首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Flower color is often viewed as a trait that signals rewards to pollinators, such that the relationship between flower color and plant fitness might result from its association with another trait. We used experimental manipulations of flower color and nectar reward to dissociate the natural character correlations present in a hybrid zone between Ipomopsis aggregata and Ipomopsis tenuituba. Isozyme markers were used to follow the male and female reproductive success of these engineered phenotypes. One field experiment compared fitnesses of I. aggregata plants that varied only in flower color. Plants with flowers painted red received more hummingbird visits and sired more seeds than did plants with flowers painted pink or white to match those of hybrids and I. tenuituba. Our second field experiment compared fitnesses of I. aggregata, I. tenuituba, and hybrid plants in an unmanipulated array and in a second array where all flowers were painted red. In the unmanipulated array, I. aggregata received more hummingbird visits, set more seeds per flower, and sired more seeds per flower. These fitness differences largely disappeared when the color differences were eliminated. The higher male fitness of I. aggregata was due to its very high success at siring seeds on conspecific recipients. On both I. tenuituba and hybrid recipients, hybrid plants sired the most seeds, despite showing lower pollen fertility than I. aggregata in mixed donor pollinations in the greenhouse. Ipomopsis tenuituba had a fitness of only 13% relative to I. aggregata when traits varied naturally, compared to a fitness of 36% for white relative to red flowers when other traits were held constant.  相似文献   

2.

Background and Aims

The number of flowers blooming simultaneously on a plant may have profound consequences for reproductive success. Large floral displays often attract more pollinator visits, increasing outcross pollen receipt. However, pollinators frequently probe more flowers in sequence on large displays, potentially increasing self-pollination and reducing pollen export per flower. To better understand how floral display size influences male and female fitness, we manipulated display phenotypes and then used paternity analysis to quantify siring success and selfing rates.

Methods

To facilitate unambiguous assignment of paternity, we established four replicate (cloned) arrays of Mimulus ringens, each consisting of genets with unique combinations of homozygous marker genotypes. In each array, we trimmed displays to two, four, eight or 16 flowers. When fruits ripened, we counted the number of seeds per fruit and assigned paternity to 1935 progeny.

Key Results

Siring success per flower declined sharply with increasing display size, while female success per flower did not vary with display. The rate of self-fertilization increased for large floral displays, but siring losses due to geitonogamous pollen discounting were much greater than siring gains through increased self-fertilization. As display size increased, each additional seed sired through geitonogamous self-pollination was associated with a loss of 9·7 seeds sired through outcrossing.

Conclusions

Although total fitness increased with floral display size, the marginal return on each additional flower declined steadily as display size increased. Therefore, a plant could maximize fitness by producing small displays over a long flowering period, rather than large displays over a brief flowering period.  相似文献   

3.
Understanding plant reproduction requires knowledge of genetic contributions through pollen and seeds. Since direct genetic assessments of fitness through pollen are often intractable, reproductive ecologists use components of male fitness such as pollen production and pollen removal as surrogates tot paternity. However, we know little of the strength of the relationship between these components and actual paternity. Here, I report on a study undertaken to examine the relationship of pollen production and removal with paternity in Fragaria virginiana, a wild strawberry. A morphological marker was used to track paternity in experimental arrays exposed to native pollinators. Relative pellen production proved to be a poor predictor of relative paternity in most arrays, and over all arrays there was no significant correlation between relative paternity and relative pellen production. In contrast, relative pollen removed correlated significantly and positively with proportion of seeds sired, suggesting that a plant's contribution to the pool of removed pellen is a good predictor of its male reproductive success. Deviations from expected paternity based on relative pollen removal suggest a systematic overestimation of the siring success of plants with low pollen removal. And, in at least one specific case, low pellen removal may be explained by delayed anther dehiscence, which could lower the effectiveness of the removed pellen.  相似文献   

