首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HLA class II polymorphisms determine responses to bacterial superantigens   总被引:2,自引:0,他引:2  
The excessive immunological response triggered by microbial superantigens has been implicated in the etiology of a wide range of human diseases but has been most clearly defined for the staphylococcal and streptococcal toxic shock syndromes. Because MHC class II presentation of superantigens to T cells is not MHC-restricted, the possibility that HLA polymorphisms could influence superantigenicity, and thus clinical susceptibility to the toxicity of individual superantigens, has received little attention. In this study, we demonstrate that binding of streptococcal and staphylococcal superantigens to HLA class II is influenced by allelic differences in class II. For the superantigen streptococcal pyrogenic exotoxin A, class II binding is dependent on DQ alpha-chain polymorphisms such that HLA-DQA1*01 alpha-chains show greater binding than DQA1*03/05 alpha-chains. The functional implications of differential binding on T cell activation were investigated in various experimental systems using human T cells and murine Vbeta8.2 transgenic cells as responders. These studies showed quantitative and qualitative differences resulting from differential HLA-DQ binding. We observed changes in T cell proliferation and cytokine production, and in the Vbeta specific changes in T cell repertoire that have hitherto been regarded as a defining feature of an individual superantigen. Our observations reveal a mechanism for the different outcomes seen following infection by toxigenic bacteria.  相似文献   

2.
The nature of the mitogenic activity of pyrogenic streptococcal exotoxin B, also known as streptococcal cysteine protease, has been debated in the literature. Streptococcal exotoxin B has been shown to cleave interleukin-1beta precursor and create biologically active interleukin-1beta, a major cytokine mediating inflammation and shock. This activity could mimic the mitogenicity and cytokine release induced by superantigens in lymphocyte stimulating experiments. In this study, the protease activity of streptococcal exotoxin B was irreversibly inhibited by covalent binding of a tripeptide and the superantigenic properties of streptococcal exotoxin B were found not to be influenced by this inactivation. Native as well as protease-inactivated streptococcal exotoxin B was shown to stimulate T-cell proliferation without a need of metabolically active antigen presenting cells. Furthermore, streptococcal exotoxin B-induced T-cell proliferation was shown to require HLA-DQ since addition of HLA-DQ monoclonal antibodies totally inhibited the mitogenic activity of streptococcal exotoxin B, indicating that streptococcal exotoxin B, as other superantigens, makes direct contact with the T-cell receptor via HLA class II. The aim of this study was to characterize the relationship between the proteolytic and superantigenic properties of streptococcal exotoxin B.  相似文献   

3.
The group A streptococcus produces a number of highly potent exoproteins that act as superantigens. The cascade of pro-inflammatory events that follow invasive streptococcal infection is greatly enhanced by production of such toxins, leading to profound hypotension and multi-organ failure in some cases. Superantigens such as streptococcal mitogenic exotoxin Z (SMEZ) interact with host MHC class II and the T cell receptor, leading to activation events in both cells. In vitro, these interactions lead to expansion and cytokine production by specified T cell subsets. Studies using humanized HLA class II transgenic mice and isogenic streptococcal strains have characterised the in vivo responses to superantigens produced in the context of live infection. Notwithstanding the obvious deleterious role of superantigens in toxic shock, the evolutionary advantage conferred by these toxins remains a subject of speculation.  相似文献   

4.
The role of host genetic factors in conferring predisposition or protection in infectious diseases has become evident. Infection with group A streptococci causes a wide spectrum of disease ranging from pharyngitis to streptococcal toxic shock syndrome. The release of inflammatory cytokines triggered by streptococcal superantigens has a pivotal role in invasive streptococcal disease. However, individuals infected with the same strain can develop very different manifestations. We report here that the immunogenetics of the host influence the outcome of invasive streptococcal infection, and demonstrate the underlying mechanism for these genetic associations. Specific human leukocyte antigen class II haplotypes conferred strong protection from severe systemic disease, whereas others increased the risk of severe disease. Patients with the DRB1*1501/DQB1*0602 haplotype mounted significantly reduced responses and were less likely to develop severe systemic disease (P < 0.0001). We propose that human leukocyte antigen class II allelic variation contributes to differences in severity of invasive streptococcal infections through their ability to regulate cytokine responses triggered by streptococcal superantigens.  相似文献   

