and planktonic larval period were found to covary significantly with the genetic variables. In a comparison of environmental and life-history variables, the mode of larval development and habitat water depth were found to covary. The implications of these results are discussed with reference to the evolution of the family Ostreidae.  相似文献   

14.
The soft coral genus Alcyonium is among the most reproductively diverse invertebrate taxa known: The genus includes species that vary both in mode of reproduction (including broadcast spawners, internal brooders, and external brooders) and sexual expression (gonochores, hermaphrodites, and a unisexual parthenogen). Such diversity offers a unique opportunity to examine associations between reproductive and morphological traits in a phylogenetic context. We used an approximately 900-bp sequence of the nuclear ribosomal gene complex spanning the internal transcribed spacer (ITS) regions to construct a molecular phylogeny for 14 European and North American species of Alcyonium onto which we mapped the known distribution of reproductive and morphological traits. The phylogeny suggests that hermaphroditism or parthenogenesis has evolved independently at least twice in this genus, and always in internally brooding species. Broadcast spawning and external brooding only occur in species with large colony size, whereas all species with small colony size brood their larvae internally. Internal brooding and small size appear to be ancestral in this genus; if this is the case, an association between broadcast spawning and large colony size has evolved independently in at least two clades. This tendency of small adults to brood their larvae while large adults broadcast spawn them into the plankton has been observed in a variety of solitary invertebrate taxa, but to date has not been documented in any other colonial invertebrates. Moreoever, it has been suggested that organisms with a colonial growth form should not experience the allometric constraints on brood space that have been proposed to explain the association between adult size and mode of reproduction in solitary organisms. Unlike many other colonial groups, however, module (polyp) size is strongly correlated with colony size in Alcyonium, and constraints on brooding may be imposed by module, rather than colony, allometry. The very close genetic relationship (< 1% sequence divergence) and shared polymorphisms among A. digitatum (a large, gonochoric broadcast spawner), A. siderium, and A. sp. A (intermediate-sized and small hermaphroditic, internal brooders) suggest that evolutionary transitions between broadcast spawning and brooding and between gonochorism and hermaphroditism can occur easily and rapidly in this group.  相似文献   

15.
Phylogenetic relationships in Daltoniaceae (~200 species in 14 genera) are inferred from nucleotide sequences from five genes, representing all genomic compartments, using parsimony, likelihood and Bayesian methods. Alternative classifications for Daltoniaceae have favoured traits from either sporophytes or gametophytes; phylogenetic transitions in gametophytic leaf limbidia and sporophytic exostome ornamentation were evaluated using ancestral state reconstruction to assess the levels of conflict between these generations. Elimbate leaves and the cross‐striate exostome are reconstructed as plesiomorphic states. Limbate leaves and papillose exostomes evolved at least two and six times, respectively, without reversals. The evolution of leaf limbidia is relatively conserved, but exostome ornamentation is highly homoplasious, indicating that superficial similarity in peristomes gives unreliable approximations of phylogenetic relatedness. Our phylogenetic analyses show that Achrophyllum and Calyptrochaeta are reciprocally monophyletic. Within core Daltoniaceae, relationships among taxa with elimbate leaves are generally well understood. However, taxa with limbate leaves form a monophyletic group, but resolved subclades correspond to biogeographical entities, rather than to traditional concepts of genera. Daltonia (~21 species), Distichophyllum (~100 species) and Leskeodon (~20 species) are polyphyletic. Seven nomenclatural changes are proposed here. As the current taxonomy of Daltoniaceae lacks phylogenetic consistency, critical generic revisions are needed. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

16.
Sexuality and reproductive mode are two fundamental life-history traits that exhibit largely unexplained macroevolutionary patterns among the major groups of multicellular organisms. For example, the cnidarian class Anthozoa (corals and anemones) is mainly comprised of gonochoric (separate sex) brooders or spawners, while one order, Scleractinia (skeleton-forming corals), appears to be mostly hermaphroditic spawners. Here, using the most complete phylogeny of scleractinians, we reconstruct how evolutionary transitions between sexual systems (gonochorism versus hermaphrodism) and reproductive modes (brooding versus spawning) have generated large-scale taxonomic patterns in these characters. Hermaphrodites have independently evolved in three large, distantly related lineages consisting of mostly reef-building species. Reproductive mode in corals has evolved at twice the rate of sexuality, while the evolution of sexuality has been heavily biased: gonochorism is over 100 times more likely to be lost than gained, and can only be acquired by brooders. This circuitous evolutionary pathway accounts for the prevalence of hermaphroditic spawners among reef-forming scleractinians, despite their ancient gonochoric heritage.  相似文献   