4.
Recently, some evolutionary biologists have argued that selection on the male component of fitness shapes the evolution of reproductive characters in angiosperms. Floral features, such as inflorescence size, that lead to increased insect visitation without a concomitant increase in seed production are viewed as adaptations to enhance the probability of fathering seeds on other plants. In tests of this “pollen donation hypothesis,” male reproductive success has usually been measured indirectly by flower production, pollinator visitation, or pollen removal. We tested the pollen donation hypothesis directly by quantifying the number of seeds sired by individual genotypes in a natural population of poke milkweed, Asclepias exaltata, in southwestern Virginia. Multiple paternity was low within fruits, a fact which allowed us to use genotypes of progeny arrays to identify a unique pollen parent for 85% of the fruits produced in the population. Seeds sired (male success) and seeds produced (female success) were significantly correlated with flower number per plant (for male success, r = 0.32, P > 0.05; for female success, r = 0.66, P > 0.001). While the number of pollinaria removed, the usual estimator of male success in milkweeds, was highly correlated with numbers of seeds sired (r = 0.47; P > 0.001), it was even more highly correlated with numbers of seeds produced (r = 0.71, P > 0.001). Analysis of functional gender indicated that plants with many flowers did not behave primarily as males. In fact, individuals with the highest total reproductive success contributed equally as males and females. Furthermore, estimates of gender based on numbers of flowers produced or pollinaria removed overestimated the number of functional males in the population. In pollen-limited species, such as many milkweeds, proportional increases in both male and female reproductive success indicate the potential for selection to shape the evolution of large floral displays through both male and female functions.  相似文献   

5.
Flower production is the major determinant of pollen yield and an important component in pollinator attraction. Consequently differences among plants in flower production are expected to have a substantial impact on their relative success at fathering seed. We examined this prediction using one natural and three structured populations of wild radish. We found that a plant's relative success at fathering seed on another plant in the population (male fertility) increased with flower production. Nonetheless, the increase in fertility exhibited a diminishing marginal gain, with the relationship varying among populations. The relationship between the estimates of total number of seeds sired and flower production varied substantially among the populations examined, ranging from a weakly linear to strongly negative quadratic. Not surprisingly, the spatial structure of the population with respect to seed yield had a powerful effect on the total number of seeds sired because male fertility decreased exponentially with intermate distance. This exponential relationship occurred in all populations examined. Other covariates important to male fertility were flower color, time, the specific identity of the male parent, and male by female interaction. The identity of the male parent consistently accounted for a large portion of the variation in male fertility, indicating that other unmeasured features of the plant influenced its success.  相似文献   

6.
Competition among pollen grains for the fertilization of ovules can play an important role in determining the male and female reproductive success of flowering plants. To examine the influence of pollen-donor genotype on male reproductive success, hand-pollinations were conducted on Clarkia unguiculata and the siring success of pollen-donor plants was compared between donors homozygous for different allelomorphs of the allozyme PGI (phosphoglucoisomerase). Donors homozygous for the B allele sired more seeds than C-allele donors. Single-donor crosses indicated that C-donor-sired seeds are aborted more often than are B-donor-sired seeds, suggesting that the B-allele donor's advantage in mixed pollinations was a result of differential abortion. A negative relationship between pollen load and the siring success of B-allele donors implies that pollen from B-allele donors has reduced performance relative to C-allele donors when pollen loads are high. These data demonstrate consistent differences in siring success between individuals homozygous for different alleles at a single locus and suggest that variation at the Pgi locus may be maintained by a post-pollination trade-off.  相似文献   