5.
Superantigens trigger an excessive cellular immune response, leading to toxic shock. We have designed a peptide antagonist that inhibits superantigen-induced expression of human genes for interleukin-2, gamma interferon and tumor necrosis factor-b, which are cytokines that mediate shock. The peptide shows homology to a b-strand-hinge-a-helix domain that is structurally conserved in superantigens, yet is remote from known binding sites for the major histocompatibility class II molecule and T-cell receptor. Superantigens depend on this domain for T-cell activation. The peptide protected mice against lethal challenge with staphylococcal and streptococcal superantigens. Moreover, it rescued mice undergoing toxic shock. Surviving mice rapidly developed protective antibodies against superantigen that rendered them resistant to further lethal challenges, even with different superantigens. Thus, the lethal effect of superantigens can be blocked with a peptide antagonist that inhibits their action at the beginning of the toxicity cascade, before activation of T cells takes place.  相似文献   

6.
A mitogenic substance, designated Streptococcus dysgalactiae-derived mitogen (SDM), was purified from S. dysgalactiae culture supernatant, and the gene encoding the mitogen was cloned. Both native and recombinant SDM expressed in Escherichia coli significantly activated human V beta 1+ and V beta 23+ T cells in association with major histocompatibility complex (MHC) class II molecules on accessory cells, indicating that SDM possesses superantigenic properties. The sdm gene consists of two segments encoding a signal peptide and a mature 25 kDa protein composed of 212 amino acids. Three of 34 S. dysgalactiae strains but none of 28 Streptococcus pyogenes strains examined carried sdm. Phylogenetic analysis indicated that SDM belongs to a family distinct from established bacterial superantigens. SDM showed around 30% homology with other superantigens at the amino acid sequence level. The tertiary structure of SDM was predicted by modelling onto streptococcal pyrogenic exotoxin C and streptococcal mitogenic exotoxin Z-2, both of which share highly homologous structure-determining regions. SDM showed overall structural similarity to both these superantigens. This is the first study to characterize fully a bacterial superantigen from S. dysgalactiae.  相似文献   

7.
Superantigens are bacterial or viral proteins that elicit massive T cell activation through simultaneous binding to major histocompatibility complex (MHC) class II and T cell receptors. This activation results in uncontrolled release of inflammatory cytokines, causing toxic shock. A remarkable property of superantigens, which distinguishes them from T cell receptors, is their ability to interact with multiple MHC class II alleles independently of MHC-bound peptide. Previous crystallographic studies have shown that staphylococcal and streptococcal superantigens belonging to the zinc family bind to a high affinity site on the class II beta-chain. However, the basis for promiscuous MHC recognition by zinc-dependent superantigens is not obvious, because the beta-chain is polymorphic and the MHC-bound peptide forms part of the binding interface. To understand how zinc-dependent superantigens recognize MHC, we determined the crystal structure, at 2.0 A resolution, of staphylococcal enterotoxin I bound to the human class II molecule HLA-DR1 bearing a peptide from influenza hemagglutinin. Interactions between the superantigen and DR1 beta-chain are mediated by a zinc ion, and 22% of the buried surface of peptide.MHC is contributed by the peptide. Comparison of the staphylococcal enterotoxin I.peptide.DR1 structure with ones determined previously revealed that zinc-dependent superantigens achieve promiscuous binding to MHC by targeting conservatively substituted residues of the polymorphic beta-chain. Additionally, these superantigens circumvent peptide specificity by engaging MHC-bound peptides at their conformationally conserved N-terminal regions while minimizing sequence-specific interactions with peptide residues to enhance cross-reactivity.  相似文献   

8.
Enzyme-linked immunosorbent assays for the quantitation of bacterial superantigens, staphylococcal enterotoxins A, B and C, toxic-shock syndrome toxin-1 and streptococcal pyrogenic exotoxin A, were developed. The assays had sensitivity to quantitate these toxins to 1.4, 5.9, 16.3, 2.5 and 4.3 pg/ml, respectively, in a buffer including 50% human plasma. It takes only 150 min to complete the assays after plate preparation. Specificity of the assays agreed with those of reverse latex agglutination assay. We also developed enzyme-linked immunosorbent assays to detect antibodies against these five superantigens. The assays are expected to be significant tools for the study of superantigens in several diseases.  相似文献   