17.
Three species of the asteroid genus Patiriella occur sympatrically in New South Wales and the possibility for hybridization among them was examined through a series of cross-fertilization experiments. Patiriella calcar and P. gunnii are morphologically distinct as adults but indistinguishable as larvae. Patiriella exigua is morphologically distinct in both its adult and larval morphologies. The gametes of P. calcar and P. gunnii were reciprocally compatible: laboratory crosses between these species produced viable hybrid juveniles. In crosses between female P. calcar and male P. gunnii, most of the juveniles metamorphosed with an arm number intermediate between that of the parents, whereas crosses between female P. gunnii and male P. calcar produced juveniles with an arm number more similar to the maternal phenotype. Heterospecific crosses with P. exigua resulted in low fertilization rates, and viable hybrids were not produced. This species appears capable of self-fertilization. Because hybrids between P. calcar and P. gunnii were viable, neither gametic incompatibility nor hybrid inviability appears to ensure reproductive isolation between these species. Ecological or habitat segregation and temporal separation in breeding may isolate these species in the field. The results demonstrate that if gamete surface recognition molecules are involved in fertilization of P. calcar and P. gunnii, then they are not strongly species specific, at least at the sperm concentrations used in this study. Reproductive isolation between these species has evolved despite their gametic compatibility. In contrast, P. exigua is isolated from its congeners because of gametic incompatibility and several features characteristic of its reproduction and development. The implications of these findings for reproductive isolation and speciation of Patiriella and for the evolution of reproductive isolation in free-spawning marine organisms are discussed.  相似文献   

18.
Seed size and cotyledon morphology are two key juvenile traits that have evolved in response to changes in plant species life-history strategies and habitat associations. Correlations of these traits with each other and with other juvenile traits were examined for 70 species of trees and shrubs in Kibale National Park, Uganda. Although species with photosynthetic cotyledons were more abundant than in other tropical floras, both univariate and multivariate analyses supported trait associations expected from the literature. Trait values varied continuously across species, yet mean trait values differed significantly among habitat association types. Species with large seeds, large seedlings, thick storage cotyledons, slow germination, large-stature adults, and dispersal by large animals were common in forest and gap habitats. An opposite suite of traits was common in open habitats (grassland and edge). Analyses incorporating phylogeny (independent contrasts and omnibus tests) confirmed that these suites of traits showed correlated evolution. Cotyledon functional morphology yielded a strong phylogenetic signal, while seed mass was labile. Nevertheless, contingent change tests found that evolutionary change from photosynthetic to reserve cotyledons was more likely when disperser and perhaps seed size of ancestral species were already large, suggesting a strong interdependency among these traits.  相似文献   

19.
Seasonal variations in the concentrations of individual polyhydroxysteroids and related low molecular weight glycosides in pyloric caeca and stomach of the starfish Patiria (=Asterina) pectinifera collected at one location near Vladivostok have been studied. HPLC analysis on the fractions containing these substances showed a fairly constant composition of steroids in digestive tissues of P. pectinifera in spite of small seasonal variations in the relative concentrations of individual compounds.  相似文献   

20.
The Gelechioidea, with 18,000 described and many more unnamed species ranks among the most diverse lepidopteran superfamilies. Nevertheless, their taxonomy has remained largely unresolved, and phylogenetic affinities among gelechioid families and lower taxa have been insufficiently understood. We constructed, for the first time, a comprehensive molecular phylogeny for the Gelechioidea. We sampled seven genes, in total 5466 base pairs, of 109 gelechioid taxa representing 32 of 37 recognized subfamilies, and two outgroup taxa. We used maximum likelihood methods and Bayesian inference to construct phylogenetic trees. We found that the families Autostichidae, Lecithoceridae, Xyloryctidae, and Oecophoridae s. str., in this order, are the most basally arising clades. Elachistidae s. l. was found to be paraphyletic, with families such as Gelechiidae and Cosmopterigidae nested within it, and Parametriotinae associated with several families previously considered unrelated to them. Using the phylogenetic trees, we examined patterns of life history evolution and determinants of the success of different lineages. Gelechioids express unusually wide variability in life-history strategies, including herbivorous, saprophagous, fungivorous, and carnivorous lineages. Most species are highly specialized in diet and other life history traits. The results suggest that either saprophagy was the ancestral feeding strategy from which herbivory evolved independently on multiple occasions, or that the ancestor was herbivorous with repeated origins of saprophagy. External feeding is an ancestral trait from which internal feeding evolved independently several times. In terms of species number, saprophages are dominant in Australia, while elsewhere several phytophagous lineages have extensively specialized and diversified. Internal feeding has remained a somewhat less generally adopted feeding mode, although in a few lineages significant radiations of leaf mining species have occurred. We conclude that diverse feeding modes, specialization among saprophages, repeated shifts to phytophagy, and a generally high specialization rate on single plant species (monophagy) are the major factors behind the success of the Gelechioidea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号