7.
The mean volume of pollen grains and total pollen production varied both within and among plants of Erythronium grandiflorum. The second flowers of two-flowered plants tended to produce smaller and fewer grains than first flowers, but there was no overall relationship between mean pollen grain size and production per flower. I evaluated the effects of pollen size differences within and among plants on two components of male reproductive success: pollen tube growth and postfertilization siring ability. Pollen tubes grown in media were longer for second flowers, but were not correlated with the mean size of pollen grains, suggesting that (1) internal resource content of pollen (i.e., carbohydrates plus lipids) was not associated with the hydrated size of pollen, and that (2) pollen from second flowers contained more resources. I analyzed the growth rate and the fertilization ability of pollen growing in styles. Growth rate differed among donors and recipients, but no effects of pollen or donor characters (i.e., pollen production, grain size, and flower position) were detected. In single donor pollinations, pollen size was negatively correlated with fertilization ability across donors, and positively correlated with postfertilization siring ability of donors. A second experiment used pairs of donors; within-plant differences in pollen size and flower position had effects similar to the single donor experiment on fertilization ability, but among-plant differences were not significant. The results corroborate earlier experiments that suggest that the growth of pollen tubes in the style is probably controlled by the recipient, since donor characters had minimal effects on pollen fertilization ability. Postfertilization siring ability was not affected by within-plant differences in mean grain size and production. For among-donor differences, the number of seeds set for each donor was positively correlated with the mean grain volume, and when a donor producing large pollen fertilized ovules in an ovary, there was increased seed abortion for seeds in the same ovary sired by a second donor. In addition, the total number of seeds produced by a fruit was decreased when both donors had large pollen, apparently due to increased postfertilization abortion. Postfertilization processes appear to be influenced by paternal differences that are expressed through competition among developing seeds for maternal resources.  相似文献   

8.
Generally, effects of herbivory on plant fitness have been measured in terms of female reproductive success (seed production). However, male plant fitness, defined as the number of seeds sired by pollen, contributes half of the genes to the next generation and is therefore crucial to the evolution of natural plant populations. This is the first study to examine effects of insect herbivory on both male and female plant reproductive success. Through controlled field and greenhouse experiments and genetic paternity analysis, we found that foliar damage by insects caused a range of responses by plants. In one environment, damaged plants had greater success as male parents than undamaged plants. Neither effects on pollen competitive ability nor pollinator visitation patterns could explain the greater siring success of these damaged plants. Success of damaged plants as male parents appeared to be due primarily to changes in allocation to flowers versus seeds after damage. Damaged plants produced more flowers early in the season, but not more seeds, than undamaged plants. Based on total seed production, male fitness measures from the first third of the season, and flower production, we estimated that damaged and undamaged plants had equal total reproductive success at the end of the season in this environment. In a second, richer environment, damaged and undamaged plants had equal male and female plant fitness, and no traits differed significantly between the treatments. Equal total reproductive success may not be ecologically or evolutionarily equivalent if it is achieved differentially through male versus female fitness. Genes from damaged plants dispersed through pollen may escape attack from herbivores, if such attack is correlated spatially from year to year.  相似文献   

9.
Although most models of mating system evolution assign a central role to the male transmission advantage of selfing genotypes, empirical data on the male fitness consequences of increased self-pollination are still uncommon. Here, I use measures of pollen import and export by focal plants in genotyped arrays to investigate the effects of floral morphology and pollination environment on self and outcross male function. Plants from an autogamous population of Arenaria uniflora (Caryophyllaceae) exhibit complete pollen discounting relative to closely related outcrossers, as do morphologically intermediate F1 hybrids between the two populations. However, the low cumulative male fitness of hybrids probably results from reduced pollen number or competitive ability, rather than a nonlinear relationship with floral morphology. When surrounded by selfers, plants from the outcrosser population self-fertilize at nearly the same rate as selfers (>80%), but have much lower self male fitness due to reduced fruit set. Because outcross siring success is also extremely low (<8%) in this treatment, these mate-limited outcrossers are at male fitness disadvantage to both pseudocleistogamous selfers and nonlimited outcrossers. The relative male fitness of plants with different mating systems appears dependent on the ecological context, as well as on morphological trade-offs.  相似文献   