9.
Staphylococcus aureus and Streptococcus pyogenes (group A streptococci) are Gram-positive pathogens capable of producing a variety of bacterial exotoxins known as superantigens. Superantigens interact with antigen-presenting cells (APCs) and T cells to induce T cell proliferation and massive cytokine production, which leads to fever, rash, capillary leak and subsequent hypotension, the major symptoms of toxic shock syndrome. Both S. aureus and group A streptococci colonize mucosal surfaces, including the anterior nares and vagina for S. aureus, and the oropharynx and less commonly the vagina for group A streptococci. However, due to their abilities to secrete a variety of virulence factors, the organisms can also cause illnesses from the mucosa. This review provides an updated discussion of the biochemical and structural features of one group of secreted virulence factors, the staphylococcal and group A streptococcal superantigens, and their abilities to cause toxic shock syndrome from a mucosal surface. The main focus of this review, however, is the abilities of superantigens to induce cytokines and chemokines from epithelial cells, which has been linked to a dodecapeptide region that is relatively conserved among all superantigens and is distinct from the binding sites required for interactions with APCs and T cells. This phenomenon, termed outside-in signaling, acts to recruit adaptive immune cells to the submucosa, where the superantigens can then interact with those cells to initiate the final cytokine cascades that lead to toxic shock syndrome.  相似文献   

10.
Superantigens are a class of microbial proteins with the ability to excessively activate T cells by binding to the T cell receptor. The staphylococcal and streptococcal superantigens are closely related in structure and possess an N-terminal domain that resembles an OB fold and a C-terminal domain similar to a beta-grasp fold. Yersinia pseudotuberculosis produces superantigens, YPMa, YPMb, and YPMc, which have no significant amino acid similarity to other proteins. We have determined the crystal and solution structures of YPMa, which show that the protein has a jelly-roll fold. The closest structural neighbors to YPMa are viral capsid proteins and members of the tumor necrosis factor superfamily. In the crystal structure, YPMa packs as a trimer, another feature shared with viral capsid proteins and TNF superfamily proteins. However, in solution YPMa behaves as a monomer, and any functional relevance of the trimer observed in the crystals is yet to be established.  相似文献   

11.
Stimulation of T cells by superantigens has been reported to be dependent on the presence of APC where binding to class II molecules is a prerequisite to recognition by the TCR. We examined the response of human T cells and a leukemic T cell line, Jurkat to the superantigen, streptococcal M protein. We show that immobilized or cross-linked streptococcal M protein stimulates Jurkat cells (V beta 8), but not normal purified human T cells, to produce IL-2. Activation of purified T cells by this superantigen required costimulatory signals provided by PMA, IL-1, and IL-6. These cytokines and growth factors alone can induce IL-2 production by T cells; however, proliferation occurred only in the presence of superantigen, which together with PMA, IL-1, and IL-6 induced the expression of IL-2R alpha on T cells. Similar results were obtained when the response of purified T cells to another known superantigen, staphylococcal enterotoxin B were examined, indicating that this phenomenon is not unique to M protein. Superantigens interact with a large number of T cells with particular V beta, and thus provide excellent models for studies of the role of biochemical events and signal transduction in T cell activation. Understanding these events may also explain the pathogenesis of autoimmune diseases associated with certain superantigens, such as streptococcal M protein that is thought to be involved in rheumatic fever and rheumatic heart disease.  相似文献   

12.
Host immunogenetic variations strongly influence the severity of group A streptococcus sepsis by modulating responses to streptococcal superantigens (Strep-SAgs). Although HLA-II-DR15/DQ6 alleles strongly protect against severe sepsis, HLA-II-DR14/DR7/DQ5 alleles significantly increase the risk for toxic shock syndrome. We found that, regardless of individual variations in TCR-Vβ repertoires, the presentation of Strep-SAgs by the protective HLA-II-DR15/DQ6 alleles significantly attenuated proliferative responses to Strep-SAgs, whereas their presentation by the high-risk alleles augmented it. Importantly, HLA-II variations differentially polarized cytokine responses to Strep-SAgs: the presentation of Strep-SAgs by HLA-II-DR15/DQ6 alleles elicited significantly higher ratios of anti-inflammatory cytokines (e.g., IL-10) to proinflammatory cytokines (e.g., IFN-γ) than did their presentation by the high-risk HLA-II alleles. Adding exogenous rIL-10 significantly attenuated responses to Strep-SAgs presented by the high-risk HLA-II alleles but did not completely block the response; instead, it reduced it to a level comparable to that seen when these superantigens were presented by the protective HLA-II alleles. Furthermore, adding neutralizing anti-IL-10 Abs augmented Strep-SAg responses in the presence of protective HLA-II alleles to the same level as (but no higher than) that seen when the superantigens were presented by the high-risk alleles. Our findings provide a molecular basis for the role of HLA-II allelic variations in modulating streptococcal sepsis outcomes and suggest the presence of an internal control mechanism that maintains superantigen responses within a defined range, which helps to eradicate the infection while attenuating pathological inflammatory responses that can inflict more harm than the infection itself.  相似文献   