10.
The stigmas of animal-pollinated flowers often capture more pollen than is needed to fertilize all available ovules, and mixed-donor pollen loads are probably common. When this is the case, variation in average pollen-tube growth rates can potentially affect the number of seeds sired by a given plant. Despite considerable interest in effects of postpollination processes on male fitness, little is known about the extent of variation in pollen performance among plants from natural populations. To examine this question in Hibiscus moscheutos (rose mallow), we conducted mixed-donor hand-pollination experiments with 39 pollen donors bearing distinctive isozyme markers. Pairs of competing donors were compared on sets of 11 to 15 recipient plants per pair. These donors often differed in the proportions of seeds they sired, with the maximum deviation from an expected ratio of 50:50 being 68:32. Furthermore, three intensively studied plants exhibited consistent trends in relative pollen performance when each was tested against (1) the same three competitors, and (2) groups of 14 competitors chosen at random from the study population. In a separate experiment, we investigated the effects of salinity stress and high soil nutrients on pollen performance. These environmental factors had anticipated effects on leaf production, flower production, and petal length, but style length and (most importantly) the number of seeds sired relative to a standard pollen donor were not affected. In summary, this study provides the strongest evidence to date that pollen-tube competitive ability varies among coexisting plants and may be an important component of male fitness in plants.  相似文献   

11.
? The diversity of plant breeding systems provides the opportunity to study a range of potential reproductive adaptations. Many mechanisms remain poorly understood, among them the evolution and maintenance of male flowers in andromonoecy. Here, we studied the role of morphologically male flowers ('male morph') in andromonoecious Passiflora incarnata. ? We measured morphological differences between hermaphroditic and male morph flowers in P.?incarnata and explored the fruiting and siring ability of both flower types. ? Male morph flowers in P.?incarnata were of similar size to hermaphroditic flowers, and there was little evidence of different resource allocation to the two flower types. Male morph flowers were less capable of producing fruit, even under ample pollen and resource conditions. By contrast, male morph flowers were more successful in siring seeds. On average, male morph flowers sired twice as many seeds as hermaphroditic flowers. This difference in male fitness was driven by higher pollen export from male morph flowers as a result of greater pollen production and less self-pollen deposition. ? The production of male morph flowers in P.?incarnata appears to be a flexible adaptive mechanism to enhance male fitness, which might be especially beneficial when plants face temporary resource shortages for nurturing additional fruits.  相似文献   

12.
Few observations have been made on temporal changes in the siring success of flowers in the male stage. In this study, we estimated both male and female contributions to fitness for 21 plants of protandrous andromonoeciosHeracleum lanatum with differing dates of first flowering. The results of multiple regression analysis showed that total male fitness significantly increases with the advance of the first-flowering date but does not depend upon plant size, whereas female fitness increases with plant size but does not depend upon the first-flowering date. We also showed that the earlier-flowering plants have more late-blooming male flowers in their secondary umbels. Based on these results, we suggest that polymorphism of the early- and late-bloomers may be maintained by frequency-dependent selection through temporally changing male reproductive success.  相似文献   

13.
To determine the effects of soil phosphorus on pollen production, pollen grain size, phosphate concentration per pollen grain, and the siring ability of pollen, two cultivars of the common zucchini (Cucurbita pepo) were grown under two soil phosphorus conditions in an experimental garden. Overall, soil phosphorus availability had a significant effect on reproductive output through the female function and on traits affecting the male function of plants (staminate flower production, pollen production per flower, and pollen grain size). In addition, pollen produced by plants in the high phosphorus soils had a higher phosphate concentration than pollen produced by plants in the low phosphorus soils. A pollen mixture experiment revealed that pollen produced by plants in the high phosphorus treatment sired significantly more seeds than pollen produced by plants in the low phosphorus treatment. This study showed that growing conditions such as soil phosphorus can influence the size of a pollen grain and its chemical composition, which, in turn, can affect its ability to sire mature seeds.  相似文献   

14.
Abstract Protandry, a form of temporal separation of gender within hermaphroditic flowers, may reduce the magnitude of pollen lost to selfing (pollen discounting) and also serve to enhance pollen export and outcross siring success. Because pollen discounting is strongest when selfing occurs between flowers on the same plant, the advantage of protandry may be greatest in plants with large floral displays. We tested this hypothesis with enclosed, artificial populations of Chamerion angustifolium (Onagraceae) by experimentally manipulating protandry (producing uniformly adichogamous or mixed protandrous and adichogamous populations) and inflorescence size (two-, six-, or 10-flowered inflorescences) and measuring pollinator visitation, seed set, female outcrossing rate, and outcross siring success. Bees spent more time foraging on and visited more flowers of larger inflorescences than small. Female outcrossing rates did not vary among inflorescence size treatments. However, seed set per fruit decreased with increasing inflorescence size, likely as a result of increased abortion of selfed embryos, perhaps obscuring the magnitude of geitonogamous selfing. Protandrous plants had a marginally higher female outcrossing rate than adichogamous plants, but similar seed set. More importantly, protandrous plants had, on average, a twofold siring advantage relative to adichogamous plants. However, this siring advantage did not increase linearly with inflorescence size, suggesting that protandry acts to enhance siring success, but not exclusively by reducing between-flower interference.  相似文献   

15.
To examine the breeding system and components of male and female reproductive success in the hermaphroditic plant Lobelia cardinalis, we performed three crossing experiments with plants taken from natural populations. The experiments were designed to determine if the crossing success of plants as pollen and ovule parents was affected by the distance among mates, including self-pollinations and pollinations between populations; to determine if plants differed in their abilities to sire or mature seed; and to determine if there was a correlation between a plant's success at siring and maturing seed. Selfpollinations resulted in significantly fewer seeds per fruit and significantly smaller seeds. There were no significant differences in germinability between selfed and outcrossed seeds. Distance among parents within a population did not affect any of the traits. Outcrosses within and between population produced similar numbers of seeds per fruit, similar seed weights, and similar germination success. There were highly significant differences among maternal plants in all three experiments in the number of seeds they matured, mean seed weight, and seed germinability. The maternal parent was the most important factor determining seed production, but there were also significant differences among paternal plants in the number of seeds they sired (all three experiments), in the germinability of the seeds they sired (two experiments), and in the sizes of seeds they sired (one experiment). Our results indicate that differences in success of Lobelia plants as male parents cannot be due solely to their relatedness to the female parent.  相似文献   

16.
Many co-sexual plants segregate female and male function among flowers on an inflorescence through dichogamy or the production of unisexual flowers. Sexual segregation may reduce self-pollination among flowers within inflorescences (geitonogamy), thereby increasing the pollen available for export to other plants. To assess these complementary roles we manipulated the simultaneously hermaphroditic (adichogamous) flowers of Eichhornia paniculata to produce ten-flowered inflorescences with either female above male flowers (female/male inflorescences) or male/female inflorescences, which competed for mating opportunities with five-flowered adichogamous inflorescences. Because of the upward movement of bumble-bees, selfing increased upward in adichogamous inflorescences (overall female selfing rate s+/-s.e.=0.320+/-0.026). Female flowers of male/female inflorescences selfed less than flowers in corresponding positions in adichogamous inflorescences so s fell to 0.135+/-0.027. In contrast, all-female flowers of female/male inflorescences selfed similarly to upper flowers on adichogamous inflorescences, elevating s (0.437+/-0.043). During 1997, male/female inflorescences sired more outcrossed seeds than female/male or adichogamous inflorescences, whereas during 1994 flowers on male/female inflorescences received fewer visits than those of adichogamous inflorescences, reducing their outcross siring success. Hence, sexual segregation limits geitonogamy and enhances outcross siring success when it does not affect pollinator behaviour, illustrating the importance of both female and male function in inflorescence design.  相似文献   

17.
The roles of herbivory and pollination success in plant reproduction have frequently been examined, but interactions between these two factors have gained much less attention. In three field experiments, we examined whether artificial defoliation affects allocation to attractiveness to pollinators, pollen production, female reproductive success and subsequent growth in Platanthera bifolia L. (Rich.). We also recorded the effects of inflorescence size on these variables. We studied the effects of defoliation on reproductive success of individual flowers in three sections of inflorescence. Defoliation and inflorescence size did not have any negative effects on the proportion of opened flowers, spur length, nectar production or the weight of pollinia. However, we found that hand-pollination increased relative seed production and defoliation decreased seed set in most cases. Interactions between hand-pollination and defoliation were non-significant indicating that defoliation did not affect female reproductive success indirectly via decreased pollinator attraction. Plants with a large inflorescence produced relatively more seeds than plants with a small inflorescence only after hand-pollination. The negative effect of defoliation on relative capsule production was most clearly seen in the upper sections of the inflorescence. In addition to within season effects of leaf removal, defoliated P. bifolia plants may also have decreased lifetime fitness as a result of lower seed set within a season and because of a lower number of reproductive events due to decreased plant size (leaf area) following defoliation. Our study thus shows that defoliation by herbivores may crucially affect reproductive success of P. bifolia.  相似文献   