13.
Kawasaki disease (KD) is the most common acquired cardiac disease in children in developed nations. The etiology of KD is unknown but likely to be a ubiquitous microbial agent. Previously, we showed that oligoclonal IgA plasma cells infiltrate coronary arteries and other inflamed tissues in acute KD. We demonstrated that a synthetic Ab made using an alpha H chain sequence prevalent in acute KD arterial tissue detected Ag in acute KD coronary arteries, lung, and other inflamed tissues and that Ag localized to cytoplasmic inclusion bodies in the acute KD ciliated bronchial epithelium. In this study, we synthesized a panel of mAbs from alpha and kappa chain sequences present in the KD arterial wall and tested the Abs for binding to acute KD tissues. We report that all of the synthetic mAbs that bind to acute KD tissues detect Ag in cytoplasmic inclusion bodies in the acute KD ciliated bronchial epithelium. Abs made from alpha sequences that were prevalent in KD arterial tissue show stronger binding to acute KD tissues than Abs made from less prevalent sequences. These findings highlight the likely importance of the inclusion bodies in the etiopathogenesis of acute KD, confirm that the IgA Ab response in acute KD is Ag driven, and demonstrate the usefulness of cloning the Ab response in diseased tissues to identify disease-relevant Ags.  相似文献   

14.
Streptococcus pyogenes of the M1 serotype is commonly associated with large outbreaks of invasive streptococcal infections and development of streptococcal toxic shock syndrome (STSS). The pathogenesis behind these infections is believed to involve bacterial superantigens that induce potent inflammatory responses, but the reason why strains of the M1 serotype are over-represented in STSS is still not understood. In the present investigation, we show that a highly purified soluble form of the M1 protein from S. pyogenes , which lacks the membrane-spanning region, is a potent inducer of T cell proliferation and release of Th1 type cytokines. M1 protein-evoked T cell proliferation was HLA class II-dependent but not MHC-restricted, did not require intracellular processing and was Vβ-restricted. Extensive mass spectrometry studies indicated that there were no other detectable proteins in the preparation. Taken together, our data demonstrate that soluble M1 protein is a novel streptococcal superantigen, which likely contributes to the excessive T cell activation and hyperinflammatory response seen in severe invasive streptococcal infections.  相似文献   

15.
Modern data on the etiology and pathogenesis of invasive streptococcal infection and the syndrome of streptococcal toxic shock are presented. In the course of the last 10-15 years essential changes in the system of interaction of group A streptococci and the macroorganism have been noted. The growth of morbidity in severe invasive forms of streptococcal infection with different clinical manifestations, including the syndrome of toxic shock, is observed. Most often this disease develops in elderly people, making up a group of risk, but sometimes affects healthy young people. Different pathogenicity factors of streptococci, capable of inducing the development of infection, are analyzed. Special attention is given to superantigens: pyrogenic toxins and M-protein. The suggestion that the development of the disease is seemingly linked with the state of specific protective immunity is substantiated. In spite of achievements in the field of the microbiology and immunology of group A streptococci, the causes of the appearance and development of invasive streptococcal infection have not yet been determined.  相似文献   

16.
Bacterial superantigens (SAgs) are a structurally related group of protein toxins secreted by Staphylococcus aureus and Streptococcus pyogenes. They are implicated in a range of human pathologies associated with bacterial infection whose symptoms result from SAg-mediated stimulation of a large number (2-20%) of T-cells. At the molecular level, bacterial SAgs bind to major histocompatability class II (MHC-II) molecules and disrupt the normal interaction between MHC-II and T-cell receptors (TCRs). We have determined high-resolution crystal structures of two newly identified streptococcal superantigens, SPE-H and SMEZ-2. Both structures conform to the generic bacterial superantigen folding pattern, comprising an OB-fold N-terminal domain and a beta-grasp C-terminal domain. SPE-H and SMEZ-2 also display very similar zinc-binding sites on the outer concave surfaces of their C-terminal domains. Structural comparisons with other SAgs identify two structural sub-families. Sub-families are related by conserved core residues and demarcated by variable binding surfaces for MHC-II and TCR. SMEZ-2 is most closely related to the streptococcal SAg SPE-C, and together they constitute one structural sub-family. In contrast, SPE-H appears to be a hybrid whose N-terminal domain is most closely related to the SEB sub-family and whose C-terminal domain is most closely related to the SPE-C/SMEZ-2 sub-family. MHC-II binding for both SPE-H and SMEZ-2 is mediated by the zinc ion at their C-terminal face, whereas the generic N-terminal domain MHC-II binding site found on many SAgs appears not to be present. Structural comparisons provide evidence for variations in TCR binding between SPE-H, SMEZ-2 and other members of the SAg family; the extreme potency of SMEZ-2 (active at 10(-15) g ml-1 levels) is likely to be related to its TCR binding properties. The smez gene shows allelic variation that maps onto a considerable proportion of the protein surface. This allelic variation, coupled with the varied binding modes of SAgs to MHC-II and TCR, highlights the pressure on SAgs to avoid host immune defences.  相似文献   

17.
Early diagnosis of acute Kawasaki disease (KD), lying in the spectrum between infectious and autoimmune diseases, can be difficult. To clarify the role of peripheral CD8T cells in KD, we examined their activation, proliferation, maturation, and effector function by four-color flow cytometry. Compared to healthy/febrile controls, acute KD patients showed striking increase in early activation marker CD69+CD8T cells and maturation subsets, but HLA-DR+CD8T cells representing late activation did not increase. Although Ki67+CD8T cells reflecting ongoing cell division increased in acute KD and febrile controls, absolute numbers of CD8T cells and maturation subsets decreased in acute KD versus healthy controls. Effector cells were lower in acute than in convalescent KD. Perforin+CD8T cells, denoting cytolytic activity, were lower in KD patients versus febrile controls. CD69+CD8T cells increase in acute KD but effector differentiation is absent. CD69+CD8T cells could be a marker to determine disease progression, treatment response, and convalescence in acute KD.  相似文献   

18.
Increasing evidence suggests that superantigens play a role in immune-mediated diseases. Superantigens are potent activators of CD4+ T cells, causing rapid and massive proliferation of cells and cytokine production. This characteristic of superantigens can be exploited in diseases where strong immunologic responses are required, such as in the B16F10 animal model of melanoma. Superantigen administration is able to significantly enhance ineffective anti-tumor immune responses, resulting in potent and long-lived protective anti-tumor immunity. However, superantigens are more well-known for the role they play in diseases. Studies using an animal model for neurologic demyelinating diseases such as multiple sclerosis show that superantigens can induce severe relapses and activate autoreactive T cells not involved in the initial bout of disease. This may also involve epitope spreading of disease. Superantigens have also been implicated in acute diseases such as food poisoning and TSS, and in chronic diseases such as psoriasis and rheumatoid arthritis. Viral superantigens are also involved in the disease process, including superantigens derived from human immunodeficiency virus and mouse mammary tumor virus. Finally, immunotherapies that ameliorate the role played by superantigens in disease are discussed.  相似文献   

19.
We investigated serum antibodies to a comprehensive array of group A streptococcal antigens and superantigens in Egyptian subjects. Antibodies to Streptococcus pyogenes cell-associated proteins and to proteins released by rapidly dividing S. pyogenes were compared in four patient groups with different post-streptococcal diseases and in healthy controls. Enzyme-linked immunosorbent assays showed that total Ig and IgG to extracellular antigens were significantly higher in patients with acute rheumatic fever (ARF) compared to healthy controls, but no differences were found in either total Ig or IgG titres to cell-associated proteins between any of the groups. Western blotting showed that multiple extracellular and cell-associated antigens, covering a wide range of molecular masses, were recognised by all sera, including healthy controls. No evidence was obtained for putative dominant antigens associated with any disease group, although a low molecular mass cell-associated protein (approximately 4 kDa) was clearly recognised by two-thirds of subjects irrespective of disease status. These findings demonstrate that raised serum Ig and IgG titres to extracellular, but not cell-associated, S. pyogenes antigens are a feature of ARF in this population, and suggest that multiple S. pyogenes antigens contribute to this response.  相似文献   

20.
OBJECTIVE: To examine the cytopathological changes in the conjunctiva of patients with active Kawasaki disease. STUDY DESIGN: Case-control prospective study. Bilateral conjunctival swabs were obtained from 3 groups of children: patients with acute KD (11), age-matched controls (7), and patients with inactive KD (9). The ThinPrep prepared and Papanicolaou stained smears were examined blindly by 2 cytopathologists. The cell count differential of cells was performed and recorded quantitatively and comparisons between the 3 patient groups were made. RESULTS: Only neutrophil counts showed a significant difference among the 3 groups. The average scores for the acute KD, control group, and patients with inactive KD were 3.5, 1.6 and 1.3, respectively. Using the Pearson chi2 test, the difference between the acute KD and the inactive group was statistically significant for both eyes (right p = 0.049, left p = 0.004). Samples from acute KD patients were more cellular. Neutrophils surrounding conjunctival epithelial cells, or "neutrophilic rosetting", were seen in 4 (36%) cases of the active disease group but not in the other groups. CONCLUSION: "Neutrophilic conjunctivitis" is characteristic in patients of acute KD that may be of value in the initial evaluation and subsequent follow-up of KD patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号