18.
Sex allocation theory assumes that a shift in allocation of resources to male function both increases male fitness and decreases female fitness. Moreover, the shapes of these fitness gain functions determine whether hermaphroditism or another breeding system is evolutionarily stable. In this article, I first outline information needed to measure these functions in flowering plants. I then use paternity analysis to describe the shapes of the fitness gain functions in natural populations of the hermaphroditic herb Ipomopsis aggregata. I also explore the relationships of male fitness (number of seeds sired) and female fitness (number of seeds produced) to the number of flowers produced by a plant. Plants with greater investment of biomass in the androecium, compared to the gynoecium and seeds, showed increased success at siring seeds, assumed by the models. That sex allocation trait, however, explained only 9% of the variance in estimates of male fitness. The shapes of the fitness gain functions were consistent with theoretical expectations for a hermaphroditic plant, but the model predicted a more female-biased evolutionarily stable strategy (ESS) allocation than was observed. These results lend only partial support the classical sex allocation model.  相似文献   

19.
The evolution of large floral displays in hermaphroditic flowering plants has been attributed to natural selection acting to enhance male, rather than female, reproductive success. Proponents of the “pollen-donation hypothesis” have assumed that maternal resources, rather than levels of effective pollination, limit fruit set. We investigated the pollen-donation hypothesis in an experimental population of poke milkweed, Asclepias exaltata, where effective pollination did not limit fruit set. Specifically, we examined the effects of flower number per plant, and flower number per umbel on male reproductive success (number of fruits sired) and female reproductive success (number of fruits matured). In 1990, a paternity analysis was performed on fruits collected from 53 plants whose inflorescences were not manipulated. Flower number per plant was significantly correlated with male success, but not with plant gender. Flower number per plant was also significantly correlated with female success, but umbel number and stem number per plant together explained more than half (58%) the variation in female success. The percentage of fruit set was not significantly correlated with flower number per plant. Plants with large floral displays did not disproportionately increase in male reproductive success, relative to female success, as predicted by the pollen-donation hypothesis. In 1991, the effect of flower number per umbel on male and female reproductive success was investigated. Flower number per umbel was manipulated on four umbels per plant by removing flowers to leave 6, 12, or 18 flowers in each umbel. Plants with the largest umbels effectively pollinated twice as many flowers on other plants, but produced only 1.35 times as many fruits as plants with 6 and 12 flowers per umbel. Relative maleness of plants with large umbels was nearly twice that of small and medium umbels. Although these observations are consistent with the pollen-donation hypothesis at the level of umbels, they are problematic, because much of the variation in flower number per umbel exists within, rather than among, plants in natural populations. Thus, plants consist of both reproductively male (large) and female (small) inflorescences, which act to increase total reproductive success. It is therefore inappropriate to explain the evolution of large floral displays in milkweeds solely in terms of potential male reproductive success.  相似文献   

20.
Flexistyly is a recently documented stylar polymorphism involving both spatial and temporal segregation of sex roles within hermaphroditic flowers. Using the experimental manipulation of stigma movement in self-compatible Alpinia mutica, we tested the hypothesis that selection for reducing interference between male and female function drives the evolution and/or maintenance of stigma movement. In experimental arrays, anaflexistylous (protogynous) flowers served as pollen donors competing for mating opportunities on cataflexistylous (protandrous) flowers. The pollen donors were either manipulated so their stigmas could not move or were left intact, and their success was determined using allozymes to assess the paternity of recipient seeds. We found that manipulated flowers sired a significantly smaller proportion of seeds, showing that stigma movement in unmanipulated plants increased male fitness. This result was strongest under conditions in which pollen competition was expected to be highest, specifically when pollinators visited multiple donor plants before visiting recipient flowers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号